Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 6/2018

22.03.2018

Key Factors Influencing the Energy Absorption of Dual-Phase Steels: Multiscale Material Model Approach and Microstructural Optimization

verfasst von: Tarek M. Belgasam, Hussein M. Zbib

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The increase in use of dual-phase (DP) steel grades by vehicle manufacturers to enhance crash resistance and reduce body car weight requires the development of a clear understanding of the effect of various microstructural parameters on the energy absorption in these materials. Accordingly, DP steelmakers are interested in predicting the effect of various microscopic factors as well as optimizing microstructural properties for application in crash-relevant components of vehicle bodies. This study presents a microstructure-based approach using a multiscale material and structure model. In this approach, Digimat and LS-DYNA software were coupled and employed to provide a full micro–macro multiscale material model, which is then used to simulate tensile tests. Microstructures with varied ferrite grain sizes, martensite volume fractions, and carbon content in DP steels were studied. The impact of these microstructural features at different strain rates on energy absorption characteristics of DP steels is investigated numerically using an elasto-viscoplastic constitutive model. The model is implemented in a multiscale finite-element framework. A comprehensive statistical parametric study using response surface methodology is performed to determine the optimum microstructural features for a required tensile toughness at different strain rates. The simulation results are validated using experimental data found in the literature. The developed methodology proved to be effective for investigating the influence and interaction of key microscopic properties on the energy absorption characteristics of DP steels. Furthermore, it is shown that this method can be used to identify optimum microstructural conditions at different strain-rate conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Alturk, S. Mates, Z. Xu, and F. Abu-farha: TMS 2017 146th Annu. Meet. Exhib. Suppl. Proc., 2017, pp. 243–54. R. Alturk, S. Mates, Z. Xu, and F. Abu-farha: TMS 2017 146th Annu. Meet. Exhib. Suppl. Proc., 2017, pp. 243–54.
2.
Zurück zum Zitat V.H. Baltazar Hernandez, S.S. Nayak, and Y. Zhou: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3115–29.CrossRef V.H. Baltazar Hernandez, S.S. Nayak, and Y. Zhou: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3115–29.CrossRef
3.
Zurück zum Zitat N.H. Abid, R.K. Abu Al-Rub, and A.N. Palazotto: Comput. Mater. Sci., 2015, vol. 103, pp. 20–37.CrossRef N.H. Abid, R.K. Abu Al-Rub, and A.N. Palazotto: Comput. Mater. Sci., 2015, vol. 103, pp. 20–37.CrossRef
4.
Zurück zum Zitat J. Qin, R. Chen, X. Wen, Y. Lin, M. Liang, and F. Lu: Mater. Sci. Eng. A, 2013, vol. 586, pp. 62–70.CrossRef J. Qin, R. Chen, X. Wen, Y. Lin, M. Liang, and F. Lu: Mater. Sci. Eng. A, 2013, vol. 586, pp. 62–70.CrossRef
5.
Zurück zum Zitat S. Kumar, M. Singhai, R. Desai, S. Sam, and P.K. Patra: J. Inst. Eng. Ser. D, 2016, vol. 97, pp. 153–58.CrossRef S. Kumar, M. Singhai, R. Desai, S. Sam, and P.K. Patra: J. Inst. Eng. Ser. D, 2016, vol. 97, pp. 153–58.CrossRef
6.
Zurück zum Zitat C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe: Ann. Rev. Mater. Res., 2014, vol. 45, pp. 391–431.CrossRef C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe: Ann. Rev. Mater. Res., 2014, vol. 45, pp. 391–431.CrossRef
7.
Zurück zum Zitat H. Yu, Y. Guo, K. Zhang, and X. Lai: Comput. Mater. Sci., 2009, vol. 46, pp. 36–41.CrossRef H. Yu, Y. Guo, K. Zhang, and X. Lai: Comput. Mater. Sci., 2009, vol. 46, pp. 36–41.CrossRef
8.
Zurück zum Zitat N.K. Singh, E. Cadoni, M.K. Singha, and N.K. Gupta: Mater. Des., 2011, vol. 32, pp. 5091–98.CrossRef N.K. Singh, E. Cadoni, M.K. Singha, and N.K. Gupta: Mater. Des., 2011, vol. 32, pp. 5091–98.CrossRef
9.
Zurück zum Zitat J.-H. Kim, D. Kim, H.N. Han, F. Barlat, and M.-G. Lee: Mater. Sci. Eng. A, 2013, vol. 559, pp. 222–31.CrossRef J.-H. Kim, D. Kim, H.N. Han, F. Barlat, and M.-G. Lee: Mater. Sci. Eng. A, 2013, vol. 559, pp. 222–31.CrossRef
10.
Zurück zum Zitat S. Kim and S. Lee: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1753–60.CrossRef S. Kim and S. Lee: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1753–60.CrossRef
11.
Zurück zum Zitat Y. Cao, B. Karlsson, and J. Ahlström: Mater. Sci. Eng. A, 2015, vol. 636, pp. 124–32.CrossRef Y. Cao, B. Karlsson, and J. Ahlström: Mater. Sci. Eng. A, 2015, vol. 636, pp. 124–32.CrossRef
12.
Zurück zum Zitat B. Hwang, T.Y. Cao, S.Y. Shin, S.H. Kim, S.H. Lee, and S.J. Kim: Mater. Sci. Technol., 2005, vol. 21, pp. 967–75.CrossRef B. Hwang, T.Y. Cao, S.Y. Shin, S.H. Kim, S.H. Lee, and S.J. Kim: Mater. Sci. Technol., 2005, vol. 21, pp. 967–75.CrossRef
13.
Zurück zum Zitat W. Wang, M. Li, C. He, X. Wei, D. Wang, and H. Du: Mater. Des., 2013, vol. 47, pp. 510–21.CrossRef W. Wang, M. Li, C. He, X. Wei, D. Wang, and H. Du: Mater. Des., 2013, vol. 47, pp. 510–21.CrossRef
14.
Zurück zum Zitat A. Zare and A. Ekrami: J. Mater. Eng. Perform., 2013, vol. 22, pp. 823–29.CrossRef A. Zare and A. Ekrami: J. Mater. Eng. Perform., 2013, vol. 22, pp. 823–29.CrossRef
15.
Zurück zum Zitat P. Oscar and R.L. Eduardo: Engineering, 2008, vol. II, pp. 2–7. P. Oscar and R.L. Eduardo: Engineering, 2008, vol. II, pp. 2–7.
16.
Zurück zum Zitat E. Cadoni, N.K. Singh, D. Forni, M.K. Singha, and N.K. Gupta: Eur. Phys. J. Spec. Top., 2016, vol. 225, pp. 409–21.CrossRef E. Cadoni, N.K. Singh, D. Forni, M.K. Singha, and N.K. Gupta: Eur. Phys. J. Spec. Top., 2016, vol. 225, pp. 409–21.CrossRef
18.
Zurück zum Zitat Z.H. Jiang, Z.Z. Guan, and J.S. Lian: Mater. Sci. Eng., 1995, vol. 190, pp. 55–64.CrossRef Z.H. Jiang, Z.Z. Guan, and J.S. Lian: Mater. Sci. Eng., 1995, vol. 190, pp. 55–64.CrossRef
19.
Zurück zum Zitat M. Delincé, Y. Bréchet, J.D. Embury, M.G.D. Geers, P.J. Jacques, and T. Pardoen: Acta Mater., 2007, vol. 55, pp. 2337–50.CrossRef M. Delincé, Y. Bréchet, J.D. Embury, M.G.D. Geers, P.J. Jacques, and T. Pardoen: Acta Mater., 2007, vol. 55, pp. 2337–50.CrossRef
20.
Zurück zum Zitat M. Amirmaleki, J. Samei, D.E. Green, I. van Riemsdijk, and L. Stewart: Mech. Mater., 2016, vol. 101, pp. 27–39.CrossRef M. Amirmaleki, J. Samei, D.E. Green, I. van Riemsdijk, and L. Stewart: Mech. Mater., 2016, vol. 101, pp. 27–39.CrossRef
21.
Zurück zum Zitat A.S. Khan, M. Baig, S.-H. Choi, H.-S. Yang, and X. Sun: Int. J. Plast., 2012, vols. 30–31, pp. 1–17. A.S. Khan, M. Baig, S.-H. Choi, H.-S. Yang, and X. Sun: Int. J. Plast., 2012, vols. 30–31, pp. 1–17.
23.
Zurück zum Zitat S. Sodjit and V. Uthaisangsuk: Mater. Des., 2012, vol. 41, pp. 370–79.CrossRef S. Sodjit and V. Uthaisangsuk: Mater. Des., 2012, vol. 41, pp. 370–79.CrossRef
24.
Zurück zum Zitat A. Pierman, O. Bouaziz, T. Pardoen, P.J. Jacques, and L. Brassart: ACTA Mater., 2014, vol. 73, pp. 298–311.CrossRef A. Pierman, O. Bouaziz, T. Pardoen, P.J. Jacques, and L. Brassart: ACTA Mater., 2014, vol. 73, pp. 298–311.CrossRef
25.
Zurück zum Zitat T.M. Belgasam and H.M. Zbib: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 6153–77.CrossRef T.M. Belgasam and H.M. Zbib: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 6153–77.CrossRef
27.
Zurück zum Zitat S. Sodjit and V. Uthaisangsuk: J. Met. Mater. Miner., 2012, vol. 22, pp. 87–97. S. Sodjit and V. Uthaisangsuk: J. Met. Mater. Miner., 2012, vol. 22, pp. 87–97.
28.
Zurück zum Zitat A. Ramazani, K. Mukherjee, A. Abdurakhmanov, U. Prahl, M. Schleser, U. Reisgen, and W. Bleck: Mater. Sci. Eng. A, 2014, vol. 589, pp. 1–14.CrossRef A. Ramazani, K. Mukherjee, A. Abdurakhmanov, U. Prahl, M. Schleser, U. Reisgen, and W. Bleck: Mater. Sci. Eng. A, 2014, vol. 589, pp. 1–14.CrossRef
29.
Zurück zum Zitat S.K. Paul and A. Kumar: Comput. Mater. Sci., 2012, vol. 63, pp. 66–74.CrossRef S.K. Paul and A. Kumar: Comput. Mater. Sci., 2012, vol. 63, pp. 66–74.CrossRef
30.
Zurück zum Zitat A. Ramazani, P.T. Pinard, S. Richter, A. Schwedt, and U. Prahl: Comput. Mater. Sci., 2013, vol. 80, pp. 134–41.CrossRef A. Ramazani, P.T. Pinard, S. Richter, A. Schwedt, and U. Prahl: Comput. Mater. Sci., 2013, vol. 80, pp. 134–41.CrossRef
31.
Zurück zum Zitat C. Thomser, V. Uthaisangsuk, and W. Bleck: Steel Res., 2009, vol. 80, pp. 582–87. C. Thomser, V. Uthaisangsuk, and W. Bleck: Steel Res., 2009, vol. 80, pp. 582–87.
32.
Zurück zum Zitat S.K. Paul: Model. Simul. Mater. Sci. Eng., 2013, vol. 21, pp. 1–26.CrossRef S.K. Paul: Model. Simul. Mater. Sci. Eng., 2013, vol. 21, pp. 1–26.CrossRef
33.
Zurück zum Zitat A. Ramazani, K. Mukherjee, H. Quade, U. Prahl, and W. Bleck: Mater. Sci. Eng. A, 2013, vol. 560, pp. 129–39.CrossRef A. Ramazani, K. Mukherjee, H. Quade, U. Prahl, and W. Bleck: Mater. Sci. Eng. A, 2013, vol. 560, pp. 129–39.CrossRef
34.
Zurück zum Zitat V. Uthaisangsuk, U. Prahl, and W. Bleck: Eng. Fract. Mech., 2011, vol. 78, pp. 469–86.CrossRef V. Uthaisangsuk, U. Prahl, and W. Bleck: Eng. Fract. Mech., 2011, vol. 78, pp. 469–86.CrossRef
35.
Zurück zum Zitat A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck: Comput. Mater. Sci., 2012, vol. 52, pp. 46–54.CrossRef A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck: Comput. Mater. Sci., 2012, vol. 52, pp. 46–54.CrossRef
36.
Zurück zum Zitat Y. Bergström, Y. Granbom, and D. Sterkenburg: J. Metall., 2010, pp. 1–16.CrossRef Y. Bergström, Y. Granbom, and D. Sterkenburg: J. Metall., 2010, pp. 1–16.CrossRef
37.
38.
Zurück zum Zitat T.S. Byun and I.S. Kim: J. Mater. Sci., 1993, vol. 28, pp. 2923–32.CrossRef T.S. Byun and I.S. Kim: J. Mater. Sci., 1993, vol. 28, pp. 2923–32.CrossRef
39.
Zurück zum Zitat P.D. Sudersanan, N. Kori, S. Aprameyan, and U.N. Kempaiah: 2012, vol. 2, pp. 1–4. P.D. Sudersanan, N. Kori, S. Aprameyan, and U.N. Kempaiah: 2012, vol. 2, pp. 1–4.
40.
Zurück zum Zitat P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, and N. Parvin: Mater. Sci. Eng. A, 2009, vol. 518, pp. 1–6.CrossRef P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, and N. Parvin: Mater. Sci. Eng. A, 2009, vol. 518, pp. 1–6.CrossRef
42.
Zurück zum Zitat R.-M. Rodriguez and I. Gutiérrez: Mater. Sci. Forum, 2003, vols. 426–432, pp. 4525–30.CrossRef R.-M. Rodriguez and I. Gutiérrez: Mater. Sci. Forum, 2003, vols. 426–432, pp. 4525–30.CrossRef
43.
Zurück zum Zitat N.H. Abid, R.K. Abu Al-Rub, and A.N. Palazotto: Int. J. Solids Struct., 2017, vols. 104–105, pp. 8–24.CrossRef N.H. Abid, R.K. Abu Al-Rub, and A.N. Palazotto: Int. J. Solids Struct., 2017, vols. 104–105, pp. 8–24.CrossRef
44.
Zurück zum Zitat V. Tarigopula, O.S. Hopperstad, M. Langseth, A.H. Clausen, and F. Hild: Int. J. Solids Struct., 2008, vol. 45, pp. 601–19.CrossRef V. Tarigopula, O.S. Hopperstad, M. Langseth, A.H. Clausen, and F. Hild: Int. J. Solids Struct., 2008, vol. 45, pp. 601–19.CrossRef
45.
Zurück zum Zitat E.S. Perdahcıoğlu and H.J.M. Geijselaers: Int. J. Mater. Forming, 2011, vol. 4, pp. 93–102.CrossRef E.S. Perdahcıoğlu and H.J.M. Geijselaers: Int. J. Mater. Forming, 2011, vol. 4, pp. 93–102.CrossRef
46.
47.
Zurück zum Zitat L. Adam, A. Depouhon, and R. Assaker: 7th Eur. LS-DYNA Conf., 2009, pp. 1–9. L. Adam, A. Depouhon, and R. Assaker: 7th Eur. LS-DYNA Conf., 2009, pp. 1–9.
48.
Zurück zum Zitat B. Klusemann and B. Svendsen: Tech. Mech., 2010, vol. 30, pp. 374–86. B. Klusemann and B. Svendsen: Tech. Mech., 2010, vol. 30, pp. 374–86.
49.
Zurück zum Zitat A.J. Makadia and J.I. Nanavati: Meas. J. Int. Meas. Confed., 2013, vol. 46, pp. 1521–29.CrossRef A.J. Makadia and J.I. Nanavati: Meas. J. Int. Meas. Confed., 2013, vol. 46, pp. 1521–29.CrossRef
50.
Zurück zum Zitat H. Öktem, T. Erzurumlu, and H. Kurtaran: J. Mater. Process. Technol., 2005, vol. 170, pp. 11–16.CrossRef H. Öktem, T. Erzurumlu, and H. Kurtaran: J. Mater. Process. Technol., 2005, vol. 170, pp. 11–16.CrossRef
51.
Zurück zum Zitat M. Calcagnotto, D. Ponge, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7832–40.CrossRef M. Calcagnotto, D. Ponge, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7832–40.CrossRef
52.
Zurück zum Zitat X. Sun, K.S. Choi, W.N. Liu, and M.A. Khaleel: Int. J. Plast., 2009, vol. 25, pp. 1888–1909.CrossRef X. Sun, K.S. Choi, W.N. Liu, and M.A. Khaleel: Int. J. Plast., 2009, vol. 25, pp. 1888–1909.CrossRef
53.
Zurück zum Zitat H. Sharifi, M. Salehi, and M.R. Saeri: 2014, vol. 11, pp. 11–16. H. Sharifi, M. Salehi, and M.R. Saeri: 2014, vol. 11, pp. 11–16.
54.
Zurück zum Zitat A. Bag, K.K. Ray, and E.S. Dwarakadasa: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1193–1202.CrossRef A. Bag, K.K. Ray, and E.S. Dwarakadasa: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1193–1202.CrossRef
56.
Zurück zum Zitat S. Krajewski and J. Nowacki: Arch. Civ. Mech. Eng., 2014, vol. 14, pp. 278–86.CrossRef S. Krajewski and J. Nowacki: Arch. Civ. Mech. Eng., 2014, vol. 14, pp. 278–86.CrossRef
57.
Zurück zum Zitat G.I.: Metalurgija, 2012, vol. 11, pp. 201–14. G.I.: Metalurgija, 2012, vol. 11, pp. 201–14.
Metadaten
Titel
Key Factors Influencing the Energy Absorption of Dual-Phase Steels: Multiscale Material Model Approach and Microstructural Optimization
verfasst von
Tarek M. Belgasam
Hussein M. Zbib
Publikationsdatum
22.03.2018
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 6/2018
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-018-4563-x

Weitere Artikel der Ausgabe 6/2018

Metallurgical and Materials Transactions A 6/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.