Skip to main content
Erschienen in: Experimental Mechanics 8/2014

01.10.2014

An Extension of the Monkman-Grant Model for the Prediction of the Creep Rupture Time Using Small Punch Tests

verfasst von: J. M. Alegre, I. I. Cuesta, M. Lorenzo

Erschienen in: Experimental Mechanics | Ausgabe 8/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Creep tests on a small scale have the potential to be used without significant removal of material or in areas where the available material is limited. In this paper an extension of the modified Monkman-Grant model for the prediction of the creep rupture time using Small Punch Creep Tests (SPCT) is investigated. This test basically consists of punching, under constant load, a small size specimen (10×10×0.5 mm) with the ends fixed. For this purpose an AZ31B magnesium alloy, taking a test temperature of 150 ºC, has been selected. The Monkman-Grant relation is a predictive model, initially developed for uniaxial creep tests, which can be used to predict the rupture time of tests which have been interrupted once secondary stage of creep has been reached. The proposed extension of the Monkman-Grant model for SPCT is based on the definition of the Minimum Relative Punch Displacement Rate. The experimental techniques and data analysis, involving small punch testing, are explained in detail. The proposed predictive model allows the test times of small punch testing to be reduced and it can be directly applied to predict the failure time from an interrupted test at the time when the Minimum Relative Punch Displacement Rate is reached. Good correlations are obtained by comparing the failure time from the proposed Monkman-Grant extension with the experimental failure time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Monkman F, and Grant N (1956) An empirical relationship between rupture life and mínimum creep rate in creep-rupture tests. Proceeding of ASTM,:p. 593–620 Monkman F, and Grant N (1956) An empirical relationship between rupture life and mínimum creep rate in creep-rupture tests. Proceeding of ASTM,:p. 593–620
2.
Zurück zum Zitat Larson FR, Miller J (1952) Time- temperature relationship for rupture and creep stresses. Trans ASME 74:765–775 Larson FR, Miller J (1952) Time- temperature relationship for rupture and creep stresses. Trans ASME 74:765–775
3.
Zurück zum Zitat Orr R, Sherby O, Dorn J (1954) Correlations of rupture data for metals at elevated temperatures. Transit ASM 46:113–118 Orr R, Sherby O, Dorn J (1954) Correlations of rupture data for metals at elevated temperatures. Transit ASM 46:113–118
4.
Zurück zum Zitat Manson SS, Haferd AM (1953) A linear time-temperature relation for extrapolation of creep and stressrupture data, NACA TN 2890 Manson SS, Haferd AM (1953) A linear time-temperature relation for extrapolation of creep and stressrupture data, NACA TN 2890
5.
Zurück zum Zitat Manson SS, Brown WF (1953) Time- temperature stress relations for correlation and extrapolation of stress rupture data. Proc ASTM 53:683–719 Manson SS, Brown WF (1953) Time- temperature stress relations for correlation and extrapolation of stress rupture data. Proc ASTM 53:683–719
6.
Zurück zum Zitat Abdallah Z, Perkins K, Williams S (2012) Advances in the Wilshire extrapolation technique—full creep curve representation for the aerospace alloy titanium 834. Mater Sci Eng A 550:176–182CrossRef Abdallah Z, Perkins K, Williams S (2012) Advances in the Wilshire extrapolation technique—full creep curve representation for the aerospace alloy titanium 834. Mater Sci Eng A 550:176–182CrossRef
7.
Zurück zum Zitat Whittaker MT, Evans M, Wilshire B (2012) Long-term creep data prediction for type 316H stainless steel. Mater Sci Eng A 552:145–150CrossRef Whittaker MT, Evans M, Wilshire B (2012) Long-term creep data prediction for type 316H stainless steel. Mater Sci Eng A 552:145–150CrossRef
8.
Zurück zum Zitat Wilshire B (1989) New high-precision creep procedures for accurate life extension of plant. Int J Press Vessel Pip 39(1–2):73–82CrossRef Wilshire B (1989) New high-precision creep procedures for accurate life extension of plant. Int J Press Vessel Pip 39(1–2):73–82CrossRef
9.
Zurück zum Zitat Wilshire B et al. (1994) Micro-Models and Macro-Laws of Creep Fracture, in Advances in Fracture Resistance and Structural Integrity, V.V. Panasyuk, et al., Editors. Pergamon: Oxford. p. 529–536 Wilshire B et al. (1994) Micro-Models and Macro-Laws of Creep Fracture, in Advances in Fracture Resistance and Structural Integrity, V.V. Panasyuk, et al., Editors. Pergamon: Oxford. p. 529–536
10.
Zurück zum Zitat Wilshire B, Scharning PJ, Hurst R (2009) A new approach to creep data assessment. Mater Sci Eng A 510–511:3–6CrossRef Wilshire B, Scharning PJ, Hurst R (2009) A new approach to creep data assessment. Mater Sci Eng A 510–511:3–6CrossRef
11.
Zurück zum Zitat Povolo F (1985) Comments on the monkman-grant and the modified monkman-grant relationships. J Mater Sci 20(6):2005–2010CrossRef Povolo F (1985) Comments on the monkman-grant and the modified monkman-grant relationships. J Mater Sci 20(6):2005–2010CrossRef
12.
Zurück zum Zitat Kim W, Kim S, Ryu W (2002) Evaluation of monkman-grant parameters for type 316LN and modified 9Cr-Mo stainless steels. KSME Int J 16(11):1420–1427 Kim W, Kim S, Ryu W (2002) Evaluation of monkman-grant parameters for type 316LN and modified 9Cr-Mo stainless steels. KSME Int J 16(11):1420–1427
13.
Zurück zum Zitat Abendroth M, Kuna M (2006) Identification of ductile damage and fracture parameters from the small punch test using neural networks. Eng Fract Mech 73(6):710–725CrossRef Abendroth M, Kuna M (2006) Identification of ductile damage and fracture parameters from the small punch test using neural networks. Eng Fract Mech 73(6):710–725CrossRef
14.
Zurück zum Zitat Alegre JM, Cuesta II, Bravo PM (2011) Implementation of the GTN damage model to simulate the small punch test on Pre-cracked specimens. Procedia Eng 10:1007–1016CrossRef Alegre JM, Cuesta II, Bravo PM (2011) Implementation of the GTN damage model to simulate the small punch test on Pre-cracked specimens. Procedia Eng 10:1007–1016CrossRef
15.
Zurück zum Zitat Bai T, Chen P, Guan K (2013) Evaluation of stress corrosion cracking susceptibility of stainless steel 304L with surface nanocrystallization by small punch test. Mater Sci Eng A 561:498–506CrossRef Bai T, Chen P, Guan K (2013) Evaluation of stress corrosion cracking susceptibility of stainless steel 304L with surface nanocrystallization by small punch test. Mater Sci Eng A 561:498–506CrossRef
16.
Zurück zum Zitat Bai T, Guan K (2013) Evaluation of stress corrosion cracking susceptibility of nanocrystallized stainless steel 304L welded joint by small punch test. Mater Des 52:849–860CrossRef Bai T, Guan K (2013) Evaluation of stress corrosion cracking susceptibility of nanocrystallized stainless steel 304L welded joint by small punch test. Mater Des 52:849–860CrossRef
17.
Zurück zum Zitat Cuesta II, Alegre JM (2011) Determination of the fracture toughness by applying a structural integrity approach to pre-cracked small punch test specimens. Eng Fract Mech 78(2):289–300CrossRef Cuesta II, Alegre JM (2011) Determination of the fracture toughness by applying a structural integrity approach to pre-cracked small punch test specimens. Eng Fract Mech 78(2):289–300CrossRef
18.
Zurück zum Zitat Cuesta II, Alegre JM (2012) Hardening evaluation of stamped aluminium alloy components using the small punch test. Eng Fail Anal 26:240–246CrossRef Cuesta II, Alegre JM (2012) Hardening evaluation of stamped aluminium alloy components using the small punch test. Eng Fail Anal 26:240–246CrossRef
19.
Zurück zum Zitat García TE et al (2014) Estimation of the mechanical properties of metallic materials by means of the small punch test. J Alloys Compd 582:708–717CrossRef García TE et al (2014) Estimation of the mechanical properties of metallic materials by means of the small punch test. J Alloys Compd 582:708–717CrossRef
20.
Zurück zum Zitat Madia M et al (2013) On the applicability of the small punch test to the characterization of the 1CrMoV aged steel: mechanical testing and numerical analysis. Eng Fail Anal 34:189–203CrossRef Madia M et al (2013) On the applicability of the small punch test to the characterization of the 1CrMoV aged steel: mechanical testing and numerical analysis. Eng Fail Anal 34:189–203CrossRef
21.
Zurück zum Zitat Rodríguez C et al (2014) Small punch test on the analysis of fracture behaviour of PLA-nanocomposite films. Polym Test 33:21–29CrossRef Rodríguez C et al (2014) Small punch test on the analysis of fracture behaviour of PLA-nanocomposite films. Polym Test 33:21–29CrossRef
22.
Zurück zum Zitat Turba K, Hurst R, Hähner P (2013) Evaluation of the ductile–brittle transition temperature in the NESC-I material using small punch testing. Int J Press Vessel Pip 111–112:155–161CrossRef Turba K, Hurst R, Hähner P (2013) Evaluation of the ductile–brittle transition temperature in the NESC-I material using small punch testing. Int J Press Vessel Pip 111–112:155–161CrossRef
23.
Zurück zum Zitat Xu Y, Guan K (2013) Evaluation of fracture toughness by notched small punch tests with Weibull stress method. Mater Des 51:605–611CrossRef Xu Y, Guan K (2013) Evaluation of fracture toughness by notched small punch tests with Weibull stress method. Mater Des 51:605–611CrossRef
24.
Zurück zum Zitat Chen H et al (2013) Application of small punch creep testing to a thermally sprayed CoNiCrAlY bond coat. Mater Sci Eng A 585:205–213CrossRef Chen H et al (2013) Application of small punch creep testing to a thermally sprayed CoNiCrAlY bond coat. Mater Sci Eng A 585:205–213CrossRef
25.
Zurück zum Zitat Dobeš F, Milička K (2002) On the monkman-grant relation for small punch test data. Mater Sci Eng A 336(1–2):245–248 Dobeš F, Milička K (2002) On the monkman-grant relation for small punch test data. Mater Sci Eng A 336(1–2):245–248
26.
Zurück zum Zitat Dobeš F, Milička K (2009) Application of creep small punch testing in assessment of creep lifetime. Mater Sci Eng A 510–511:440–443 Dobeš F, Milička K (2009) Application of creep small punch testing in assessment of creep lifetime. Mater Sci Eng A 510–511:440–443
27.
Zurück zum Zitat Dymáček P, Milička K (2009) Creep small-punch testing and its numerical simulations. Mater Sci Eng A 510–511:444–449CrossRef Dymáček P, Milička K (2009) Creep small-punch testing and its numerical simulations. Mater Sci Eng A 510–511:444–449CrossRef
28.
Zurück zum Zitat Hou F et al (2013) Determination of creep property of 1.25Cr0.5Mo pearlitic steels by small punch test. Eng Fail Anal 28:215–221CrossRef Hou F et al (2013) Determination of creep property of 1.25Cr0.5Mo pearlitic steels by small punch test. Eng Fail Anal 28:215–221CrossRef
29.
Zurück zum Zitat CEN/WS (2005) Small Punch Test Method for Metallic Materials Part 1: A Code of Practice for Small Punch Testing at Elevated Temperatures. Report No. CEN/WS 21 CEN/WS (2005) Small Punch Test Method for Metallic Materials Part 1: A Code of Practice for Small Punch Testing at Elevated Temperatures. Report No. CEN/WS 21
30.
Zurück zum Zitat Dunand DC, Han BQ, Jansen AM (1999) Monkman-grant analysis of creep fracture in dispersion-strengthened and particulate-reinforced aluminum. Metall Mater Trans A 30(13):829–838CrossRef Dunand DC, Han BQ, Jansen AM (1999) Monkman-grant analysis of creep fracture in dispersion-strengthened and particulate-reinforced aluminum. Metall Mater Trans A 30(13):829–838CrossRef
32.
Zurück zum Zitat Verma R et al (2009) The finite element simulation of high-temperature magnesium AZ31 sheet forming. JOM 61(8):29–37CrossRef Verma R et al (2009) The finite element simulation of high-temperature magnesium AZ31 sheet forming. JOM 61(8):29–37CrossRef
33.
Zurück zum Zitat Kulekci M (2008) Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol 39(9–10):851–865CrossRef Kulekci M (2008) Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol 39(9–10):851–865CrossRef
34.
Zurück zum Zitat Luo A (2002) Magnesium: current and potential automotive applications. JOM 54(2):42–48CrossRef Luo A (2002) Magnesium: current and potential automotive applications. JOM 54(2):42–48CrossRef
35.
Zurück zum Zitat Hector JLG et al. (2010) High-Temperature Forming of a Vehicle Closure Component in Fine-Grained Aluminum Alloy AA5083: Finite Element Simulations and Experiments. Key Engineering Materials:433 Hector JLG et al. (2010) High-Temperature Forming of a Vehicle Closure Component in Fine-Grained Aluminum Alloy AA5083: Finite Element Simulations and Experiments. Key Engineering Materials:433
36.
Zurück zum Zitat Bicego F et al. (2003) Small Punch Creep Test Method: Results from A round robin Carried out within EPERC TTF5. TTF5 technical reporter, 31 (8th EPERC Annual General Meeting) Bicego F et al. (2003) Small Punch Creep Test Method: Results from A round robin Carried out within EPERC TTF5. TTF5 technical reporter, 31 (8th EPERC Annual General Meeting)
37.
Zurück zum Zitat Chakrabarty J (1970) A theory of stretch forming over hemispherical punch heads. Int J Mech Sci 12(4):315–325CrossRef Chakrabarty J (1970) A theory of stretch forming over hemispherical punch heads. Int J Mech Sci 12(4):315–325CrossRef
38.
Zurück zum Zitat Tettamanti S, Crudeli R (1998) Small punch creep test: a promising methodology for high temperature plant components life evaluation. Tech Res Centre of Finland, BALTICA IV: Plant Maint for Manag Life & Perform 2:501–509 Tettamanti S, Crudeli R (1998) Small punch creep test: a promising methodology for high temperature plant components life evaluation. Tech Res Centre of Finland, BALTICA IV: Plant Maint for Manag Life & Perform 2:501–509
39.
Zurück zum Zitat Yang Z, Wang Z-W (2003) Relationship between strain and central deflection in small punch creep specimens. Int J Press Vessel Pip 80(6):397–404CrossRef Yang Z, Wang Z-W (2003) Relationship between strain and central deflection in small punch creep specimens. Int J Press Vessel Pip 80(6):397–404CrossRef
Metadaten
Titel
An Extension of the Monkman-Grant Model for the Prediction of the Creep Rupture Time Using Small Punch Tests
verfasst von
J. M. Alegre
I. I. Cuesta
M. Lorenzo
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 8/2014
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-014-9927-6

Weitere Artikel der Ausgabe 8/2014

Experimental Mechanics 8/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.