Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 9/2017

11.02.2017 | Original Article

Visualization of vascular injuries in extremity trauma

verfasst von: Kwitae Chong, Chenfanfu Jiang, Daniel Ram, Anand Santhanam, Demetri Terzopoulos, Peyman Benharash, Erik Dutson, Joseph Teran, Jeff D. Eldredge

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 9/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A tandem of particle-based computational methods is adapted to simulate injury and hemorrhage in the human body. In order to ensure anatomical fidelity, a three-dimensional model of a targeted portion of the human body is reconstructed from a dense sequence of CT scans of an anonymized patient. Skin, bone and muscular tissue are distinguished in the imaging data and assigned with their respective material properties. An injury geometry is then generated by simulating the mechanics of a ballistic projectile passing through the anatomical model with the material point method. From the injured vascular segments identified in the resulting geometry, smoothed particle hydrodynamics (SPH) is employed to simulate bleeding, based on inflow boundary conditions obtained from a network model of the systemic arterial tree. Computational blood particles interact with the stationary particles representing impermeable bone and skin and permeable muscular tissue through the Brinkman equations for porous media. The SPH results are rendered in post-processing for improved visual fidelity. The overall simulation strategy is demonstrated on an injury scenario in the lower leg.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Akinci N, Ihmsen M, Akinci G, Solenthaler B, Teschner M (2012) Versatile rigid-fluid coupling for incompressible SPH. ACM Trans Graph 31(4), Art ID 62. doi:10.1145/2185520.2185558 Akinci N, Ihmsen M, Akinci G, Solenthaler B, Teschner M (2012) Versatile rigid-fluid coupling for incompressible SPH. ACM Trans Graph 31(4), Art ID 62. doi:10.​1145/​2185520.​2185558
2.
Zurück zum Zitat Avolio AP (1980) Multi-branched model of the human arterial system. Med Biol Eng Comput 18(6):709–718CrossRefPubMed Avolio AP (1980) Multi-branched model of the human arterial system. Med Biol Eng Comput 18(6):709–718CrossRefPubMed
3.
Zurück zum Zitat Basdogan C, Ho C-H, Srinivasan MA (2001) Virtual environments for medical training: graphical and haptic simulation of laparoscopic common bile duct exploration. IEEE/ASME Trans Mechatron 6(3):269–285CrossRef Basdogan C, Ho C-H, Srinivasan MA (2001) Virtual environments for medical training: graphical and haptic simulation of laparoscopic common bile duct exploration. IEEE/ASME Trans Mechatron 6(3):269–285CrossRef
4.
Zurück zum Zitat Boisvert J, Poirier G, Borgeat L, Godin G (2013) Real-time blood circulation and bleeding model for surgical training. IEEE Trans Biomed Eng 60(4):1013–1022CrossRefPubMed Boisvert J, Poirier G, Borgeat L, Godin G (2013) Real-time blood circulation and bleeding model for surgical training. IEEE Trans Biomed Eng 60(4):1013–1022CrossRefPubMed
5.
Zurück zum Zitat Bridson R (2007) Fast poisson disk sampling in arbitrary dimensions. In: ACM SIGGRAPH 2007 Sketches. SIGGRAPH ’ 07:2007 Bridson R (2007) Fast poisson disk sampling in arbitrary dimensions. In: ACM SIGGRAPH 2007 Sketches. SIGGRAPH ’ 07:2007
6.
Zurück zum Zitat Courtecuisse H, Allard J, Kerfriden P, Bordas SP, Cotin S, Duriez C (2014) Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med Image Anal 18(2):394–410CrossRefPubMed Courtecuisse H, Allard J, Kerfriden P, Bordas SP, Cotin S, Duriez C (2014) Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med Image Anal 18(2):394–410CrossRefPubMed
7.
Zurück zum Zitat Dehnen W, Aly H (2012) Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Mon Not R Astron Soc 425(2):1068–1082CrossRef Dehnen W, Aly H (2012) Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Mon Not R Astron Soc 425(2):1068–1082CrossRef
8.
Zurück zum Zitat Desbrun M, Gascuel MP (1996) Smoothed particles: a new paradigm for animating highly deformable bodies. In: Computer animation and simulation ’96 proceedings of EG workshop on animation and simulation. Springer, pp 61–76 Desbrun M, Gascuel MP (1996) Smoothed particles: a new paradigm for animating highly deformable bodies. In: Computer animation and simulation ’96 proceedings of EG workshop on animation and simulation. Springer, pp 61–76
9.
Zurück zum Zitat Durlofsky L, Brady JF (1987) Analysis of the brinkman equation as a model for flow in porous media. Phys Fluids 30:3329–3341CrossRef Durlofsky L, Brady JF (1987) Analysis of the brinkman equation as a model for flow in porous media. Phys Fluids 30:3329–3341CrossRef
10.
Zurück zum Zitat Frank P, Eldredge JD, Benharash P, Dutson EP (2016) Real-time numerical simulation of the cardiovascular system and autoregulatory mechanisms in response to hemorrhagic injury. In: Preparation Frank P, Eldredge JD, Benharash P, Dutson EP (2016) Real-time numerical simulation of the cardiovascular system and autoregulatory mechanisms in response to hemorrhagic injury. In: Preparation
11.
Zurück zum Zitat Gallagher AG, Ritter EM, Champion H, Higgins G, Fried Marvin P, Moses Gerald, Smith C Daniel, Satava Smith (2005) Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Ann Surg 241(2):364–372CrossRefPubMedPubMedCentral Gallagher AG, Ritter EM, Champion H, Higgins G, Fried Marvin P, Moses Gerald, Smith C Daniel, Satava Smith (2005) Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Ann Surg 241(2):364–372CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. MNRAS 181:375–389CrossRef Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. MNRAS 181:375–389CrossRef
13.
Zurück zum Zitat Horvath CJ, Solenthaler B (2013) Mass preserving multi-scale sph. In: Pixar Technical Memo 13-04, Pixar Animation Studios Horvath CJ, Solenthaler B (2013) Mass preserving multi-scale sph. In: Pixar Technical Memo 13-04, Pixar Animation Studios
14.
Zurück zum Zitat Jiang C, Schroeder C, Selle A, Teran J, Stomakhin A (2015) The affine particle-in-cell method. ACM Trans Graph 34(4):51:1–51:10CrossRef Jiang C, Schroeder C, Selle A, Teran J, Stomakhin A (2015) The affine particle-in-cell method. ACM Trans Graph 34(4):51:1–51:10CrossRef
15.
Zurück zum Zitat Kellman J (2014) Adaptive response-time-based category sequencing in perceptual learning. Vis Res 99:111–123CrossRefPubMed Kellman J (2014) Adaptive response-time-based category sequencing in perceptual learning. Vis Res 99:111–123CrossRefPubMed
16.
Zurück zum Zitat Krasne S, Hillman JD, Kellman PJ, Drake TA et al (2013) Applying perceptual and adaptive learning techniques for teaching introductory histopathology. J Pathol Inform 4(1):34CrossRefPubMedPubMedCentral Krasne S, Hillman JD, Kellman PJ, Drake TA et al (2013) Applying perceptual and adaptive learning techniques for teaching introductory histopathology. J Pathol Inform 4(1):34CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Kühnapfel U, Cakmak HK, Maaß H (2000) Endoscopic surgery training using virtual reality and deformable tissue simulation. Comput Graph 24(5):671–682CrossRef Kühnapfel U, Cakmak HK, Maaß H (2000) Endoscopic surgery training using virtual reality and deformable tissue simulation. Comput Graph 24(5):671–682CrossRef
18.
Zurück zum Zitat Liu A, Tendick F, Cleary K, Kaufmann C (2003) A survey of surgical simulation: applications, technology, and education. Presence Teleoperators Virtual Environ 12(6):599–614CrossRef Liu A, Tendick F, Cleary K, Kaufmann C (2003) A survey of surgical simulation: applications, technology, and education. Presence Teleoperators Virtual Environ 12(6):599–614CrossRef
19.
Zurück zum Zitat Lucy LB (1977) Numerical study of liquid composite molding using a smoothed particle hydrodynamics method. Astron J 82:1013–1024CrossRef Lucy LB (1977) Numerical study of liquid composite molding using a smoothed particle hydrodynamics method. Astron J 82:1013–1024CrossRef
20.
Zurück zum Zitat Meier U, López O, Monserrat C, Juan MC, Alcaniz M (2005) Real-time deformable models for surgery simulation: a survey. Comput Methods Programs Biomed 77(3):183–197CrossRefPubMed Meier U, López O, Monserrat C, Juan MC, Alcaniz M (2005) Real-time deformable models for surgery simulation: a survey. Comput Methods Programs Biomed 77(3):183–197CrossRefPubMed
21.
Zurück zum Zitat Müller M, Charypar D, Gross M (2003) Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation Müller M, Charypar D, Gross M (2003) Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation
22.
Zurück zum Zitat Müller M, Schirm S, Teschner M (2003) Interactive blood simulation for virtual surgery based on smoothed particle hydrodynamics. Technol Health Care 12:25–31 Müller M, Schirm S, Teschner M (2003) Interactive blood simulation for virtual surgery based on smoothed particle hydrodynamics. Technol Health Care 12:25–31
23.
Zurück zum Zitat Museth K (2014) A flexible image processing approach to the surfacing of particle-based fluid animation (invited talk). In: Mathematical progress in expressive image synthesis I, volume 4 of mathematics for industry, pp 81–84 Museth K (2014) A flexible image processing approach to the surfacing of particle-based fluid animation (invited talk). In: Mathematical progress in expressive image synthesis I, volume 4 of mathematics for industry, pp 81–84
24.
Zurück zum Zitat Oger Guillaume, Doring Mathieu, Alessandrini Bertrand, Ferrant Pierre (2007) An improved sph method: Towards higher order convergence. Journal of Computational Physics 225(2):1472–1492CrossRef Oger Guillaume, Doring Mathieu, Alessandrini Bertrand, Ferrant Pierre (2007) An improved sph method: Towards higher order convergence. Journal of Computational Physics 225(2):1472–1492CrossRef
25.
Zurück zum Zitat Ram D, Gast T, Jiang C, Schroeder C, Stomakhin A, Teran J, Kavehpour P (2015) A material point method for viscoelastic fluids, foams and sponges. In: Proceedings of the 14th ACM SIGGRAPH / Eurographics symposium on computer animation, SCA ’15, pp 157–163 Ram D, Gast T, Jiang C, Schroeder C, Stomakhin A, Teran J, Kavehpour P (2015) A material point method for viscoelastic fluids, foams and sponges. In: Proceedings of the 14th ACM SIGGRAPH / Eurographics symposium on computer animation, SCA ’15, pp 157–163
26.
Zurück zum Zitat Solenthaler B, Gross M (2011) Two-scale particle simulation. In: Proceedings of ACM SIGGRAPH 30:2011 Solenthaler B, Gross M (2011) Two-scale particle simulation. In: Proceedings of ACM SIGGRAPH 30:2011
27.
Zurück zum Zitat Stam J, Fiume E (1995) Depicting fire and other gaseous phenomena using diffusion processes. In: Proceedings of the 22nd annual conference on computer graphics and interactive techniques, pp 129–136. ACM Stam J, Fiume E (1995) Depicting fire and other gaseous phenomena using diffusion processes. In: Proceedings of the 22nd annual conference on computer graphics and interactive techniques, pp 129–136. ACM
28.
Zurück zum Zitat Stergiopulos N, Young DF, Rogge TR (1992) Computer simulation of arterial flow with application to arterial and aortic stenoses. J Biomech 25(12):1477–1488CrossRefPubMed Stergiopulos N, Young DF, Rogge TR (1992) Computer simulation of arterial flow with application to arterial and aortic stenoses. J Biomech 25(12):1477–1488CrossRefPubMed
29.
Zurück zum Zitat Stomakhin A, Schroeder C, Chai L, Teran J, Selle A (2013) A material point method for snow simulation. ACM Trans Graph 32(4):1021–10210CrossRef Stomakhin A, Schroeder C, Chai L, Teran J, Selle A (2013) A material point method for snow simulation. ACM Trans Graph 32(4):1021–10210CrossRef
30.
Zurück zum Zitat Stomakhin A, Schroeder C, Jiang C, Chai L, Teran J, Selle A (2014) Augmented MPM for phase-change and varied materials. ACM Trans Graph 33(4):138:1–138:11CrossRef Stomakhin A, Schroeder C, Jiang C, Chai L, Teran J, Selle A (2014) Augmented MPM for phase-change and varied materials. ACM Trans Graph 33(4):138:1–138:11CrossRef
31.
Zurück zum Zitat Su D, Ma R, Zhur L (2011) Numerical study of liquid composite molding using a smoothed particle hydrodynamics method. Special Top Rev Porous Media Int J 2(3):205–212CrossRef Su D, Ma R, Zhur L (2011) Numerical study of liquid composite molding using a smoothed particle hydrodynamics method. Special Top Rev Porous Media Int J 2(3):205–212CrossRef
32.
Zurück zum Zitat Sulsky D, Zhou S-J, Schreyer HL (1995) Application of a particle-in-cell method to solid mechanics. Comput Phys Commun 87(1–2):236–252CrossRef Sulsky D, Zhou S-J, Schreyer HL (1995) Application of a particle-in-cell method to solid mechanics. Comput Phys Commun 87(1–2):236–252CrossRef
33.
Zurück zum Zitat Womersley JR (1957) Oscillatory flow in arteries: the constrained elastic tube as a model of arterial flow and pulse transmission. Phys Med Biol 2:178–187CrossRefPubMed Womersley JR (1957) Oscillatory flow in arteries: the constrained elastic tube as a model of arterial flow and pulse transmission. Phys Med Biol 2:178–187CrossRefPubMed
Metadaten
Titel
Visualization of vascular injuries in extremity trauma
verfasst von
Kwitae Chong
Chenfanfu Jiang
Daniel Ram
Anand Santhanam
Demetri Terzopoulos
Peyman Benharash
Erik Dutson
Joseph Teran
Jeff D. Eldredge
Publikationsdatum
11.02.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 9/2017
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-017-1619-9

Weitere Artikel der Ausgabe 9/2017

Medical & Biological Engineering & Computing 9/2017 Zur Ausgabe