Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 12/2017

13.10.2017

Microstructure Optimization of Dual-Phase Steels Using a Representative Volume Element and a Response Surface Method: Parametric Study

verfasst von: Tarek M. Belgasam, Hussein M. Zbib

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 12/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dual-phase (DP) steels have received widespread attention for their low density and high strength. This low density is of value to the automotive industry for the weight reduction it offers and the attendant fuel savings and emission reductions. Recent studies on developing DP steels showed that the combination of strength/ductility could be significantly improved when changing the volume fraction and grain size of phases in the microstructure depending on microstructure properties. Consequently, DP steel manufacturers are interested in predicting microstructure properties and in optimizing microstructure design. In this work, a microstructure-based approach using representative volume elements (RVEs) was developed. The approach examined the flow behavior of DP steels using virtual tension tests with an RVE to identify specific mechanical properties. Microstructures with varied martensite and ferrite grain sizes, martensite volume fractions, carbon content, and morphologies were studied in 3D RVE approaches. The effect of these microstructure parameters on a combination of strength/ductility of DP steels was examined numerically using the finite element method by implementing a dislocation density-based elastic-plastic constitutive model, and a Response surface methodology to determine the optimum conditions for a required combination of strength/ductility. The results from the numerical simulations are compared with experimental results found in the literature. The developed methodology proves to be a powerful tool for studying the effect and interaction of key microstructural parameters on strength and ductility and thus can be used to identify optimum microstructural conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Galan, L. Samek, P. Verleysen, K. Verbeken, and Y. Houbaert, Rev. Metal., 2008, vol. 48, pp. 118–131.CrossRef J. Galan, L. Samek, P. Verleysen, K. Verbeken, and Y. Houbaert, Rev. Metal., 2008, vol. 48, pp. 118–131.CrossRef
2.
Zurück zum Zitat M. Y. Demeri, Advanced High-Strength Steels: Science, Technology, and Applications, 1st ed., ASM International, Materials Park, Oh:, 2013, pp. 105-120. M. Y. Demeri, Advanced High-Strength Steels: Science, Technology, and Applications, 1st ed., ASM International, Materials Park, Oh:, 2013, pp. 105-120.
3.
Zurück zum Zitat A. Haldar, S. Suwas, and D. Bhattacharjee: Proceedings of the International Conference on Microstructure and Texture in Steels, Springer-Verlag London Ltd., Guildford, Surrey, 2009, pp. 484–86. A. Haldar, S. Suwas, and D. Bhattacharjee: Proceedings of the International Conference on Microstructure and Texture in Steels, Springer-Verlag London Ltd., Guildford, Surrey, 2009, pp. 484–86.
4.
Zurück zum Zitat V. H. Baltazar Hernandez, S. S. Nayak, and Y. Zhou: Metall. Mater. Trans., 2011, vol. 42, pp. 3115–3129.CrossRef V. H. Baltazar Hernandez, S. S. Nayak, and Y. Zhou: Metall. Mater. Trans., 2011, vol. 42, pp. 3115–3129.CrossRef
6.
Zurück zum Zitat Z. Jiang, Z. Guan, and J. Lian, Mater. Sci. Eng. A, 1995, vol 190, pp. 55-64.CrossRef Z. Jiang, Z. Guan, and J. Lian, Mater. Sci. Eng. A, 1995, vol 190, pp. 55-64.CrossRef
7.
Zurück zum Zitat A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck, Comput. Mater. Sci., 2012, vol. 52, pp. 46–54.CrossRef A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck, Comput. Mater. Sci., 2012, vol. 52, pp. 46–54.CrossRef
8.
Zurück zum Zitat N. K. Balliger and T. Gladman, Met. Sci., 1981, vol. 15, pp. 95–108.CrossRef N. K. Balliger and T. Gladman, Met. Sci., 1981, vol. 15, pp. 95–108.CrossRef
9.
Zurück zum Zitat X. Sun, K. S. Choi, W. N. Liu, and M. A. Khaleel, Int. J. Plast., 2009, vol. 25, pp. 1888–1909.CrossRef X. Sun, K. S. Choi, W. N. Liu, and M. A. Khaleel, Int. J. Plast., 2009, vol. 25, pp. 1888–1909.CrossRef
10.
Zurück zum Zitat J. Samei, D. E. Green, S. Golovashchenko, and A. Hassannejadasl, J. Mater. Eng. Perform., 2013, vol. 22, pp. 2080–2088.CrossRef J. Samei, D. E. Green, S. Golovashchenko, and A. Hassannejadasl, J. Mater. Eng. Perform., 2013, vol. 22, pp. 2080–2088.CrossRef
11.
Zurück zum Zitat J. Samei, D. E. Green, and S. Golovashchenko, J. Manuf. Sci. Eng., 2014, vol. 136, pp. 1-6. J. Samei, D. E. Green, and S. Golovashchenko, J. Manuf. Sci. Eng., 2014, vol. 136, pp. 1-6.
12.
Zurück zum Zitat N. D. Beynon, S. Oliver, T. B. Jones, and G. Fourlaris, Mater. Sci. Technol., 2005, vol. 21, pp. 771–778.CrossRef N. D. Beynon, S. Oliver, T. B. Jones, and G. Fourlaris, Mater. Sci. Technol., 2005, vol. 21, pp. 771–778.CrossRef
13.
Zurück zum Zitat A. M. Sherman and R. G. Davies, Int. J. Fatigue, 1981, vol. 3, pp. 195–198.CrossRef A. M. Sherman and R. G. Davies, Int. J. Fatigue, 1981, vol. 3, pp. 195–198.CrossRef
14.
Zurück zum Zitat D. L. Bourell and A. Rizk, Acta Metall., 1983, vol. 31, pp. 609–617.CrossRef D. L. Bourell and A. Rizk, Acta Metall., 1983, vol. 31, pp. 609–617.CrossRef
15.
Zurück zum Zitat M. Azuma, S. Goutianos, N. Hansen, G. Winther, and X. Huang, Mater. Sci. Technol., 2012, vol. 28, pp. 1092–1100.CrossRef M. Azuma, S. Goutianos, N. Hansen, G. Winther, and X. Huang, Mater. Sci. Technol., 2012, vol. 28, pp. 1092–1100.CrossRef
16.
Zurück zum Zitat S. Sodjit and V. Uthaisangsuk, Mater. Des., 2012, vol. 41, pp. 370–379.CrossRef S. Sodjit and V. Uthaisangsuk, Mater. Des., 2012, vol. 41, pp. 370–379.CrossRef
17.
Zurück zum Zitat M. Amirmaleki, J. Samei, D. E. Green, I. van Riemsdijk, and L. Stewart, Mech. Mater., 2016, vol. 101, pp. 27–39.CrossRef M. Amirmaleki, J. Samei, D. E. Green, I. van Riemsdijk, and L. Stewart, Mech. Mater., 2016, vol. 101, pp. 27–39.CrossRef
18.
Zurück zum Zitat F. M. Al-Abbasi and J. A. Nemes, Int. J. Mech. Sci., 2003, vol. 45, pp. 1449–1465.CrossRef F. M. Al-Abbasi and J. A. Nemes, Int. J. Mech. Sci., 2003, vol. 45, pp. 1449–1465.CrossRef
19.
Zurück zum Zitat S. A. Asgari, P. D. Hodgson, C. Yang, and B. F. Rolfe, Comput. Mater. Sci., 2009, vol. 45, pp. 860–866.CrossRef S. A. Asgari, P. D. Hodgson, C. Yang, and B. F. Rolfe, Comput. Mater. Sci., 2009, vol. 45, pp. 860–866.CrossRef
20.
Zurück zum Zitat A. S. Khan, M. Baig, S.-H. Choi, H.-S. Yang, and X. Sun, Int. J. Plast., 2012, vol. 30, pp. 1–17. A. S. Khan, M. Baig, S.-H. Choi, H.-S. Yang, and X. Sun, Int. J. Plast., 2012, vol. 30, pp. 1–17.
21.
22.
Zurück zum Zitat A. Ramazani, K. Mukherjee, H. Quade, U. Prahl, and W. Bleck, Mater. Sci. Eng. A, 2013, vol. 560, pp. 129–139.CrossRef A. Ramazani, K. Mukherjee, H. Quade, U. Prahl, and W. Bleck, Mater. Sci. Eng. A, 2013, vol. 560, pp. 129–139.CrossRef
23.
Zurück zum Zitat V. Uthaisangsuk, U. Prahl, and W. Bleck, Eng. Fract. Mech., 2011, vol. 78, pp. 469–486.CrossRef V. Uthaisangsuk, U. Prahl, and W. Bleck, Eng. Fract. Mech., 2011, vol. 78, pp. 469–486.CrossRef
24.
Zurück zum Zitat N. H. Abid, R. K. Abu Al-Rub, and A. N. Palazotto, Int. J. Solids Struct.,2017, Vol. 104–105, pp.8-24.CrossRef N. H. Abid, R. K. Abu Al-Rub, and A. N. Palazotto, Int. J. Solids Struct.,2017, Vol. 104–105, pp.8-24.CrossRef
25.
Zurück zum Zitat M. J. Deepu, H. Farivar, U. Prahl, and G. Phanikumar, IOP Conf. Ser. Mater. Sci. Eng., 2017, Vol. 192, pp. 1. M. J. Deepu, H. Farivar, U. Prahl, and G. Phanikumar, IOP Conf. Ser. Mater. Sci. Eng., 2017, Vol. 192, pp. 1.
26.
Zurück zum Zitat D. Gerbig, A. Srivastava, S. Osovski, L. G. Hector, and A. Bower, Int. J. Fract., 2017, vol 207, pp. 1-24.CrossRef D. Gerbig, A. Srivastava, S. Osovski, L. G. Hector, and A. Bower, Int. J. Fract., 2017, vol 207, pp. 1-24.CrossRef
27.
Zurück zum Zitat A. C. Lewis and A. B. Geltmacher, Scr. Mater., 2006, vol. 55, pp. 81–85.CrossRef A. C. Lewis and A. B. Geltmacher, Scr. Mater., 2006, vol. 55, pp. 81–85.CrossRef
28.
Zurück zum Zitat D. Brands, J. Schröder, D. Balzani, O. Dmitrieva, and D. Raabe, Appl. Math. Mech, 2011, vol. 11, pp. 503–504. D. Brands, J. Schröder, D. Balzani, O. Dmitrieva, and D. Raabe, Appl. Math. Mech, 2011, vol. 11, pp. 503–504.
29.
Zurück zum Zitat C. Douglas: Montgomery: Design and Analysis of Experiments, 7th ed., Wiley, Hoboken, NJ, 2008, pp. 478–545. C. Douglas: Montgomery: Design and Analysis of Experiments, 7th ed., Wiley, Hoboken, NJ, 2008, pp. 478–545.
30.
Zurück zum Zitat M. Delincé, Y. Bréchet, J. D. Embury, M. G. D. Geers, P. J. Jacques, and T. Pardoen, Acta Mater., 2007, vol. 55, pp. 2337–2350.CrossRef M. Delincé, Y. Bréchet, J. D. Embury, M. G. D. Geers, P. J. Jacques, and T. Pardoen, Acta Mater., 2007, vol. 55, pp. 2337–2350.CrossRef
31.
Zurück zum Zitat M. Jafari, S. Ziaei-Rad, and N. Torabian, Metallogr. Microstruct. Anal., 2014, vol. 3, pp. 185–193.CrossRef M. Jafari, S. Ziaei-Rad, and N. Torabian, Metallogr. Microstruct. Anal., 2014, vol. 3, pp. 185–193.CrossRef
32.
Zurück zum Zitat S. Krajewski and J. Nowacki, Arch. Civ. Mech. Eng., 2014, vol. 14, pp. 278–286.CrossRef S. Krajewski and J. Nowacki, Arch. Civ. Mech. Eng., 2014, vol. 14, pp. 278–286.CrossRef
35.
Zurück zum Zitat C. C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe, Annu. Rev. Mater. Res., 2014, vol. 45, pp. 391-431.CrossRef C. C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe, Annu. Rev. Mater. Res., 2014, vol. 45, pp. 391-431.CrossRef
36.
Zurück zum Zitat D. Brands, D. Balzani, L. Scheunemann, J. Schröder, H. Richter, and D. Raabe, Arch. Appl. Mech., 2016, vol. 86, pp. 575–598.CrossRef D. Brands, D. Balzani, L. Scheunemann, J. Schröder, H. Richter, and D. Raabe, Arch. Appl. Mech., 2016, vol. 86, pp. 575–598.CrossRef
37.
Zurück zum Zitat S.K. Paul: Model. Simul. Mater. Sci. Eng., 2013, vol. 21, pp. 55001(1–26). S.K. Paul: Model. Simul. Mater. Sci. Eng., 2013, vol. 21, pp. 55001(1–26).
38.
39.
Zurück zum Zitat R. M. Rodriguez and I. Gutiérrez, Mater. Sci. Forum, 2003, vol. 426–432, pp. 4525–4530.CrossRef R. M. Rodriguez and I. Gutiérrez, Mater. Sci. Forum, 2003, vol. 426–432, pp. 4525–4530.CrossRef
40.
Zurück zum Zitat S. K. Paul and A. Kumar, Comput. Mater. Sci., 2012, vol. 63, pp. 66–74.CrossRef S. K. Paul and A. Kumar, Comput. Mater. Sci., 2012, vol. 63, pp. 66–74.CrossRef
41.
Zurück zum Zitat A. Ramazani, P. T. Pinard, S. Richter, A. Schwedt, and U. Prahl, Comput. Mater. Sci., 2013, vol. 80, pp. 134–141.CrossRef A. Ramazani, P. T. Pinard, S. Richter, A. Schwedt, and U. Prahl, Comput. Mater. Sci., 2013, vol. 80, pp. 134–141.CrossRef
42.
Zurück zum Zitat A. Ramazani, K. Mukherjee, A. Abdurakhmanov, U. Prahl, M. Schleser, U. Reisgen, and W. Bleck, Mater. Sci. Eng. A, 2014, vol. 589, pp. 1–14.CrossRef A. Ramazani, K. Mukherjee, A. Abdurakhmanov, U. Prahl, M. Schleser, U. Reisgen, and W. Bleck, Mater. Sci. Eng. A, 2014, vol. 589, pp. 1–14.CrossRef
43.
Zurück zum Zitat S. Sodjit and V. Uthaisangsuk, J. Met. Mater., 2012, vol. 22, pp. 87–97. S. Sodjit and V. Uthaisangsuk, J. Met. Mater., 2012, vol. 22, pp. 87–97.
45.
Zurück zum Zitat C. Thomser, V. Uthaisangsuk, and W. Bleck, Steel Res. Iner., 2009, vol. 80, pp. 582–587. C. Thomser, V. Uthaisangsuk, and W. Bleck, Steel Res. Iner., 2009, vol. 80, pp. 582–587.
45.
Zurück zum Zitat A. P. Pierman, O. Bouaziz, T. Pardoen, P. J. Jacques, and L. Brassart, Acta Mater., 2014, vol. 73, pp. 298–311.CrossRef A. P. Pierman, O. Bouaziz, T. Pardoen, P. J. Jacques, and L. Brassart, Acta Mater., 2014, vol. 73, pp. 298–311.CrossRef
46.
Zurück zum Zitat G.I., Metalurgija, 2012, vol. 11, pp. 201–14. G.I., Metalurgija, 2012, vol. 11, pp. 201–14.
47.
Zurück zum Zitat H. Öktem, T. Erzurumlu, and H. Kurtaran, J. Mater. Process. Technol., 2005, vol. 170, pp. 11–16.CrossRef H. Öktem, T. Erzurumlu, and H. Kurtaran, J. Mater. Process. Technol., 2005, vol. 170, pp. 11–16.CrossRef
48.
Zurück zum Zitat M. Calcagnotto, D. Ponge, and D. Raabe, Mater. Sci. Eng. A, 2010, vol. 527, pp. 7832–7840.CrossRef M. Calcagnotto, D. Ponge, and D. Raabe, Mater. Sci. Eng. A, 2010, vol. 527, pp. 7832–7840.CrossRef
Metadaten
Titel
Microstructure Optimization of Dual-Phase Steels Using a Representative Volume Element and a Response Surface Method: Parametric Study
verfasst von
Tarek M. Belgasam
Hussein M. Zbib
Publikationsdatum
13.10.2017
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 12/2017
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-017-4351-z

Weitere Artikel der Ausgabe 12/2017

Metallurgical and Materials Transactions A 12/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.