Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2008

01.12.2008

Strain Hardening and Strain-Rate Sensitivity of an Extruded Magnesium Alloy

verfasst von: X.Z. Lin, D.L. Chen

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2008

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The strain-hardening behavior and strain-rate sensitivity of an extruded AZ31B magnesium alloy were determined at different strain rates between 10−2 and 10−5 s−1 in relation to the thickness of specimens (2.5 and 4.5 mm). Both the common approach and Lindholm’s approach were used to evaluate the strain-rate sensitivity. The yield strength (YS) and the ultimate tensile strength (UTS) increased, the ductility decreased, and the brittle fracture characteristics increased with increasing strain rate. The thinner specimens exhibited a slightly higher UTS, lower ductility, higher strain-hardening exponent, and strain-hardening rate due to smaller grain sizes. The stage III strain-hardening rate linearly decreased with increasing true stress, but increased with increasing strain rate. In comparison to the common approach, the Lindholm’s approach was observed to be more sensitive in characterizing the strain-rate sensitivity due to larger values obtained. The thinner specimens also exhibited higher strain-rate sensitivity. As the true strain increased, the strain-rate sensitivity decreased.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Tharumarajah, P. Koltun, Is there an Environmental Advantage of Using Magnesium Components for Light-Weighting Cars? J. Clean. Prod., 2007, 15(11–12), p 1007–1013CrossRef A. Tharumarajah, P. Koltun, Is there an Environmental Advantage of Using Magnesium Components for Light-Weighting Cars? J. Clean. Prod., 2007, 15(11–12), p 1007–1013CrossRef
2.
Zurück zum Zitat A. Asserin-Lebert, J. Besson, A.F. Gourgues, Fracture of 6056 Aluminum Sheet Materials: Effect of Specimen Thickness and Hardening Behavior on Strain Localization and Toughness, Mater. Sci. Eng. A, 2005, 395(1–2), p 186–194CrossRef A. Asserin-Lebert, J. Besson, A.F. Gourgues, Fracture of 6056 Aluminum Sheet Materials: Effect of Specimen Thickness and Hardening Behavior on Strain Localization and Toughness, Mater. Sci. Eng. A, 2005, 395(1–2), p 186–194CrossRef
3.
Zurück zum Zitat L. Chin, S.G. Yi, Chin Liu Strain Rate Sensitivity Index – Strain Equation of Superplasticity and Influence of Specimen Geometry, Mater. Sci. Technol., 1990, 6(2), p 141–145CrossRef L. Chin, S.G. Yi, Chin Liu Strain Rate Sensitivity Index – Strain Equation of Superplasticity and Influence of Specimen Geometry, Mater. Sci. Technol., 1990, 6(2), p 141–145CrossRef
4.
Zurück zum Zitat N. Igata, K. Miyahara, T. Uda, and S. Asada, Effects of Specimen Thickness and Grain Size on the Mechanical Properties of Types 304 and 316 Austenitic Stainless Steel, ASTM Special Technical Publication, 1986, p 161–170 N. Igata, K. Miyahara, T. Uda, and S. Asada, Effects of Specimen Thickness and Grain Size on the Mechanical Properties of Types 304 and 316 Austenitic Stainless Steel, ASTM Special Technical Publication, 1986, p 161–170
5.
Zurück zum Zitat Y.F. Shen, L. Lu, M. Dao, S. Suresh, Strain Rate Sensitivity of Cu with Nanoscale Twins, Scripta Mater., 2006, 55(4), p 319–322CrossRef Y.F. Shen, L. Lu, M. Dao, S. Suresh, Strain Rate Sensitivity of Cu with Nanoscale Twins, Scripta Mater., 2006, 55(4), p 319–322CrossRef
6.
Zurück zum Zitat J.A. del Valle, O.A. Ruano, Influence of the Grain Size on the Strain Rate Sensitivity in an Mg-Al-Zn Alloy at Moderate Temperatures, Scripta Mater., 2006, 55(9), p 775–778CrossRef J.A. del Valle, O.A. Ruano, Influence of the Grain Size on the Strain Rate Sensitivity in an Mg-Al-Zn Alloy at Moderate Temperatures, Scripta Mater., 2006, 55(9), p 775–778CrossRef
7.
Zurück zum Zitat Y.M. Wang, E. Ma, Strain Hardening and Strain Rate Sensitivity of Ultrafine-Grained Metals, J. Metastable Nanocryst. Mater., 2003, 17, p 55–65 Y.M. Wang, E. Ma, Strain Hardening and Strain Rate Sensitivity of Ultrafine-Grained Metals, J. Metastable Nanocryst. Mater., 2003, 17, p 55–65
8.
Zurück zum Zitat M. Jain, M.C. Chaturvedi, N.L. Richards, N.C. Goel, Strain Rate Sensitivity Effects with Forming Characteristics of Superplastic Ti-6Al-4V, Mater. Sci. Eng. A, 1991, A138(2), p 205–211 M. Jain, M.C. Chaturvedi, N.L. Richards, N.C. Goel, Strain Rate Sensitivity Effects with Forming Characteristics of Superplastic Ti-6Al-4V, Mater. Sci. Eng. A, 1991, A138(2), p 205–211
9.
Zurück zum Zitat X. Yao, S. Zajac, The Strain-Rate Dependence of Flow Stress and Work-Hardening Rate in Three Al-Mg Alloys, Scand. J. Metall., 2000, 29(3), p 101–107CrossRef X. Yao, S. Zajac, The Strain-Rate Dependence of Flow Stress and Work-Hardening Rate in Three Al-Mg Alloys, Scand. J. Metall., 2000, 29(3), p 101–107CrossRef
10.
Zurück zum Zitat L. Blaz, E. Evangelista, Strain Rate Sensitivity of Hot Deformed Al and AlMgSi Alloy, Mater. Sci. Eng. A, 1996, A207(2), p 195–201CrossRef L. Blaz, E. Evangelista, Strain Rate Sensitivity of Hot Deformed Al and AlMgSi Alloy, Mater. Sci. Eng. A, 1996, A207(2), p 195–201CrossRef
11.
Zurück zum Zitat C.P. Ling, P.G. McCormick, Effect of Temperature on Strain Rate Sensitivity in an Al-Mg-Si Alloy, Acta Metall. Mater., 1993, 41(11), p 3127–3131CrossRef C.P. Ling, P.G. McCormick, Effect of Temperature on Strain Rate Sensitivity in an Al-Mg-Si Alloy, Acta Metall. Mater., 1993, 41(11), p 3127–3131CrossRef
12.
Zurück zum Zitat A. Melander, A. Thuvander, Diffuse Necking in Sheet Tensile Specimens, Res Mech., 1982, 5(2), p 129–149 A. Melander, A. Thuvander, Diffuse Necking in Sheet Tensile Specimens, Res Mech., 1982, 5(2), p 129–149
13.
Zurück zum Zitat F.U. Enikeev, Strain-Rate Sensitivity Index m: Definition, Determination, Narrowness, Mater. Sci. Forum, 1997, 243–245, p 77–88 F.U. Enikeev, Strain-Rate Sensitivity Index m: Definition, Determination, Narrowness, Mater. Sci. Forum, 1997, 243–245, p 77–88
14.
Zurück zum Zitat L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, and S. Godet, Microstructure and Texture Evolution During the Uniaxial Tensile Testing of AM30 Magnesium Alloy, Magnesium Technology, A.A. Luo, N.R. Neelameggham, and R.S. Beals, Eds., TMS, Warrendale, PA, 2006, p 233–238 L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, and S. Godet, Microstructure and Texture Evolution During the Uniaxial Tensile Testing of AM30 Magnesium Alloy, Magnesium Technology, A.A. Luo, N.R. Neelameggham, and R.S. Beals, Eds., TMS, Warrendale, PA, 2006, p 233–238
15.
Zurück zum Zitat H. Takuda, S. Kikuchi, N. Yoshida, H. Okahara, Tensile Properties and Press Formability of Mg-9Li-1Y Alloy Sheet, Mater. Trans., 2003, 44(11), p 2266–2270CrossRef H. Takuda, S. Kikuchi, N. Yoshida, H. Okahara, Tensile Properties and Press Formability of Mg-9Li-1Y Alloy Sheet, Mater. Trans., 2003, 44(11), p 2266–2270CrossRef
16.
Zurück zum Zitat L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, S. Godet, Twinning-Induced Softening in Polycrystalline AM30 Mg Alloy at Moderate Temperatures, Scripta Mater., 2006, 54, p 771–775CrossRef L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, S. Godet, Twinning-Induced Softening in Polycrystalline AM30 Mg Alloy at Moderate Temperatures, Scripta Mater., 2006, 54, p 771–775CrossRef
17.
Zurück zum Zitat Y.M. Wang, E. Ma, Strain Hardening, Strain Rate Sensitivity, and Ductility of Nanostructured Metals, Mater. Sci. Eng. A, 2004, A375–377, p 46–52CrossRef Y.M. Wang, E. Ma, Strain Hardening, Strain Rate Sensitivity, and Ductility of Nanostructured Metals, Mater. Sci. Eng. A, 2004, A375–377, p 46–52CrossRef
18.
Zurück zum Zitat J.A. del Valle, F. Carreno, O.A. Ruano, Influence of Texture and Grain Size on Work Hardening and Ductility in Magnesium-Based Alloys Processed by ECAP and Rolling, Acta Mater., 2006, 54(16), p 4247–4259CrossRef J.A. del Valle, F. Carreno, O.A. Ruano, Influence of Texture and Grain Size on Work Hardening and Ductility in Magnesium-Based Alloys Processed by ECAP and Rolling, Acta Mater., 2006, 54(16), p 4247–4259CrossRef
19.
Zurück zum Zitat G.E. Dieter, Mechanical Metallurgy, 3rd Ed., McGraw-Hill, Boston, USA, 1986 G.E. Dieter, Mechanical Metallurgy, 3rd Ed., McGraw-Hill, Boston, USA, 1986
20.
Zurück zum Zitat U.S. Lindholm, Some Experiments with Split Hopkinson Pressure Bar, J. Mech. Phys. Solids, 1964, 12(5), p 317–335CrossRef U.S. Lindholm, Some Experiments with Split Hopkinson Pressure Bar, J. Mech. Phys. Solids, 1964, 12(5), p 317–335CrossRef
21.
Zurück zum Zitat W.D. Callister Jr., Materials Science and Engineering – An Introduction, 7th Ed., John Wiley & Sons, Inc., New York, USA, 2007 W.D. Callister Jr., Materials Science and Engineering – An Introduction, 7th Ed., John Wiley & Sons, Inc., New York, USA, 2007
22.
Zurück zum Zitat V. Livescu, C.M. Cady, E.K. Cerreta, B.L. Henrie, and G.T. Gray III, The High Strain Rate Deformation Behavior of High Purity Magnesium and AZ31B Magnesium Alloy, Magnesium Technology, A.A. Luo, N.R. Neelameggham, and R.S. Beals, Eds., TMS, Warrendale, PA, 2006, p 153–158 V. Livescu, C.M. Cady, E.K. Cerreta, B.L. Henrie, and G.T. Gray III, The High Strain Rate Deformation Behavior of High Purity Magnesium and AZ31B Magnesium Alloy, Magnesium Technology, A.A. Luo, N.R. Neelameggham, and R.S. Beals, Eds., TMS, Warrendale, PA, 2006, p 153–158
23.
Zurück zum Zitat N. Afrin, D.L. Chen, X. Cao, M. Jahazi, Strain Hardening Behavior of a friction Stir Welded Magnesium Alloy, Scripta Mater., 2007, 57, p 1004–1007CrossRef N. Afrin, D.L. Chen, X. Cao, M. Jahazi, Strain Hardening Behavior of a friction Stir Welded Magnesium Alloy, Scripta Mater., 2007, 57, p 1004–1007CrossRef
24.
Zurück zum Zitat W.F. Hosford, Mechanical Behavior of Materials. Cambridge University Press, 2005 W.F. Hosford, Mechanical Behavior of Materials. Cambridge University Press, 2005
25.
Zurück zum Zitat T. Pardoen, Y. Marchal, F. Delannay, Thickness Dependence of Cracking Resistance in Thin Aluminum Plates, J. Mech. Phys. Solids, 1999, 47(10), p 2093–2123CrossRef T. Pardoen, Y. Marchal, F. Delannay, Thickness Dependence of Cracking Resistance in Thin Aluminum Plates, J. Mech. Phys. Solids, 1999, 47(10), p 2093–2123CrossRef
26.
Zurück zum Zitat T. Pardoen, Y. Marchal, F. Delannay, Essential Work of Fracture Compared to Fracture Mechanics – Towards a Thickness Independent Plane Stress Toughness, Eng. Fract. Mech., 2002, 69(5), p 617–31CrossRef T. Pardoen, Y. Marchal, F. Delannay, Essential Work of Fracture Compared to Fracture Mechanics – Towards a Thickness Independent Plane Stress Toughness, Eng. Fract. Mech., 2002, 69(5), p 617–31CrossRef
27.
Zurück zum Zitat J.I. Bluhm, A Model for the Effect of Thickness on Fracture Toughness, ASTM Proc., 1961, 61, p 1324–1331 J.I. Bluhm, A Model for the Effect of Thickness on Fracture Toughness, ASTM Proc., 1961, 61, p 1324–1331
28.
Zurück zum Zitat Y. Bao, Dependence of Fracture Ductility on Thickness, Thin-Walled Struct., 2004, 42, p 1211–1230CrossRef Y. Bao, Dependence of Fracture Ductility on Thickness, Thin-Walled Struct., 2004, 42, p 1211–1230CrossRef
29.
Zurück zum Zitat A. Needleman and J. Rice, Limits to Ductility Set by Plastic Flow Localization, Mechanics of Sheet Metal Forming, D.P. Koistinen, Ed., Plenum Publishing Corporation, 1978, p 237–267 A. Needleman and J. Rice, Limits to Ductility Set by Plastic Flow Localization, Mechanics of Sheet Metal Forming, D.P. Koistinen, Ed., Plenum Publishing Corporation, 1978, p 237–267
30.
Zurück zum Zitat C.G. Tang, J.H. Zhu, Y.H. Zhang, H.J. Zhou, Effect of Strain Rate \( \ifmmode\expandafter\dot\else\expandafter\.\fi{\upvarepsilon } \) on Strain Hardening Exponent n of Some Metallic Materials, Acta Metall. Sinica, 1994, 7(3), p 183–186 C.G. Tang, J.H. Zhu, Y.H. Zhang, H.J. Zhou, Effect of Strain Rate \( \ifmmode\expandafter\dot\else\expandafter\.\fi{\upvarepsilon } \) on Strain Hardening Exponent n of Some Metallic Materials, Acta Metall. Sinica, 1994, 7(3), p 183–186
31.
Zurück zum Zitat A.A. Mazhar, E.A. Khorkhar, A.Q. Khan, Effect of Strain Rate on Tensile Deformation and Fracture Behaviour of 18% Ni 300 Maraging Steel Sheet, Mater. Sci. Technol., 1988, 4(6), p 535–539CrossRef A.A. Mazhar, E.A. Khorkhar, A.Q. Khan, Effect of Strain Rate on Tensile Deformation and Fracture Behaviour of 18% Ni 300 Maraging Steel Sheet, Mater. Sci. Technol., 1988, 4(6), p 535–539CrossRef
32.
Zurück zum Zitat A. El-Domiaty, The Effect of Strain, Strain Rate and Temperature on Formability of Ti-6Al-4V Alloy, J. Mater. Process. Technol., 1992, 32(1–2), p 243–251CrossRef A. El-Domiaty, The Effect of Strain, Strain Rate and Temperature on Formability of Ti-6Al-4V Alloy, J. Mater. Process. Technol., 1992, 32(1–2), p 243–251CrossRef
33.
Zurück zum Zitat A.A. Luo and A. Sachdev, Mechanical Properties and Microstructure of AZ31 Magnesium Alloy Tubes, Magnesium Technology, A.A. Luo, Ed., TMS, Warrendale, PA, 2004, p 79–85 A.A. Luo and A. Sachdev, Mechanical Properties and Microstructure of AZ31 Magnesium Alloy Tubes, Magnesium Technology, A.A. Luo, Ed., TMS, Warrendale, PA, 2004, p 79–85
34.
Zurück zum Zitat C.W. Sinclair, W.J. Poole, Y. Brechet, A Model for the Grain Size Dependent Work Hardening of Copper, Scripta Mater., 2006, 55, p 739–742CrossRef C.W. Sinclair, W.J. Poole, Y. Brechet, A Model for the Grain Size Dependent Work Hardening of Copper, Scripta Mater., 2006, 55, p 739–742CrossRef
35.
Zurück zum Zitat U.F. Kocks, H. Mecking, Physics and Phenomenology of Strain Hardening: The FCC Case, Prog. Mater. Sci., 2003, 48(3), p 171–273CrossRef U.F. Kocks, H. Mecking, Physics and Phenomenology of Strain Hardening: The FCC Case, Prog. Mater. Sci., 2003, 48(3), p 171–273CrossRef
36.
Zurück zum Zitat J.J. Gracio, The Double Effect of Grain Size on the Work Hardening Behaviour of Polycrystalline Copper, Scripta Metall. Mater., 1994, 31(4), p 487–489CrossRef J.J. Gracio, The Double Effect of Grain Size on the Work Hardening Behaviour of Polycrystalline Copper, Scripta Metall. Mater., 1994, 31(4), p 487–489CrossRef
37.
Zurück zum Zitat I. Kovacs, N.Q. Chinh, E. Kovacs-Csetenyi, Grain Size Dependence of the Work Hardening Process in Al99.99, Phys. Status Solidi (a), 2002, 194, p 3–18CrossRef I. Kovacs, N.Q. Chinh, E. Kovacs-Csetenyi, Grain Size Dependence of the Work Hardening Process in Al99.99, Phys. Status Solidi (a), 2002, 194, p 3–18CrossRef
38.
Zurück zum Zitat J. Luo, Z. Mei, W. Tian, Z. Wang, Diminishing of Work Hardening in Electroformed Polycrystalline Copper with Nano-Sized and Uf-Sized Twins, Mater. Sci. Eng. A, 2006, 441, p 282–290CrossRef J. Luo, Z. Mei, W. Tian, Z. Wang, Diminishing of Work Hardening in Electroformed Polycrystalline Copper with Nano-Sized and Uf-Sized Twins, Mater. Sci. Eng. A, 2006, 441, p 282–290CrossRef
39.
Zurück zum Zitat D. Kuhlmann-Wilsdorf, Theory of Work Hardening 1934–1984, Metall. Trans. A, 1985, 16A, p 2091–2108CrossRef D. Kuhlmann-Wilsdorf, Theory of Work Hardening 1934–1984, Metall. Trans. A, 1985, 16A, p 2091–2108CrossRef
40.
Zurück zum Zitat N.R. Risbrough, E. Teghtsoonian, The Linear Hardening of Cadmium, Can. J. Phys., 1967, 45(2), p 591–605CrossRef N.R. Risbrough, E. Teghtsoonian, The Linear Hardening of Cadmium, Can. J. Phys., 1967, 45(2), p 591–605CrossRef
41.
Zurück zum Zitat J. Gil Sevillano, Flow Stress and Work Hardening, Materials and Technology: Plastic Deformation and Fracture of Materials, Vol. 6, H. Mughrabi, Ed., VCH Publishers, New York, 1993, p 19–88 J. Gil Sevillano, Flow Stress and Work Hardening, Materials and Technology: Plastic Deformation and Fracture of Materials, Vol. 6, H. Mughrabi, Ed., VCH Publishers, New York, 1993, p 19–88
42.
Zurück zum Zitat B.J. Diak, K.R. Upadhyaya, S. Saimoto, Characterization of Thermodynamic Response by Materials Testing, Prog. Mater. Sci., 1998, 43(4), p 223–363CrossRef B.J. Diak, K.R. Upadhyaya, S. Saimoto, Characterization of Thermodynamic Response by Materials Testing, Prog. Mater. Sci., 1998, 43(4), p 223–363CrossRef
43.
Zurück zum Zitat U.F. Kocks, A.S. Argon, M.F. Ashby, Thermodynamics and Kinetics of Slip, Prog. Mater. Sci., 1975, 19, p 1–291CrossRef U.F. Kocks, A.S. Argon, M.F. Ashby, Thermodynamics and Kinetics of Slip, Prog. Mater. Sci., 1975, 19, p 1–291CrossRef
Metadaten
Titel
Strain Hardening and Strain-Rate Sensitivity of an Extruded Magnesium Alloy
verfasst von
X.Z. Lin
D.L. Chen
Publikationsdatum
01.12.2008
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2008
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-008-9247-z

Weitere Artikel der Ausgabe 6/2008

Journal of Materials Engineering and Performance 6/2008 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.