Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2015

01.12.2015

Comparing Rotary Bend Wire Fatigue Test Methods at Different Test Speeds

verfasst von: Jason D. Weaver, Erick J. Gutierrez

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Given its relatively simple setup and ability to produce results quickly, rotary bend fatigue testing is becoming commonplace in the medical device industry and is the subject of a new standard test method ASTM E2948-14. Although some research has been conducted to determine if results differ for different rotary bend fatigue test setups or test speeds, these parameters have not been extensively studied together. In this work, we investigate the effects of these two parameters on the fatigue life of three commonly used medical device alloys (ASTM F2063 nitinol, ASTM F138 stainless steel, and ASTM F1058 cobalt chromium). Results with three different rotary bend fatigue test setups revealed no difference in fatigue life among those setups. Increasing test speed, however, between 100 and 35,000 RPM led to an increased fatigue life for all three alloys studied (average number of cycles to fracture increased between 2.0 and 5.1 times between slowest and fastest test speed). Supplemental uniaxial tension tests of stainless steel wire at varying strain rates showed a strain rate dependence in the mechanical response which could in part explain the increased fatigue life at faster test speeds. How exactly strain rate dependence might affect the fatigue properties of different alloys at different alternating strain values requires further study. Given the difference in loading rates between benchtop fatigue tests and in vivo deformations, the potential for strain rate dependence should be considered when designing durability tests for medical devices and in extrapolating results of those tests to in vivo performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Lenz, S.M. Perren, R.G. Richards, T. Muckley, G.O. Hofmann, B. Gueorguiev, and M. Windolf, Biomechanical Performance of Different Cable and Wire Cerclage Configurations, Int. Orthop., 2013, 37, p 125–130CrossRef M. Lenz, S.M. Perren, R.G. Richards, T. Muckley, G.O. Hofmann, B. Gueorguiev, and M. Windolf, Biomechanical Performance of Different Cable and Wire Cerclage Configurations, Int. Orthop., 2013, 37, p 125–130CrossRef
2.
Zurück zum Zitat T. Peitsch, A. Klocke, B. Kahl-Nieke, O. Prymak, and M. Epple, The Release of Nickel from Orthodontic NiTi Wires is Increased by Dynamic Mechanical Loading but not Constrained by Surface Nitridation, J. Biomed. Mater. Res. A, 2007, 82A, p 731–739CrossRef T. Peitsch, A. Klocke, B. Kahl-Nieke, O. Prymak, and M. Epple, The Release of Nickel from Orthodontic NiTi Wires is Increased by Dynamic Mechanical Loading but not Constrained by Surface Nitridation, J. Biomed. Mater. Res. A, 2007, 82A, p 731–739CrossRef
3.
Zurück zum Zitat E. Henderson, D.H. Nash, and W.M. Dempster, On the Experimental Testing of Fine Nitinol Wires for Medical Devices, J. Mech. Behav. Biomed. Mater., 2011, 4, p 261–268CrossRef E. Henderson, D.H. Nash, and W.M. Dempster, On the Experimental Testing of Fine Nitinol Wires for Medical Devices, J. Mech. Behav. Biomed. Mater., 2011, 4, p 261–268CrossRef
4.
Zurück zum Zitat P.A. Altman, J.M. Meagher, D.W. Walsh, and D.A. Hoffmann, Rotary Bending Fatigue of Coils and Wires Used in Cardiac Lead Design, J. Biomed. Mater. Res., 1998, 43, p 21–37CrossRef P.A. Altman, J.M. Meagher, D.W. Walsh, and D.A. Hoffmann, Rotary Bending Fatigue of Coils and Wires Used in Cardiac Lead Design, J. Biomed. Mater. Res., 1998, 43, p 21–37CrossRef
5.
Zurück zum Zitat W. Sun, A. Abad, and M.S. Sacks, Simulated Bioprosthetic Heart Valve Deformation Under Quasi-static Loading, J. Biomech. Eng., 2005, 127, p 905–914CrossRef W. Sun, A. Abad, and M.S. Sacks, Simulated Bioprosthetic Heart Valve Deformation Under Quasi-static Loading, J. Biomech. Eng., 2005, 127, p 905–914CrossRef
6.
Zurück zum Zitat D.W. Norwich and A. Fasching, A Study of the Effect of Diameter on the Fatigue Properties of NiTi Wire, J. Mater. Eng. Perform., 2009, 18, p 558–562CrossRef D.W. Norwich and A. Fasching, A Study of the Effect of Diameter on the Fatigue Properties of NiTi Wire, J. Mater. Eng. Perform., 2009, 18, p 558–562CrossRef
7.
Zurück zum Zitat A.R. Pelton, J. Fino-Decker, L. Vien, C. Bonsignore, P. Saffari, M. Launey, and M.R. Mitchell, Rotary-Bending Fatigue Characteristics of Medical-Grade Nitinol Wire, J. Mech. Behav. Biomed. Mater., 2013, 27, p 19–32CrossRef A.R. Pelton, J. Fino-Decker, L. Vien, C. Bonsignore, P. Saffari, M. Launey, and M.R. Mitchell, Rotary-Bending Fatigue Characteristics of Medical-Grade Nitinol Wire, J. Mech. Behav. Biomed. Mater., 2013, 27, p 19–32CrossRef
8.
Zurück zum Zitat M. Rahim, J. Frenzel, M. Frotscher, J. Pfetzing-Micklich, R. Steegmuller, M. Wohlschlogel, H. Mughrabi, and G. Eggeler, Impurity Levels and Fatigue Lives of Pseudoelastic NiTi Shape Memory Alloys, Acta Mater., 2013, 61, p 3667–3686CrossRef M. Rahim, J. Frenzel, M. Frotscher, J. Pfetzing-Micklich, R. Steegmuller, M. Wohlschlogel, H. Mughrabi, and G. Eggeler, Impurity Levels and Fatigue Lives of Pseudoelastic NiTi Shape Memory Alloys, Acta Mater., 2013, 61, p 3667–3686CrossRef
9.
Zurück zum Zitat M. Wagner, T. Sawaguchi, G. Kaustrater, D. Hoffken, and G. Eggeler, Structural Fatigue of Pseudoelastic NiTi Shape Memory Wires, Mater. Sci. Eng. A, 2004, 378, p 105–109CrossRef M. Wagner, T. Sawaguchi, G. Kaustrater, D. Hoffken, and G. Eggeler, Structural Fatigue of Pseudoelastic NiTi Shape Memory Wires, Mater. Sci. Eng. A, 2004, 378, p 105–109CrossRef
10.
Zurück zum Zitat S. Gupta, A.R. Pelton, J.D. Weaver, X.Y. Gong, and S. Nagaraja, High Compressive Pre-strains Reduce the Bending Fatigue Life of Nitinol Wire, J. Mech. Behav. Biomed. Mater., 2015, 44, p 96–108CrossRef S. Gupta, A.R. Pelton, J.D. Weaver, X.Y. Gong, and S. Nagaraja, High Compressive Pre-strains Reduce the Bending Fatigue Life of Nitinol Wire, J. Mech. Behav. Biomed. Mater., 2015, 44, p 96–108CrossRef
11.
Zurück zum Zitat R.V. Marrey, R. Burgermeister, R.B. Grishaber, and R.O. Ritchie, Fatigue and Life Prediction for Cobalt-Chromium Stents: A Fracture Mechanics Analysis, Biomaterials, 2006, 27, p 1988–2000CrossRef R.V. Marrey, R. Burgermeister, R.B. Grishaber, and R.O. Ritchie, Fatigue and Life Prediction for Cobalt-Chromium Stents: A Fracture Mechanics Analysis, Biomaterials, 2006, 27, p 1988–2000CrossRef
12.
Zurück zum Zitat ASTM E2948-14, Standard Test Method for Conducting Rotating Bending Fatigue Tests of Solid Round Fine Wire, ASTM International, West Conshojocken, PA, 2014 ASTM E2948-14, Standard Test Method for Conducting Rotating Bending Fatigue Tests of Solid Round Fine Wire, ASTM International, West Conshojocken, PA, 2014
13.
Zurück zum Zitat D.W. Norwich, A Comparison of Zero Mean Strain Rotating Beam Fatigue Test Methods for Nitinol Wire, J. Mater. Eng. Perform., 2014, 23, p 2515–2522CrossRef D.W. Norwich, A Comparison of Zero Mean Strain Rotating Beam Fatigue Test Methods for Nitinol Wire, J. Mater. Eng. Perform., 2014, 23, p 2515–2522CrossRef
14.
Zurück zum Zitat J.D. Weaver, S. Gupta, and T.O. Woods, The Effects of Test Speed on Fatigue Life of Nitinol Wire in Rotary Bend. Fatigue and Fracture of Medical Metallic Materials and Devices STP 1559, M.R. Mitchell, S.W. Smith, T. Woods, and B.T. Berg, Eds., ASTM International, West Conshohocken, PA, 2013, p 1–17, doi:101520/STP155920120213, 2013 J.D. Weaver, S. Gupta, and T.O. Woods, The Effects of Test Speed on Fatigue Life of Nitinol Wire in Rotary Bend. Fatigue and Fracture of Medical Metallic Materials and Devices STP 1559, M.R. Mitchell, S.W. Smith, T. Woods, and B.T. Berg, Eds., ASTM International, West Conshohocken, PA, 2013, p 1–17, doi:101520/STP155920120213, 2013
15.
Zurück zum Zitat H. Tobushi, T. Hachisuka, S. Yamada, and P.H. Lin, Rotating-Bending Fatigue of a TiNi Shape-Memory Alloy Wire, Mech. Mater., 1997, 26, p 35–42CrossRef H. Tobushi, T. Hachisuka, S. Yamada, and P.H. Lin, Rotating-Bending Fatigue of a TiNi Shape-Memory Alloy Wire, Mech. Mater., 1997, 26, p 35–42CrossRef
16.
Zurück zum Zitat C. Clerc, M. Jedwab, D. Mayer, P. Thompson, and J. Stinson, Assessment of Wrought ASTM F1058 Cobalt Alloy Properties for Permanent Surgical Implants, J. Biomed. Mater. Res., 1997, 38, p 229–234CrossRef C. Clerc, M. Jedwab, D. Mayer, P. Thompson, and J. Stinson, Assessment of Wrought ASTM F1058 Cobalt Alloy Properties for Permanent Surgical Implants, J. Biomed. Mater. Res., 1997, 38, p 229–234CrossRef
17.
Zurück zum Zitat A. Scheiner, J. Mortimer, and T. Kicher, A Study of the Fatigue Properties of Small Diameter Wires Used in Intramuscular Electrodes, J. Biomed. Mater. Res., 1991, 25, p 589–608CrossRef A. Scheiner, J. Mortimer, and T. Kicher, A Study of the Fatigue Properties of Small Diameter Wires Used in Intramuscular Electrodes, J. Biomed. Mater. Res., 1991, 25, p 589–608CrossRef
18.
Zurück zum Zitat M. Prasad, M.W. Reiterer, and K.S. Kumar, Microstructure and Mechanical Behavior of an As-Drawn MP35 N Alloy Wire, Mater. Sci. Eng. A, 2014, 610, p 326–337CrossRef M. Prasad, M.W. Reiterer, and K.S. Kumar, Microstructure and Mechanical Behavior of an As-Drawn MP35 N Alloy Wire, Mater. Sci. Eng. A, 2014, 610, p 326–337CrossRef
19.
Zurück zum Zitat R.I. Stephens, A. Fatemi, R.R. Stephens, and H.O. Fuchs, Metal Fatigue in Engineering, 2nd ed., Wiley, New York, 2001 R.I. Stephens, A. Fatemi, R.R. Stephens, and H.O. Fuchs, Metal Fatigue in Engineering, 2nd ed., Wiley, New York, 2001
20.
Zurück zum Zitat M. Papakyriacou, H. Mayer, C. Pypen, H. Plenk, and S. Stanzl-Tschegg, Influence of Loading Frequency on High Cycle Fatigue Properties of b.c.c. and h.c.p. Metals, Mater. Sci. Eng. A, 2001, 308, p 143–152CrossRef M. Papakyriacou, H. Mayer, C. Pypen, H. Plenk, and S. Stanzl-Tschegg, Influence of Loading Frequency on High Cycle Fatigue Properties of b.c.c. and h.c.p. Metals, Mater. Sci. Eng. A, 2001, 308, p 143–152CrossRef
21.
Zurück zum Zitat I. Nonaka, S. Setowaki, and Y. Ichikawa, Effect of Load Frequency on High Cycle Fatigue Strength of Bullet Train Axle Steel, Int. J. Fatigue, 2014, 60, p 43–47CrossRef I. Nonaka, S. Setowaki, and Y. Ichikawa, Effect of Load Frequency on High Cycle Fatigue Strength of Bullet Train Axle Steel, Int. J. Fatigue, 2014, 60, p 43–47CrossRef
22.
Zurück zum Zitat H. Tobushi, Y. Shimeno, T. Hachisuka, and K. Tanaka, Influence of Strain Rate on Superelastic Properties of TiNi Shape Memory Alloy, Mech. Mater., 1998, 30, p 141–150CrossRef H. Tobushi, Y. Shimeno, T. Hachisuka, and K. Tanaka, Influence of Strain Rate on Superelastic Properties of TiNi Shape Memory Alloy, Mech. Mater., 1998, 30, p 141–150CrossRef
23.
Zurück zum Zitat A. Ahadi and Q.P. Sun, Effects of Grain Size on the Rate-Dependent Thermomechanical Responses of Nanostructured Superelastic NiTi, Acta Mater., 2014, 76, p 186–197CrossRef A. Ahadi and Q.P. Sun, Effects of Grain Size on the Rate-Dependent Thermomechanical Responses of Nanostructured Superelastic NiTi, Acta Mater., 2014, 76, p 186–197CrossRef
Metadaten
Titel
Comparing Rotary Bend Wire Fatigue Test Methods at Different Test Speeds
verfasst von
Jason D. Weaver
Erick J. Gutierrez
Publikationsdatum
01.12.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2015
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-015-1763-z

Weitere Artikel der Ausgabe 12/2015

Journal of Materials Engineering and Performance 12/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.