Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 3/2015

01.03.2015

Micro-strain Evolution and Toughening Mechanisms in a Trimodal Al-Based Metal Matrix Composite

verfasst von: Yuzheng Zhang, Troy D. Topping, Hanry Yang, Enrique J. Lavernia, Julie M. Schoenung, Steven R. Nutt

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A trimodal metal matrix composite (MMC) based on AA (Al alloy) 5083 (Al-4.4Mg-0.7Mn-0.15Cr wt pct) was synthesized by cryomilling powders followed by compaction of blended powders and ceramic particles using two successive dual mode dynamic forgings. The microstructure consisted of 66.5 vol pct ultrafine grain (UFG) region, 30 vol pct coarse grain (CG) region and 3.5 vol pct reinforcing boron carbide particles. The microstructure imparted high-tensile yield strength (581 MPa) compared to a conventional AA 5083 (242 MPa) and enhanced ductility compared to 100 pct UFG Al MMC. The deformation behavior of the heterogeneous structure and the effects of CG regions on crack propagation were investigated using in situ scanning electron microscopy micro-tensile tests. The micro-strain evolution measured using digital image correlation showed early plastic strain localization in CG regions. Micro-voids due to the strain mismatch at CG/UFG interfaces were responsible for crack initiation. CG region toughening was realized by plasticity-induced crack closure and zone shielding of disconnected micro-cracks. However, these toughening mechanisms did not effectively suppress its brittle behavior. Further optimization of the CG distribution (spacing and morphology) is required to achieve toughness levels required for structural applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Gleiter, “Nanocrystalline materials,” Progess Mater. Sci., vol. 33, pp. 223–315, 1990.CrossRef H. Gleiter, “Nanocrystalline materials,” Progess Mater. Sci., vol. 33, pp. 223–315, 1990.CrossRef
2.
Zurück zum Zitat R. Birringer, “Nanocrystalline materials,” Mater. Sci. Eng. A, vol. 117, pp. 33–43, Sep. 1989.CrossRef R. Birringer, “Nanocrystalline materials,” Mater. Sci. Eng. A, vol. 117, pp. 33–43, Sep. 1989.CrossRef
3.
Zurück zum Zitat C. Suryanarayana, “Nanocrystalline materials,” Int. Mater. Rev., vol. 40, no. 2, pp. 41–64, Jan. 1995.CrossRef C. Suryanarayana, “Nanocrystalline materials,” Int. Mater. Rev., vol. 40, no. 2, pp. 41–64, Jan. 1995.CrossRef
4.
Zurück zum Zitat K. Lu, “Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties,” Mater. Sci. Eng. R, no. 16, pp. 161–221, 1996.CrossRef K. Lu, “Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties,” Mater. Sci. Eng. R, no. 16, pp. 161–221, 1996.CrossRef
5.
Zurück zum Zitat H. Gleiter, “Nanostructured materials:Basic concepts and microstructure,” Acta Mater., vol. 48, pp. 1–29, 2000.CrossRef H. Gleiter, “Nanostructured materials:Basic concepts and microstructure,” Acta Mater., vol. 48, pp. 1–29, 2000.CrossRef
6.
Zurück zum Zitat M. A. Meyers, A. Mishra, and D. J. Benson, “Mechanical properties of nanocrystalline materials,” Prog. Mater. Sci., vol. 51, no. 4, pp. 427–556, May 2006.CrossRef M. A. Meyers, A. Mishra, and D. J. Benson, “Mechanical properties of nanocrystalline materials,” Prog. Mater. Sci., vol. 51, no. 4, pp. 427–556, May 2006.CrossRef
7.
Zurück zum Zitat R. . Valiev, R. . Islamgaliev, and I. . Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Prog. Mater. Sci., vol. 45, no. 2, pp. 103–189, Mar. 2000.CrossRef R. . Valiev, R. . Islamgaliev, and I. . Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Prog. Mater. Sci., vol. 45, no. 2, pp. 103–189, Mar. 2000.CrossRef
8.
Zurück zum Zitat V. L. Tellkamp, A. Melmed, and E. J. Lavernia, “Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy,” Metall. Mater. Trans. A, vol. 32A, no. September, pp. 2335–2343, 2001.CrossRef V. L. Tellkamp, A. Melmed, and E. J. Lavernia, “Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy,” Metall. Mater. Trans. A, vol. 32A, no. September, pp. 2335–2343, 2001.CrossRef
9.
Zurück zum Zitat D. B. Witkin and E. J. Lavernia, “Synthesis and mechanical behavior of nanostructured materials via cryomilling,” Prog. Mater. Sci., vol. 51, no. 1, pp. 1–60, Jan. 2006.CrossRef D. B. Witkin and E. J. Lavernia, “Synthesis and mechanical behavior of nanostructured materials via cryomilling,” Prog. Mater. Sci., vol. 51, no. 1, pp. 1–60, Jan. 2006.CrossRef
10.
Zurück zum Zitat A. P. Newbery, B. Ahn, T. D. Topping, P. S. Pao, S. R. Nutt and E. J. Lavernia, “Large UFG Al alloy plates from cryomilling”, J. Mater. Proc. Tech., vol. 203 (1-3), pp. 37-45, 2008.CrossRef A. P. Newbery, B. Ahn, T. D. Topping, P. S. Pao, S. R. Nutt and E. J. Lavernia, “Large UFG Al alloy plates from cryomilling”, J. Mater. Proc. Tech., vol. 203 (1-3), pp. 37-45, 2008.CrossRef
11.
Zurück zum Zitat G. Hardenbergstr, “Mechanical formation by mechanical attrition,” Nanostructured Mater., vol. 6, no. 95, pp. 33–42, 1995. G. Hardenbergstr, “Mechanical formation by mechanical attrition,” Nanostructured Mater., vol. 6, no. 95, pp. 33–42, 1995.
12.
Zurück zum Zitat R. W. Hayes, P. B. Berbon, and R. S. Mishra, “Microstructure characterization and creep deformation of an Al-10 wt pct Ti-2 wt pct Cu nanocomposite,” Metall. Mater. Trans. A, vol. 35, pp. 3855–3861, 2004.CrossRef R. W. Hayes, P. B. Berbon, and R. S. Mishra, “Microstructure characterization and creep deformation of an Al-10 wt pct Ti-2 wt pct Cu nanocomposite,” Metall. Mater. Trans. A, vol. 35, pp. 3855–3861, 2004.CrossRef
13.
Zurück zum Zitat T.J. Van Daam and C.C. Bampton: US Patent, The Boeing Company, Chicago, IL, 2008. T.J. Van Daam and C.C. Bampton: US Patent, The Boeing Company, Chicago, IL, 2008.
14.
Zurück zum Zitat O. Susegg, E. Hellum, A. Olsen and M. Luton, “An electron microscopy study of dispersoids in cryomilled ODS-materials,” Micron Microsc. Acta, vol. 23, no. 1/2, pp. 223–224, 1992.CrossRef O. Susegg, E. Hellum, A. Olsen and M. Luton, “An electron microscopy study of dispersoids in cryomilled ODS-materials,” Micron Microsc. Acta, vol. 23, no. 1/2, pp. 223–224, 1992.CrossRef
15.
Zurück zum Zitat Y. Li, W. Liu, V. Ortalan, W. F. Li, Z. Zhang, R. Vogt, N. D. Browning, E. J. Lavernia, and J. M. Schoenung, “HRTEM and EELS study of aluminum nitride in nanostructured Al 5083/B4C processed via cryomilling,” Acta Mater., vol. 58, no. 5, pp. 1732–1740, Mar. 2010.CrossRef Y. Li, W. Liu, V. Ortalan, W. F. Li, Z. Zhang, R. Vogt, N. D. Browning, E. J. Lavernia, and J. M. Schoenung, “HRTEM and EELS study of aluminum nitride in nanostructured Al 5083/B4C processed via cryomilling,” Acta Mater., vol. 58, no. 5, pp. 1732–1740, Mar. 2010.CrossRef
16.
Zurück zum Zitat F. Tang, C.P. Liao, B. Ahn, S.R. Nutt and J.M. Schoenung: Powder Metall., 2007, vol. 50(4), pp. 307–12.CrossRef F. Tang, C.P. Liao, B. Ahn, S.R. Nutt and J.M. Schoenung: Powder Metall., 2007, vol. 50(4), pp. 307–12.CrossRef
17.
Zurück zum Zitat K. M. Youssef, R. O. Scattergood, K. Linga Murty, and C. C. Koch, “Ultratough nanocrystalline copper with a narrow grain size distribution,” Appl. Phys. Lett., vol. 85, no. 6, p. 929, 2004.CrossRef K. M. Youssef, R. O. Scattergood, K. Linga Murty, and C. C. Koch, “Ultratough nanocrystalline copper with a narrow grain size distribution,” Appl. Phys. Lett., vol. 85, no. 6, p. 929, 2004.CrossRef
18.
Zurück zum Zitat K. . Kumar, H. Van Swygenhoven, and S. Suresh, “Mechanical behavior of nanocrystalline metals and alloys,” Acta Mater., vol. 51, no. 19, pp. 5743–5774, Nov. 2003.CrossRef K. . Kumar, H. Van Swygenhoven, and S. Suresh, “Mechanical behavior of nanocrystalline metals and alloys,” Acta Mater., vol. 51, no. 19, pp. 5743–5774, Nov. 2003.CrossRef
19.
Zurück zum Zitat E. Ma, “Instabilities and ductility of nanocrystalline and ultrafine-grained metals,” Scr. Mater., vol. 49, no. 7, pp. 663–668, Oct. 2003.CrossRef E. Ma, “Instabilities and ductility of nanocrystalline and ultrafine-grained metals,” Scr. Mater., vol. 49, no. 7, pp. 663–668, Oct. 2003.CrossRef
20.
Zurück zum Zitat P.G. Sanders, J.A. Eastman, and J.R. Weertman: Acta Mater., 1997, vol. 45(10), pp. 4019–25.CrossRef P.G. Sanders, J.A. Eastman, and J.R. Weertman: Acta Mater., 1997, vol. 45(10), pp. 4019–25.CrossRef
21.
Zurück zum Zitat Y. Wang, M. Chen, F. Zhou, and E. Ma, “High tensile ductility in a nanostructured metal.,” Nature, vol. 419, no. 6910, pp. 912–5, Oct. 2002.CrossRef Y. Wang, M. Chen, F. Zhou, and E. Ma, “High tensile ductility in a nanostructured metal.,” Nature, vol. 419, no. 6910, pp. 912–5, Oct. 2002.CrossRef
22.
Zurück zum Zitat G. J. Fan, H. Choo, P. K. Liaw, and E. J. Lavernia, “Plastic deformation and fracture of ultrafine-grained Al–Mg alloys with a bimodal grain size distribution,” Acta Mater., vol. 54, no. 7, pp. 1759–1766, Apr. 2006.CrossRef G. J. Fan, H. Choo, P. K. Liaw, and E. J. Lavernia, “Plastic deformation and fracture of ultrafine-grained Al–Mg alloys with a bimodal grain size distribution,” Acta Mater., vol. 54, no. 7, pp. 1759–1766, Apr. 2006.CrossRef
23.
Zurück zum Zitat Z. Lee, V. Radmilovic, B. Ahn, E. J. Lavernia, and S. R. Nutt, “Tensile deformation and fracture mechanism of bulk bimodal ultrafine-grained Al-Mg alloy,” Metall. Mater. Trans. A, vol. 41, no. 4, pp. 795–801, Oct. 2009. Z. Lee, V. Radmilovic, B. Ahn, E. J. Lavernia, and S. R. Nutt, “Tensile deformation and fracture mechanism of bulk bimodal ultrafine-grained Al-Mg alloy,” Metall. Mater. Trans. A, vol. 41, no. 4, pp. 795–801, Oct. 2009.
24.
Zurück zum Zitat L. Jiang, K. Ma, H. Yang, M. Li, E. J. Lavernia, and J. M. Schoenung, “The microstructural design of trimodal aluminum composites”, JOM, vol. 66, no. 6, pp. 898-908, 2014.CrossRef L. Jiang, K. Ma, H. Yang, M. Li, E. J. Lavernia, and J. M. Schoenung, “The microstructural design of trimodal aluminum composites”, JOM, vol. 66, no. 6, pp. 898-908, 2014.CrossRef
25.
Zurück zum Zitat Y. Li, Y. H. Zhao, V. Ortalan, W. Liu, Z. H. Zhang, R. G. Vogt, N. D. Browning, E. J. Lavernia, and J. M. Schoenung, “Investigation of aluminum-based nanocomposites with ultra-high strength,” Mater. Sci. Eng. A, vol. 527, no. 1–2, pp. 305–316, Dec. 2009.CrossRef Y. Li, Y. H. Zhao, V. Ortalan, W. Liu, Z. H. Zhang, R. G. Vogt, N. D. Browning, E. J. Lavernia, and J. M. Schoenung, “Investigation of aluminum-based nanocomposites with ultra-high strength,” Mater. Sci. Eng. A, vol. 527, no. 1–2, pp. 305–316, Dec. 2009.CrossRef
26.
Zurück zum Zitat K.M. Reddy, P. Liu, A. Hirata, T. Fujita, and M.W. Chen: Nat. Commun., 2013, vol. 4, p. 2483.CrossRef K.M. Reddy, P. Liu, A. Hirata, T. Fujita, and M.W. Chen: Nat. Commun., 2013, vol. 4, p. 2483.CrossRef
27.
Zurück zum Zitat Z. Zhang, T. Topping, Y. Li, R. Vogt, Y. Zhou, C. Haines, J. Paras, D. Kapoor, J. M. Schoenung, and E. J. Lavernia, “Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles,” Scr. Mater., vol. 65, no. 8, pp. 652–655, Oct. 2011.CrossRef Z. Zhang, T. Topping, Y. Li, R. Vogt, Y. Zhou, C. Haines, J. Paras, D. Kapoor, J. M. Schoenung, and E. J. Lavernia, “Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles,” Scr. Mater., vol. 65, no. 8, pp. 652–655, Oct. 2011.CrossRef
28.
Zurück zum Zitat Z. Zhang, S. Dallek, R. Vogt, Y. Li, T. D. Topping, Y. Zhou, J. M. Schoenung, and E. J. Lavernia, “Degassing behavior of nanostructured Al and its composites,” Metall. Mater. Trans. A, vol. 41, no. 2, pp. 532–541, Nov. 2009. Z. Zhang, S. Dallek, R. Vogt, Y. Li, T. D. Topping, Y. Zhou, J. M. Schoenung, and E. J. Lavernia, “Degassing behavior of nanostructured Al and its composites,” Metall. Mater. Trans. A, vol. 41, no. 2, pp. 532–541, Nov. 2009.
29.
Zurück zum Zitat J.R. Davis: Properties and Selection: Nonferrous Alloys and Special Purpose Materials, 1990, ASM International, Metals Park, vol. 2. J.R. Davis: Properties and Selection: Nonferrous Alloys and Special Purpose Materials, 1990, ASM International, Metals Park, vol. 2.
30.
Zurück zum Zitat P. W. Trimby, “Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope.,” Ultramicroscopy, vol. 120, pp. 16–24, Sep. 2012.CrossRef P. W. Trimby, “Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope.,” Ultramicroscopy, vol. 120, pp. 16–24, Sep. 2012.CrossRef
31.
Zurück zum Zitat P. W. Trimby, Y. Cao, Z. Chen, S. Han, K. J. Hemker, J. Lian, X. Liao, P. Rottmann, S. Samudrala, J. Sun, J. T. Wang, J. Wheeler, and J. M. Cairney, “Characterizing deformed ultrafine-grained and nanocrystalline materials using transmission Kikuchi diffraction in a scanning electron microscope,” Acta Mater., vol. 62, pp. 69–80, Jan. 2014.CrossRef P. W. Trimby, Y. Cao, Z. Chen, S. Han, K. J. Hemker, J. Lian, X. Liao, P. Rottmann, S. Samudrala, J. Sun, J. T. Wang, J. Wheeler, and J. M. Cairney, “Characterizing deformed ultrafine-grained and nanocrystalline materials using transmission Kikuchi diffraction in a scanning electron microscope,” Acta Mater., vol. 62, pp. 69–80, Jan. 2014.CrossRef
32.
Zurück zum Zitat Y. Zhang, T. D. Topping, E. J. Lavernia, and S. R. Nutt, “Dynamic micro-Strain analysis of ultrafine-grained aluminum magnesium alloy using digital image correlation,” Metall. Mater. Trans. A, vol. 45, no. 1, pp. 47–54, May 2013. Y. Zhang, T. D. Topping, E. J. Lavernia, and S. R. Nutt, “Dynamic micro-Strain analysis of ultrafine-grained aluminum magnesium alloy using digital image correlation,” Metall. Mater. Trans. A, vol. 45, no. 1, pp. 47–54, May 2013.
33.
Zurück zum Zitat Y. J. Li, W. Z. Zhang, and K. Marthinsen, “Precipitation crystallography of plate-shaped Al6(Mn,Fe) dispersoids in AA5182 alloy,” Acta Mater., vol. 60, no. 17, pp. 5963–5974, Oct. 2012.CrossRef Y. J. Li, W. Z. Zhang, and K. Marthinsen, “Precipitation crystallography of plate-shaped Al6(Mn,Fe) dispersoids in AA5182 alloy,” Acta Mater., vol. 60, no. 17, pp. 5963–5974, Oct. 2012.CrossRef
34.
Zurück zum Zitat G. Lucadamo, N. Y. C. Yang, C. S. Marchi, and E. J. Lavernia, “Microstructure characterization in cryomilled Al 5083,” Mater. Sci. Eng. A, vol. 430, no. 1–2, pp. 230–241, Aug. 2006.CrossRef G. Lucadamo, N. Y. C. Yang, C. S. Marchi, and E. J. Lavernia, “Microstructure characterization in cryomilled Al 5083,” Mater. Sci. Eng. A, vol. 430, no. 1–2, pp. 230–241, Aug. 2006.CrossRef
35.
Zurück zum Zitat T. D. Topping, B. Ahn, Y. Li, S. R. Nutt, and E. J. Lavernia, “Influence of process parameters on the mechanical behavior of an ultrafine-grained Al alloy,” Metall. Mater. Trans. A, vol. 43, no. 2, pp. 505–519, Aug. 2011. T. D. Topping, B. Ahn, Y. Li, S. R. Nutt, and E. J. Lavernia, “Influence of process parameters on the mechanical behavior of an ultrafine-grained Al alloy,” Metall. Mater. Trans. A, vol. 43, no. 2, pp. 505–519, Aug. 2011.
36.
Zurück zum Zitat J. Ye, B. Q. Han, Z. Lee, B. Ahn, S. R. Nutt, and J. M. Schoenung, “A tri-modal aluminum based composite with super-high strength,” Scr. Mater., vol. 53, no. 5, pp. 481–486, Sep. 2005.CrossRef J. Ye, B. Q. Han, Z. Lee, B. Ahn, S. R. Nutt, and J. M. Schoenung, “A tri-modal aluminum based composite with super-high strength,” Scr. Mater., vol. 53, no. 5, pp. 481–486, Sep. 2005.CrossRef
37.
Zurück zum Zitat E. O. Hall, “The deformation and ageing of mild steel: III discussion of results,” Proc. Phys. Soc. London, vol. 64, no. 381, pp. 747–753, 1951.CrossRef E. O. Hall, “The deformation and ageing of mild steel: III discussion of results,” Proc. Phys. Soc. London, vol. 64, no. 381, pp. 747–753, 1951.CrossRef
38.
Zurück zum Zitat Petch, N.J., “The cleavage Strength of Polycrystals,” Journal of the Iron and Steel Institute, 1953. 174(1): p. 25-28. Petch, N.J., “The cleavage Strength of Polycrystals,” Journal of the Iron and Steel Institute, 1953. 174(1): p. 25-28.
39.
Zurück zum Zitat K. Peng, W. Chen, H. Zhang, and K.-W. Qian, “Features of dynamic strain aging in high strength Al-Zn-Mg-Cu alloy,” Mater. Sci. Eng. A, vol. 234–236, pp. 138–141, Aug. 1997.CrossRef K. Peng, W. Chen, H. Zhang, and K.-W. Qian, “Features of dynamic strain aging in high strength Al-Zn-Mg-Cu alloy,” Mater. Sci. Eng. A, vol. 234–236, pp. 138–141, Aug. 1997.CrossRef
40.
Zurück zum Zitat F. Tang and J. M. Schoenung, “Strain softening in nanocrystalline or ultrafine-grained metals: A mechanistic explanation,” Mater. Sci. Eng. A, vol. 493, no. 1–2, pp. 101–103, Oct. 2008.CrossRef F. Tang and J. M. Schoenung, “Strain softening in nanocrystalline or ultrafine-grained metals: A mechanistic explanation,” Mater. Sci. Eng. A, vol. 493, no. 1–2, pp. 101–103, Oct. 2008.CrossRef
41.
Zurück zum Zitat T.D. Topping and E.J. Lavernia: 13th International Conference on Aluminum Alloys, John Wiley & Sons, Inc., Hoboken, NJ, 2012. T.D. Topping and E.J. Lavernia: 13th International Conference on Aluminum Alloys, John Wiley & Sons, Inc., Hoboken, NJ, 2012.
43.
Zurück zum Zitat S. R. Nutt and J. M. Duva, “Failure in Al-SiC composites,” Scr. Metall., vol. 20, no. 7, p. 1055, 1986.CrossRef S. R. Nutt and J. M. Duva, “Failure in Al-SiC composites,” Scr. Metall., vol. 20, no. 7, p. 1055, 1986.CrossRef
44.
Zurück zum Zitat Y.H. Zhao, Y.Z. Guo, Q. Wei, T.D. Topping, A.M. Dangelewicz, Y.T. Zhu, T.G. Langdon, and E.J. Lavernia: Mater. Sci. Eng. A, 2009, vol. 525(1–2), pp. 68–77.CrossRef Y.H. Zhao, Y.Z. Guo, Q. Wei, T.D. Topping, A.M. Dangelewicz, Y.T. Zhu, T.G. Langdon, and E.J. Lavernia: Mater. Sci. Eng. A, 2009, vol. 525(1–2), pp. 68–77.CrossRef
45.
Zurück zum Zitat B. Ahn, E.J. Lavernia, and S.R. Nutt, “Dynamic observations of deformation in an ultrafine-grained Al-Mg alloy with bimodal grain structure”, J. Mater. Sci., vol. 43, pp. 7403, 2008.CrossRef B. Ahn, E.J. Lavernia, and S.R. Nutt, “Dynamic observations of deformation in an ultrafine-grained Al-Mg alloy with bimodal grain structure”, J. Mater. Sci., vol. 43, pp. 7403, 2008.CrossRef
46.
Zurück zum Zitat Z. Lee, D. B. Witkin, V. Radmilovic, E. J. Lavernia, and S. R. Nutt, “Bimodal microstructure and deformation of cryomilled bulk nanocrystalline Al–7.5Mg alloy,” Mater. Sci. Eng. A, vol. 410–411, pp. 462–467, Nov. 2005.CrossRef Z. Lee, D. B. Witkin, V. Radmilovic, E. J. Lavernia, and S. R. Nutt, “Bimodal microstructure and deformation of cryomilled bulk nanocrystalline Al–7.5Mg alloy,” Mater. Sci. Eng. A, vol. 410–411, pp. 462–467, Nov. 2005.CrossRef
47.
Zurück zum Zitat A.P. Newbery, S.R. Nutt, and E.J. Lavernia: J. Miner. Met. Mater. Soc., 2006, vol. 58, pp. 56–61.CrossRef A.P. Newbery, S.R. Nutt, and E.J. Lavernia: J. Miner. Met. Mater. Soc., 2006, vol. 58, pp. 56–61.CrossRef
48.
Zurück zum Zitat D. C. Hofmann, J.-Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M. D. Demetriou, and W. L. Johnson, “Designing metallic glass matrix composites with high toughness and tensile ductility,” Nature, vol. 451, no. 7182, pp. 1085–9, Feb. 2008.CrossRef D. C. Hofmann, J.-Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M. D. Demetriou, and W. L. Johnson, “Designing metallic glass matrix composites with high toughness and tensile ductility,” Nature, vol. 451, no. 7182, pp. 1085–9, Feb. 2008.CrossRef
49.
Zurück zum Zitat R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, Chapter 8. Wiley, New York, 1996. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, Chapter 8. Wiley, New York, 1996.
50.
Zurück zum Zitat P.S. Pao, H.N. Jones, and C.R. Feng: Mater. Res. Soc. Symp. Proc., 2004, vol. 791, p. Q1.8.1. P.S. Pao, H.N. Jones, and C.R. Feng: Mater. Res. Soc. Symp. Proc., 2004, vol. 791, p. Q1.8.1.
Metadaten
Titel
Micro-strain Evolution and Toughening Mechanisms in a Trimodal Al-Based Metal Matrix Composite
verfasst von
Yuzheng Zhang
Troy D. Topping
Hanry Yang
Enrique J. Lavernia
Julie M. Schoenung
Steven R. Nutt
Publikationsdatum
01.03.2015
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 3/2015
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-014-2729-8

Weitere Artikel der Ausgabe 3/2015

Metallurgical and Materials Transactions A 3/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.