Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 1/2017

31.07.2015 | ASSESSING AND MANAGING LIFE CYCLES OF ELECTRIC VEHICLES

Electric car life cycle assessment based on real-world mileage and the electric conversion scenario

verfasst von: Eckard Helmers, Johannes Dietz, Susanne Hartard

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

While almost all life cycle assessment (LCA) studies published so far are based on generic vehicles, type approval energy consumption as well as emission data, and application scenarios related to standardized laboratory-based driving cycles, this projects aims at quantifying the LCA based on a real-world vehicle composition and energy consumption data measured before and after the electric conversion of a mini class car. Furthermore, consequences of a second life of a vehicle’s glider on the environmental impact were investigated.

Methods

After having driven 100,000 km, a Smart was converted from combustion to electric in a laboratory project. The inventory was developed grounded upon materials data from laboratory measurements during the conversion process as well as on real-world energy consumption data prior and after the conversion. Three base models are compared in this life cycle impact assessment: a conventional new Smart (combustion engine), a new electric Smart, and a Smart converted from combustion engine to electric. Together with two sensitivity analyses (four different electricity mixes as well as urban vs. mixed driving conditions) and two EOL treatments, 36 scenarios have been quantified. The inventory is based on Ecoinvent database v 2.2 as a background system and includes raw material extraction.

Results and discussion

In urban use, the modeled battery electric vehicle has a favorable environmental impact compared to the ICEV even when charged with the German electricity mix of the year 2013. The advantage in summed up endpoints of the converted Smart is 23 % vs. the new electric Smart on average for the mixed driving conditions and 26 % for the urban driving conditions, respectively. Over a variety of impact categories, electricity consumption during battery cell production in China as well as impacts due to microelectronic components dominated the life cycle. Results for 18 midpoint categories, endpoints for damages to human health, to resource quality and to ecosystem quality as well as the Single score endpoints are reported.

Conclusions

This investigation points out that real-world treatments in inventory development can more specifically outline the environmental advantages of the electric car. The electric conversion of a used combustion engine vehicle can save an additional 16 % (CO2-eq) and 19 % (single score endpoints) of the environmental impact over a lifetime, respectively, when compared with the new BEV.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Glider: a car without the powertrain (Del Duce et al. 2014)
 
Literatur
Zurück zum Zitat Abtew M, Selvaduray G (2000) Lead-free solders in microelectronics. Mat Sci Eng R Rep 27(5–6):95–141CrossRef Abtew M, Selvaduray G (2000) Lead-free solders in microelectronics. Mat Sci Eng R Rep 27(5–6):95–141CrossRef
Zurück zum Zitat Althaus HJ, de Haan P, Scholz RW (2009) Traffic noise in LCA. Part 1: state-of-science and requirement profile for consistent context-sensitive integration of traffic noise in LCA. Int J Life Cycle Assess 14:560–570CrossRef Althaus HJ, de Haan P, Scholz RW (2009) Traffic noise in LCA. Part 1: state-of-science and requirement profile for consistent context-sensitive integration of traffic noise in LCA. Int J Life Cycle Assess 14:560–570CrossRef
Zurück zum Zitat Andrae ASG, Andersen O (2011) Life cycle assessment of integrated circuit packaging technologies. Int J Life Cycle Assess 16:258–267CrossRef Andrae ASG, Andersen O (2011) Life cycle assessment of integrated circuit packaging technologies. Int J Life Cycle Assess 16:258–267CrossRef
Zurück zum Zitat Bartolozzi I, Rizzi F, Frey M (2013) Comparison between hydrogen and electric vehicles by life cycle assessment: a case study in Tuscany, Italy. Appl Energy 101:103–111CrossRef Bartolozzi I, Rizzi F, Frey M (2013) Comparison between hydrogen and electric vehicles by life cycle assessment: a case study in Tuscany, Italy. Appl Energy 101:103–111CrossRef
Zurück zum Zitat Carslaw DC, Rhys-Tyler G (2013) New insights from comprehensive on-road measurements of NO x , NO2 and NH3 from vehicle emission remote sensing in London, UK. Atmos Environ 81:339–347CrossRef Carslaw DC, Rhys-Tyler G (2013) New insights from comprehensive on-road measurements of NO x , NO2 and NH3 from vehicle emission remote sensing in London, UK. Atmos Environ 81:339–347CrossRef
Zurück zum Zitat Del Corso F, Mettlach H, Morcrette M, Koehler U, Gousset C, Sarrazin C, Binotto G, Porcellato D, Vest M (2015) Helios—high energy lithium ion storage solutions: comparative assessment of 4 chemistries of cathode for EV and PHEV applications. In: Briec E, Mueller B (eds) Electric vehicle batteries: moving from research towards innovation. Lecture notes in mobility. Springer International Publishing Switzerland, pp 1–17 Del Corso F, Mettlach H, Morcrette M, Koehler U, Gousset C, Sarrazin C, Binotto G, Porcellato D, Vest M (2015) Helios—high energy lithium ion storage solutions: comparative assessment of 4 chemistries of cathode for EV and PHEV applications. In: Briec E, Mueller B (eds) Electric vehicle batteries: moving from research towards innovation. Lecture notes in mobility. Springer International Publishing Switzerland, pp 1–17
Zurück zum Zitat Del Duce A, Gauch M, Hans-Jörg Althaus HJ (2014) Inventories in ecoinvent version 3: electric passenger car transport and passenger car life cycle. Int J Life Cycle Assess. doi:10.1007/s11367-014-0792-4 Del Duce A, Gauch M, Hans-Jörg Althaus HJ (2014) Inventories in ecoinvent version 3: electric passenger car transport and passenger car life cycle. Int J Life Cycle Assess. doi:10.​1007/​s11367-014-0792-4
Zurück zum Zitat Du X, Graedel TE (2011) Global in-use stocks of the rare earth elements: a first estimate. Environ Sci Technol 45(9):4096–4101CrossRef Du X, Graedel TE (2011) Global in-use stocks of the rare earth elements: a first estimate. Environ Sci Technol 45(9):4096–4101CrossRef
Zurück zum Zitat Feng K, Hubacek K, Siu YL, Li X (2014) The energy and water nexus in Chinese electricity production: a hybrid life cycle analysis. Renew Sust Energ Rev 11(39):342–355CrossRef Feng K, Hubacek K, Siu YL, Li X (2014) The energy and water nexus in Chinese electricity production: a hybrid life cycle analysis. Renew Sust Energ Rev 11(39):342–355CrossRef
Zurück zum Zitat Frischknecht R, Flury K (2011) Life cycle assessment of electric mobility: answers and challenges—Zurich, April 6, 2011. Int J Life Cycle Assess 16:691–695CrossRef Frischknecht R, Flury K (2011) Life cycle assessment of electric mobility: answers and challenges—Zurich, April 6, 2011. Int J Life Cycle Assess 16:691–695CrossRef
Zurück zum Zitat Hawkins TR, Singh B, Majeau-Bettez G, Strømman AH (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17(1):53–64CrossRef Hawkins TR, Singh B, Majeau-Bettez G, Strømman AH (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17(1):53–64CrossRef
Zurück zum Zitat Helmers E (2010) Bewertung der Umwelteffizienz moderner Autoantriebe—auf dem Weg vom Diesel-Pkw-Boom zu Elektroautos. Umweltwiss Schadst Forsch 22:564–578CrossRef Helmers E (2010) Bewertung der Umwelteffizienz moderner Autoantriebe—auf dem Weg vom Diesel-Pkw-Boom zu Elektroautos. Umweltwiss Schadst Forsch 22:564–578CrossRef
Zurück zum Zitat Helmers (2015) Possible Resource Restrictions for the Future Large-Scale Production of Electric Cars. Springer International Publishing. In: Hartard S, Liebert W (eds) Competition and Conflicts on Resource Use, Natural Resource Management and Policy 46, pp 121–131 Helmers (2015) Possible Resource Restrictions for the Future Large-Scale Production of Electric Cars. Springer International Publishing. In: Hartard S, Liebert W (eds) Competition and Conflicts on Resource Use, Natural Resource Management and Policy 46, pp 121–131
Zurück zum Zitat IEA (2014) Electricity information 2014, with 2013 data. International Energy Agency, Paris, 896 pp IEA (2014) Electricity information 2014, with 2013 data. International Energy Agency, Paris, 896 pp
Zurück zum Zitat Karabasoglu O, Michalek J (2013) Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains. Energy Pol 60:445–461CrossRef Karabasoglu O, Michalek J (2013) Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains. Energy Pol 60:445–461CrossRef
Zurück zum Zitat Kern B, Spiess S, Richter J (2014) Comprehensive gasoline exhaust gas aftertreatment, an effective measure to minimize the contribution of modern direct injection engines to fine dust and soot emissions? SAE Technical Paper 2014-01-1513, 2014, doi:10.4271/2014-01-1513 Kern B, Spiess S, Richter J (2014) Comprehensive gasoline exhaust gas aftertreatment, an effective measure to minimize the contribution of modern direct injection engines to fine dust and soot emissions? SAE Technical Paper 2014-01-1513, 2014, doi:10.​4271/​2014-01-1513
Zurück zum Zitat Khaligh A, Dusmez S (2012) Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles. IEEE Trans Veh Technol 61(8):3475–3489CrossRef Khaligh A, Dusmez S (2012) Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles. IEEE Trans Veh Technol 61(8):3475–3489CrossRef
Zurück zum Zitat Ma H, Balthasar F, Tait N, Riera-Palou X, Harrison A (2012) A new comparison between the life cycle green house gas emissions of battery electric vehicles and internal combustion vehicles. Energ Pol 44:160–173CrossRef Ma H, Balthasar F, Tait N, Riera-Palou X, Harrison A (2012) A new comparison between the life cycle green house gas emissions of battery electric vehicles and internal combustion vehicles. Energ Pol 44:160–173CrossRef
Zurück zum Zitat Majeau-Bettez G, Hawkins TA, Strømman AH (2011a) Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ Sci Technol 45(10):4548–4554CrossRef Majeau-Bettez G, Hawkins TA, Strømman AH (2011a) Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ Sci Technol 45(10):4548–4554CrossRef
Zurück zum Zitat Messagie M, Boureima FS, Coosemans T, Macharis C, Van Mierlo J (2014) A range-based vehicle life cycle assessment incorporating variability in the environmental assessment of different vehicle technologies and fuels. Energies 7:1467–1482 Messagie M, Boureima FS, Coosemans T, Macharis C, Van Mierlo J (2014) A range-based vehicle life cycle assessment incorporating variability in the environmental assessment of different vehicle technologies and fuels. Energies 7:1467–1482
Zurück zum Zitat Nordelöf A, Messagie M, Tillman AM, Ljunggren M, Söderman JVM (2014) Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles — what can we learn from life cycle assessment? Int J Life Cycle Assess 19:1866–1890CrossRef Nordelöf A, Messagie M, Tillman AM, Ljunggren M, Söderman JVM (2014) Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles — what can we learn from life cycle assessment? Int J Life Cycle Assess 19:1866–1890CrossRef
Zurück zum Zitat Notter DA, Gauch M, Widmer R, Wäger P, Stamp A, Zah R, Althaus HJ (2010a) Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ Sci Technol 44:6550–6556CrossRef Notter DA, Gauch M, Widmer R, Wäger P, Stamp A, Zah R, Althaus HJ (2010a) Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ Sci Technol 44:6550–6556CrossRef
Zurück zum Zitat Szczechowicz E, Dederichs T, Schnettler A (2012) Regional assessment of local emissions of electric vehicles using traffic simulations for a use case in Germany. Int J Life Cycle Assess 17(9):1131–1141CrossRef Szczechowicz E, Dederichs T, Schnettler A (2012) Regional assessment of local emissions of electric vehicles using traffic simulations for a use case in Germany. Int J Life Cycle Assess 17(9):1131–1141CrossRef
Metadaten
Titel
Electric car life cycle assessment based on real-world mileage and the electric conversion scenario
verfasst von
Eckard Helmers
Johannes Dietz
Susanne Hartard
Publikationsdatum
31.07.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 1/2017
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-015-0934-3

Weitere Artikel der Ausgabe 1/2017

The International Journal of Life Cycle Assessment 1/2017 Zur Ausgabe

ASSESSING AND MANAGING LIFE CYCLES OF ELECTRIC VEHICLES

Preface

ASSESSING AND MANAGING LIFE CYCLES OF ELECTRIC VEHICLES

Is there a resource constraint related to lithium ion batteries in cars?

ASSESSING AND MANAGING LIFE CYCLES OF ELECTRIC VEHICLES

Environmental trade-offs across cascading lithium-ion battery life cycles