Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2018

30.01.2018

Plasma Nitriding of AISI 304 Stainless Steel in Cathodic and Floating Electric Potential: Influence on Morphology, Chemical Characteristics and Tribological Behavior

verfasst von: Yang Li, Yongyong He, Wei Wang, Junyuan Mao, Lei Zhang, Yijie Zhu, Qianwen Ye

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In direct current plasma nitriding (DCPN), the treated components are subjected to a high cathodic potential, which brings several inherent shortcomings, e.g., damage by arcing and the edging effect. In active screen plasma nitriding (ASPN) processes, the cathodic potential is applied to a metal screen that surrounds the workload, and the component to be treated is placed in a floating potential. Such an electrical configuration allows plasma to be formed on the metal screen surface rather than on the component surface; thus, the shortcomings of the DCPN are eliminated. In this work, the nitrided experiments were performed using a plasma nitriding unit. Two groups of samples were placed on the table in the cathodic and the floating potential, corresponding to the DCPN and ASPN, respectively. The floating samples and table were surrounded by a steel screen. The DCPN and ASPN of the AISI 304 stainless steels are investigated as a function of the electric potential. The samples were characterized using scanning electron microscopy with energy-dispersive x-ray spectroscopy, x-ray diffraction, atomic force microscopy and transmission electron microscope. Dry sliding ball-on-disk wear tests were conducted on the untreated substrate, DCPN and ASPN samples. The results reveal that all nitrided samples successfully produced similar nitrogen-supersaturated S phase layers on their surfaces. This finding also shows the strong impact of the electric potential of the nitriding process on the morphology, chemical characteristics, hardness and tribological behavior of the DCPN and ASPN samples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R Rep., 2009, 65(4–6), p 39–104CrossRef K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R Rep., 2009, 65(4–6), p 39–104CrossRef
2.
Zurück zum Zitat L.-H. Lin, S.-C. Chen, C.-Z. Wu, J.-M. Hung, and K.-L. Ou, Microstructure and Antibacterial Properties of Microwave Plasma Nitrided Layers on Biomedical Stainless Steels, Appl. Surf. Sci., 2011, 257(17), p 7375–7380CrossRef L.-H. Lin, S.-C. Chen, C.-Z. Wu, J.-M. Hung, and K.-L. Ou, Microstructure and Antibacterial Properties of Microwave Plasma Nitrided Layers on Biomedical Stainless Steels, Appl. Surf. Sci., 2011, 257(17), p 7375–7380CrossRef
3.
Zurück zum Zitat T. Bell, Surface Engineering of Austenitic Stainless Steel, Surf. Eng., 2002, 18(6), p 415–422CrossRef T. Bell, Surface Engineering of Austenitic Stainless Steel, Surf. Eng., 2002, 18(6), p 415–422CrossRef
4.
Zurück zum Zitat Y. Yu, S. Shironita, K. Nakatsuyama, K. Souma, and M. Umeda, Surface Composition Effect of Nitriding Ni-Free Stainless Steel as Bipolar Plate of Polymer Electrolyte Fuel Cell, Appl. Surf. Sci. Part A, 2016, 388, p 234–238CrossRef Y. Yu, S. Shironita, K. Nakatsuyama, K. Souma, and M. Umeda, Surface Composition Effect of Nitriding Ni-Free Stainless Steel as Bipolar Plate of Polymer Electrolyte Fuel Cell, Appl. Surf. Sci. Part A, 2016, 388, p 234–238CrossRef
5.
Zurück zum Zitat X. Qin, X. Guo, J. Lu, L. Chen, J. Qin, and W. Lu, Erosion-wear and Intergranular Corrosion Resistance Properties of AISI, 304L Austenitic Stainless Steel After Low-Temperature Plasma Nitriding, J. Alloy. Compd., 2017, 698, p 1094–1101CrossRef X. Qin, X. Guo, J. Lu, L. Chen, J. Qin, and W. Lu, Erosion-wear and Intergranular Corrosion Resistance Properties of AISI, 304L Austenitic Stainless Steel After Low-Temperature Plasma Nitriding, J. Alloy. Compd., 2017, 698, p 1094–1101CrossRef
6.
Zurück zum Zitat Y. Li, Z. Wang, and L. Wang, Surface Properties of Nitrided Layer on AISI, 316L Austenitic Stainless Steel Produced by High Temperature Plasma Nitriding in Short Time, Appl. Surf. Sci., 2014, 298, p 243–250CrossRef Y. Li, Z. Wang, and L. Wang, Surface Properties of Nitrided Layer on AISI, 316L Austenitic Stainless Steel Produced by High Temperature Plasma Nitriding in Short Time, Appl. Surf. Sci., 2014, 298, p 243–250CrossRef
7.
Zurück zum Zitat A.-R. Grayeli-Korpi and H. Savaloni, Effect of Nitrogen Ion Implantation on Corrosion Inhibition of Nickel Coated 316 Stainless Steel and Correlation with Nano-Structure, Appl. Surf. Sci., 2012, 258(24), p 9982–9988CrossRef A.-R. Grayeli-Korpi and H. Savaloni, Effect of Nitrogen Ion Implantation on Corrosion Inhibition of Nickel Coated 316 Stainless Steel and Correlation with Nano-Structure, Appl. Surf. Sci., 2012, 258(24), p 9982–9988CrossRef
8.
Zurück zum Zitat M. Laleh, F. Kargar, and M. Velashjerdi, Low-Temperature Nitriding of Nanocrystalline Stainless Steel and Its Effect on Improving Wear and Corrosion Resistance, J. Mater. Eng. Perform., 2013, 22(5), p 1304–1310CrossRef M. Laleh, F. Kargar, and M. Velashjerdi, Low-Temperature Nitriding of Nanocrystalline Stainless Steel and Its Effect on Improving Wear and Corrosion Resistance, J. Mater. Eng. Perform., 2013, 22(5), p 1304–1310CrossRef
9.
Zurück zum Zitat Z.L. Zhang and T. Bell, Structure and Corrosion Resistance of Plasma Nitrided Stainless Steel, Surf. Eng., 1985, 1(2), p 131–136CrossRef Z.L. Zhang and T. Bell, Structure and Corrosion Resistance of Plasma Nitrided Stainless Steel, Surf. Eng., 1985, 1(2), p 131–136CrossRef
10.
Zurück zum Zitat H. Dong, S Phase Surface Engineering of Fe–Cr, Co–Cr and N–Cr Alloys, Int. Mater. Rev., 2010, 55(2), p 65–98CrossRef H. Dong, S Phase Surface Engineering of Fe–Cr, Co–Cr and N–Cr Alloys, Int. Mater. Rev., 2010, 55(2), p 65–98CrossRef
11.
Zurück zum Zitat D. Wu, H. Kahn, J.C. Dalton, G.M. Michal, F. Ernst, and A.H. Heuer, Orientation Dependence of Nitrogen Supersaturation in Austenitic Stainless Steel During Low-Temperature Gas-Phase Nitriding, Acta Mater., 2014, 79, p 339–350CrossRef D. Wu, H. Kahn, J.C. Dalton, G.M. Michal, F. Ernst, and A.H. Heuer, Orientation Dependence of Nitrogen Supersaturation in Austenitic Stainless Steel During Low-Temperature Gas-Phase Nitriding, Acta Mater., 2014, 79, p 339–350CrossRef
12.
Zurück zum Zitat B.K. Brink, K. Ståhl, T.L. Christiansen, J. Oddershede, G. Winther, and M.A.J. Somers, On the Elusive Crystal Structure of Expanded Austenite, Scr. Mater., 2017, 131, p 59–62CrossRef B.K. Brink, K. Ståhl, T.L. Christiansen, J. Oddershede, G. Winther, and M.A.J. Somers, On the Elusive Crystal Structure of Expanded Austenite, Scr. Mater., 2017, 131, p 59–62CrossRef
13.
Zurück zum Zitat G.Y. Li and M.K. Lei, Microstructure and Properties of Plasma Source Nitrided AISI, 316 Austenitic Stainless Steel, J. Mater. Eng. Perform., 2017, 26(1), p 418–423CrossRef G.Y. Li and M.K. Lei, Microstructure and Properties of Plasma Source Nitrided AISI, 316 Austenitic Stainless Steel, J. Mater. Eng. Perform., 2017, 26(1), p 418–423CrossRef
14.
Zurück zum Zitat S. Ahangarani, A.R. Sabour, and F. Mahboubi, Surface Modification of 30CrNiMo8 Low-Alloy Steel by Active Screen Setup and Conventional Plasma Nitriding Methods, Appl. Surf. Sci., 2007, 254(5), p 1427–1435CrossRef S. Ahangarani, A.R. Sabour, and F. Mahboubi, Surface Modification of 30CrNiMo8 Low-Alloy Steel by Active Screen Setup and Conventional Plasma Nitriding Methods, Appl. Surf. Sci., 2007, 254(5), p 1427–1435CrossRef
15.
Zurück zum Zitat G. Kaklamani, J. Bowen, N. Mehrban, H. Dong, L.M. Grover, and A. Stamboulis, Active Screen Plasma Nitriding Enhances Cell Attachment to Polymer Surfaces, Appl. Surf. Sci., 2013, 273, p 787–798CrossRef G. Kaklamani, J. Bowen, N. Mehrban, H. Dong, L.M. Grover, and A. Stamboulis, Active Screen Plasma Nitriding Enhances Cell Attachment to Polymer Surfaces, Appl. Surf. Sci., 2013, 273, p 787–798CrossRef
16.
Zurück zum Zitat M. Naeem, M. Shafiq, M. Zaka-ul-Islam, N. Nawaz, J.C. Díaz-Guillén, and M. Zakaullah, Effect of Cathodic Cage Size on Plasma Nitriding of AISI, 304 Steel, Mater. Lett., 2016, 181, p 78–81CrossRef M. Naeem, M. Shafiq, M. Zaka-ul-Islam, N. Nawaz, J.C. Díaz-Guillén, and M. Zakaullah, Effect of Cathodic Cage Size on Plasma Nitriding of AISI, 304 Steel, Mater. Lett., 2016, 181, p 78–81CrossRef
17.
Zurück zum Zitat K. Lin, X. Li, Y. Sun, X. Luo, and H. Dong, Active Screen Plasma Nitriding of 316 Stainless Steel for the Application of Bipolar Plates in Proton Exchange Membrane Fuel Cells, Int. J. Hydrogen Energy, 2014, 39(36), p 21470–21479CrossRef K. Lin, X. Li, Y. Sun, X. Luo, and H. Dong, Active Screen Plasma Nitriding of 316 Stainless Steel for the Application of Bipolar Plates in Proton Exchange Membrane Fuel Cells, Int. J. Hydrogen Energy, 2014, 39(36), p 21470–21479CrossRef
18.
Zurück zum Zitat R.R.M. de Sousa, F.O. de Araújo, L.C. Gontijo, J.A.P. da Costa, and C. Alves, Jr., Cathodic Cage Plasma Nitriding (CCPN) of Austenitic Stainless Steel (AISI, 316): Influence of the Different Ratios of the (N2/H2) on the Nitrided Layers Properties, Vacuum, 2012, 86(12), p 2048–2053CrossRef R.R.M. de Sousa, F.O. de Araújo, L.C. Gontijo, J.A.P. da Costa, and C. Alves, Jr., Cathodic Cage Plasma Nitriding (CCPN) of Austenitic Stainless Steel (AISI, 316): Influence of the Different Ratios of the (N2/H2) on the Nitrided Layers Properties, Vacuum, 2012, 86(12), p 2048–2053CrossRef
19.
Zurück zum Zitat G.G. Tibbetts, Role of Nitrogen Atoms in “Ion-Nitriding”, J. Appl. Phys., 1974, 45(11), p 5072–5073CrossRef G.G. Tibbetts, Role of Nitrogen Atoms in “Ion-Nitriding”, J. Appl. Phys., 1974, 45(11), p 5072–5073CrossRef
20.
Zurück zum Zitat J. Walkowicz, On the Mechanisms of Diode Plasma Nitriding in N2–H2 Mixtures Under DC-Pulsed Substrate Biasing, Surf. Coat. Technol., 2003, 174–175, p 1211–1219CrossRef J. Walkowicz, On the Mechanisms of Diode Plasma Nitriding in N2–H2 Mixtures Under DC-Pulsed Substrate Biasing, Surf. Coat. Technol., 2003, 174–175, p 1211–1219CrossRef
21.
Zurück zum Zitat Interactions of ion beams with surfaces. Reactions of nitrogen with silicon and its oxides, The Journal of Chemical Physics 68(4) (1978) 1776-1784 Interactions of ion beams with surfaces. Reactions of nitrogen with silicon and its oxides, The Journal of Chemical Physics 68(4) (1978) 1776-1784
22.
Zurück zum Zitat K. Rusnak and J. Vicek, Emission Spectroscopy of the Plasma in the Cathode Region of N2–H2 Abnormal Glow Discharges for Steel Surface Nitriding, J. Phys. D Appl. Phys., 1993, 26(4), p 585CrossRef K. Rusnak and J. Vicek, Emission Spectroscopy of the Plasma in the Cathode Region of N2–H2 Abnormal Glow Discharges for Steel Surface Nitriding, J. Phys. D Appl. Phys., 1993, 26(4), p 585CrossRef
23.
Zurück zum Zitat H. Michel, T. Czerwiec, M. Gantois, D. Ablitzer, and A. Ricard, Progress in the Analysis of the Mechanisms of Ion Nitriding, Surf. Coat. Technol., 1995, 72(1), p 103–111CrossRef H. Michel, T. Czerwiec, M. Gantois, D. Ablitzer, and A. Ricard, Progress in the Analysis of the Mechanisms of Ion Nitriding, Surf. Coat. Technol., 1995, 72(1), p 103–111CrossRef
24.
Zurück zum Zitat A. Bogaerts, E. Neyts, R. Gijbels, and J. van der Mullen, Gas Discharge Plasmas and their Applications, Spectrochim. Acta, Part B, 2002, 57(4), p 609–658CrossRef A. Bogaerts, E. Neyts, R. Gijbels, and J. van der Mullen, Gas Discharge Plasmas and their Applications, Spectrochim. Acta, Part B, 2002, 57(4), p 609–658CrossRef
25.
Zurück zum Zitat C. Zhao, C.X. Li, H. Dong, and T. Bell, Study on the Active Screen Plasma Nitriding and its Nitriding Mechanism, Surf. Coat. Technol., 2006, 201(6), p 2320–2325CrossRef C. Zhao, C.X. Li, H. Dong, and T. Bell, Study on the Active Screen Plasma Nitriding and its Nitriding Mechanism, Surf. Coat. Technol., 2006, 201(6), p 2320–2325CrossRef
26.
Zurück zum Zitat A. Saeed, A.W. Khan, F. Jan, M. Abrar, M. Khalid, and M. Zakaullah, Validity of “Sputtering and Re-condensation” Model in Active Screen Cage Plasma Nitriding Process, Appl. Surf. Sci., 2013, 273, p 173–178CrossRef A. Saeed, A.W. Khan, F. Jan, M. Abrar, M. Khalid, and M. Zakaullah, Validity of “Sputtering and Re-condensation” Model in Active Screen Cage Plasma Nitriding Process, Appl. Surf. Sci., 2013, 273, p 173–178CrossRef
27.
Zurück zum Zitat P. Hubbard, J.G. Partridge, E.D. Doyle, D.G. McCulloch, M.B. Taylor, and S.J. Dowey, Investigation of Nitrogen Mass Transfer Within an Industrial Plasma Nitriding System I: The Role of Surface Deposits, Surf. Coat. Technol., 2010, 204(8), p 1145–1150CrossRef P. Hubbard, J.G. Partridge, E.D. Doyle, D.G. McCulloch, M.B. Taylor, and S.J. Dowey, Investigation of Nitrogen Mass Transfer Within an Industrial Plasma Nitriding System I: The Role of Surface Deposits, Surf. Coat. Technol., 2010, 204(8), p 1145–1150CrossRef
28.
Zurück zum Zitat P. Hubbard, S.J. Dowey, J.G. Partridge, E.D. Doyle, and D.G. McCulloch, Investigation of Nitrogen Mass Transfer Within an Industrial Plasma Nitriding System II: Application of a Biased Screen, Surf. Coat. Technol., 2010, 204(8), p 1151–1157CrossRef P. Hubbard, S.J. Dowey, J.G. Partridge, E.D. Doyle, and D.G. McCulloch, Investigation of Nitrogen Mass Transfer Within an Industrial Plasma Nitriding System II: Application of a Biased Screen, Surf. Coat. Technol., 2010, 204(8), p 1151–1157CrossRef
29.
Zurück zum Zitat S. Ahangarani, A.R. Sabour, F. Mahboubi, and T. Shahrabi, The Influence of Active Screen Plasma Nitriding Parameters on Corrosion Behavior of a Low-Alloy Steel, J. Alloy. Compd., 2009, 484(1–2), p 222–229CrossRef S. Ahangarani, A.R. Sabour, F. Mahboubi, and T. Shahrabi, The Influence of Active Screen Plasma Nitriding Parameters on Corrosion Behavior of a Low-Alloy Steel, J. Alloy. Compd., 2009, 484(1–2), p 222–229CrossRef
30.
Zurück zum Zitat S. Corujeira Gallo and H. Dong, New Insights into the Mechanism of Low-Temperature Active-Screen Plasma Nitriding of Austenitic Stainless Steel, Scripta Mater., 2012, 67(1), p 89–91CrossRef S. Corujeira Gallo and H. Dong, New Insights into the Mechanism of Low-Temperature Active-Screen Plasma Nitriding of Austenitic Stainless Steel, Scripta Mater., 2012, 67(1), p 89–91CrossRef
31.
Zurück zum Zitat C. Zhao, L.Y. Wang, and L. Han, Active Screen Plasma Nitriding of AISI, 316L Austenitic Stainless Steel at Different Potentials, Surf. Eng., 2008, 24(3), p 188–192CrossRef C. Zhao, L.Y. Wang, and L. Han, Active Screen Plasma Nitriding of AISI, 316L Austenitic Stainless Steel at Different Potentials, Surf. Eng., 2008, 24(3), p 188–192CrossRef
32.
Zurück zum Zitat A. Nishimoto, A. Tokuda, and K. Akamatsu, Effect of Through Cage on Active Screen Plasma Nitriding Properties, Mater. Trans., 2009, 50(5), p 1169–1173CrossRef A. Nishimoto, A. Tokuda, and K. Akamatsu, Effect of Through Cage on Active Screen Plasma Nitriding Properties, Mater. Trans., 2009, 50(5), p 1169–1173CrossRef
33.
Zurück zum Zitat Y. Li, Y. He, S. Zhang, X. He, W. Wang, and B. Hu, Microstructures and Tribological Behaviour of Oxynitrided Austenitic Stainless Steel, Vacuum, 2017, 146(Supplement C), p 1–7 Y. Li, Y. He, S. Zhang, X. He, W. Wang, and B. Hu, Microstructures and Tribological Behaviour of Oxynitrided Austenitic Stainless Steel, Vacuum, 2017, 146(Supplement C), p 1–7
34.
Zurück zum Zitat J.C. Stinville, J. Cormier, C. Templier, and P. Villechaise, Monotonic Mechanical Properties of Plasma Nitrided 316L Polycrystalline Austenitic Stainless Steel: Mechanical Behaviour of the Nitrided Layer and Impact of Nitriding Residual Stresses, Mater. Sci. Eng. A, 2014, 605, p 51–58CrossRef J.C. Stinville, J. Cormier, C. Templier, and P. Villechaise, Monotonic Mechanical Properties of Plasma Nitrided 316L Polycrystalline Austenitic Stainless Steel: Mechanical Behaviour of the Nitrided Layer and Impact of Nitriding Residual Stresses, Mater. Sci. Eng. A, 2014, 605, p 51–58CrossRef
35.
Zurück zum Zitat M. Asgari, A. Barnoush, R. Johnsen, and R. Hoel, Microstructural Characterization of Pulsed Plasma Nitrided 316L Stainless Steel, Mater. Sci. Eng. A, 2011, 529, p 425–434CrossRef M. Asgari, A. Barnoush, R. Johnsen, and R. Hoel, Microstructural Characterization of Pulsed Plasma Nitrided 316L Stainless Steel, Mater. Sci. Eng. A, 2011, 529, p 425–434CrossRef
36.
Zurück zum Zitat Y. Sun, X.Y. Li, and T. Bell, X-ray Diffraction Characterisation of Low Temperature Plasma Nitrided Austenitic Stainless Steels, J. Mater. Sci., 1999, 34(19), p 4793–4802CrossRef Y. Sun, X.Y. Li, and T. Bell, X-ray Diffraction Characterisation of Low Temperature Plasma Nitrided Austenitic Stainless Steels, J. Mater. Sci., 1999, 34(19), p 4793–4802CrossRef
37.
Zurück zum Zitat D. Wu, H. Kahn, J.C. Dalton, G.M. Michal, F. Ernst, and A.H. Heuer, Orientation Dependence of Nitrogen Supersaturation in Austenitic Stainless Steel During Low-Temperature Gas-Phase Nitriding, Acta Mater., 2014, 79(Supplement C), p 339–350CrossRef D. Wu, H. Kahn, J.C. Dalton, G.M. Michal, F. Ernst, and A.H. Heuer, Orientation Dependence of Nitrogen Supersaturation in Austenitic Stainless Steel During Low-Temperature Gas-Phase Nitriding, Acta Mater., 2014, 79(Supplement C), p 339–350CrossRef
38.
Zurück zum Zitat E. Menthe, K.T. Rie, J.W. Schultze, and S. Simson, Structure and Properties of Plasma-Nitrided Stainless Steel, Surf. Coat. Technol., 1995, 74(Part 1), p 412–416CrossRef E. Menthe, K.T. Rie, J.W. Schultze, and S. Simson, Structure and Properties of Plasma-Nitrided Stainless Steel, Surf. Coat. Technol., 1995, 74(Part 1), p 412–416CrossRef
39.
Zurück zum Zitat M.K. Lei and X.M. Zhu, Chemical state of Nitrogen in A High Nitrogen Face-Centered-Cubic Phase Formed on Plasma Source Ion Nitrided Austenitic Stainless Steel, J. Vacuum Sci. Technol. A Vacuum Surf. Films, 2004, 22(5), p 2067–2070CrossRef M.K. Lei and X.M. Zhu, Chemical state of Nitrogen in A High Nitrogen Face-Centered-Cubic Phase Formed on Plasma Source Ion Nitrided Austenitic Stainless Steel, J. Vacuum Sci. Technol. A Vacuum Surf. Films, 2004, 22(5), p 2067–2070CrossRef
40.
Zurück zum Zitat A. Martinavičius, G. Abrasonis, A.C. Scheinost, R. Danoix, F. Danoix, J.C. Stinville, G. Talut, C. Templier, O. Liedke, S. Gemming, and W. Möller, Nitrogen Interstitial Diffusion Induced Decomposition in AISI, 304L Austenitic Stainless Steel, Acta Mater., 2012, 60(10), p 4065–4076CrossRef A. Martinavičius, G. Abrasonis, A.C. Scheinost, R. Danoix, F. Danoix, J.C. Stinville, G. Talut, C. Templier, O. Liedke, S. Gemming, and W. Möller, Nitrogen Interstitial Diffusion Induced Decomposition in AISI, 304L Austenitic Stainless Steel, Acta Mater., 2012, 60(10), p 4065–4076CrossRef
41.
Zurück zum Zitat Y. Li, H. Xu, F. Zhu, and L. Wang, Low Temperature Anodic Nitriding of AISI, 304 Austenitic Stainless Steel, Mater. Lett., 2014, 128, p 231–234CrossRef Y. Li, H. Xu, F. Zhu, and L. Wang, Low Temperature Anodic Nitriding of AISI, 304 Austenitic Stainless Steel, Mater. Lett., 2014, 128, p 231–234CrossRef
42.
Zurück zum Zitat J.P. Rivière, C. Templier, A. Declémy, O. Redjdal, Y. Chumlyakov, and G. Abrasonis, Microstructure of Expanded Austenite in Ion-Nitrided AISI, 316L Single Crystals, Surf. Coat. Technol., 2007, 201(19–20), p 8210–8214CrossRef J.P. Rivière, C. Templier, A. Declémy, O. Redjdal, Y. Chumlyakov, and G. Abrasonis, Microstructure of Expanded Austenite in Ion-Nitrided AISI, 316L Single Crystals, Surf. Coat. Technol., 2007, 201(19–20), p 8210–8214CrossRef
43.
Zurück zum Zitat O. Öztürk, S. Okur, and J.P. Riviere, Structural and Magnetic Characterization of Plasma Ion Nitrided Layer on 316L Stainless Steel Alloy, Nucl. Instrum. Methods Phys. Res., Sect. B, 2009, 267(8–9), p 1540–1545CrossRef O. Öztürk, S. Okur, and J.P. Riviere, Structural and Magnetic Characterization of Plasma Ion Nitrided Layer on 316L Stainless Steel Alloy, Nucl. Instrum. Methods Phys. Res., Sect. B, 2009, 267(8–9), p 1540–1545CrossRef
44.
Zurück zum Zitat S. Parascandola, W. Möller, and D.L. Williamson, The Nitrogen Transport in Austenitic Stainless Steel at Moderate Temperatures, Appl. Phys. Lett., 2000, 76(16), p 2194–2196CrossRef S. Parascandola, W. Möller, and D.L. Williamson, The Nitrogen Transport in Austenitic Stainless Steel at Moderate Temperatures, Appl. Phys. Lett., 2000, 76(16), p 2194–2196CrossRef
45.
Zurück zum Zitat M. Golzar Shahri, S.R. Hosseini, M. Salehi, and M. Naderi, Evaluation of Nitrogen Diffusion in Thermo-Mechanically Nanostructured and Plasma Nitrided Stainless Steel, Surf. Coat. Technol., 2016, 296, p 40–45CrossRef M. Golzar Shahri, S.R. Hosseini, M. Salehi, and M. Naderi, Evaluation of Nitrogen Diffusion in Thermo-Mechanically Nanostructured and Plasma Nitrided Stainless Steel, Surf. Coat. Technol., 2016, 296, p 40–45CrossRef
46.
Zurück zum Zitat D. Manova, C. Díaz, L. Pichon, G. Abrasonis, and S. Mändl, Comparability and Accuracy of Nitrogen Depth Profiling in Nitrided Austenitic Stainless Steel, Nucl. Instrum. Methods Phys. Res., Sect. B, 2015, 349, p 106–113CrossRef D. Manova, C. Díaz, L. Pichon, G. Abrasonis, and S. Mändl, Comparability and Accuracy of Nitrogen Depth Profiling in Nitrided Austenitic Stainless Steel, Nucl. Instrum. Methods Phys. Res., Sect. B, 2015, 349, p 106–113CrossRef
47.
Zurück zum Zitat J. Stinville, P. Villechaise, C. Templier, J. Riviere, and M. Drouet, Plasma Nitriding of 316L Austenitic Stainless Steel: Experimental Investigation of Fatigue Life and Surface Evolution, Surf. Coat. Technol., 2010, 204(12), p 1947–1951CrossRef J. Stinville, P. Villechaise, C. Templier, J. Riviere, and M. Drouet, Plasma Nitriding of 316L Austenitic Stainless Steel: Experimental Investigation of Fatigue Life and Surface Evolution, Surf. Coat. Technol., 2010, 204(12), p 1947–1951CrossRef
48.
Zurück zum Zitat F. Borgioli, A. Fossati, E. Galvanetto, and T. Bacci, Glow-Discharge Nitriding of AISI, 316L Austenitic Stainless Steel: Influence of Treatment Temperature, Surf. Coat. Technol., 2005, 200(7), p 2474–2480CrossRef F. Borgioli, A. Fossati, E. Galvanetto, and T. Bacci, Glow-Discharge Nitriding of AISI, 316L Austenitic Stainless Steel: Influence of Treatment Temperature, Surf. Coat. Technol., 2005, 200(7), p 2474–2480CrossRef
49.
Zurück zum Zitat F. Borgioli, E. Galvanetto, and T. Bacci, Influence of Surface Morphology and Roughness on Water Wetting Properties of Low Temperature Nitrided Austenitic Stainless Steels, Mater. Charact., 2014, 95, p 278–284CrossRef F. Borgioli, E. Galvanetto, and T. Bacci, Influence of Surface Morphology and Roughness on Water Wetting Properties of Low Temperature Nitrided Austenitic Stainless Steels, Mater. Charact., 2014, 95, p 278–284CrossRef
50.
Zurück zum Zitat J.C. Stinville, C. Templier, P. Villechaise, and L. Pichon, Swelling of 316L Austenitic Stainless Steel Induced by Plasma Nitriding, J. Mater. Sci., 2011, 46(16), p 5503–5511CrossRef J.C. Stinville, C. Templier, P. Villechaise, and L. Pichon, Swelling of 316L Austenitic Stainless Steel Induced by Plasma Nitriding, J. Mater. Sci., 2011, 46(16), p 5503–5511CrossRef
51.
Zurück zum Zitat C. Tromas, J.C. Stinville, C. Templier, and P. Villechaise, Hardness and Elastic Modulus Gradients in Plasma-Nitrided 316L Polycrystalline Stainless Steel Investigated by Nanoindentation Tomography, Acta Mater., 2012, 60(5), p 1965–1973CrossRef C. Tromas, J.C. Stinville, C. Templier, and P. Villechaise, Hardness and Elastic Modulus Gradients in Plasma-Nitrided 316L Polycrystalline Stainless Steel Investigated by Nanoindentation Tomography, Acta Mater., 2012, 60(5), p 1965–1973CrossRef
52.
Zurück zum Zitat K.J.B. Ribeiro, R.R.M. de Sousa, F.O. de Araújo, R.A. de Brito, J.C.P. Barbosa, and C. Alves, Jr., Industrial Application of AISI, 4340 Steels Treated in Cathodic Cage Plasma Nitriding Technique, Mater. Sci. Eng. A, 2008, 479(1–2), p 142–147CrossRef K.J.B. Ribeiro, R.R.M. de Sousa, F.O. de Araújo, R.A. de Brito, J.C.P. Barbosa, and C. Alves, Jr., Industrial Application of AISI, 4340 Steels Treated in Cathodic Cage Plasma Nitriding Technique, Mater. Sci. Eng. A, 2008, 479(1–2), p 142–147CrossRef
53.
Zurück zum Zitat M. Henning and H. Vehoff, Local Mechanical Behavior and Slip Band Formation Within Grains of Thin Sheets, Acta Mater., 2005, 53(5), p 1285–1292CrossRef M. Henning and H. Vehoff, Local Mechanical Behavior and Slip Band Formation Within Grains of Thin Sheets, Acta Mater., 2005, 53(5), p 1285–1292CrossRef
Metadaten
Titel
Plasma Nitriding of AISI 304 Stainless Steel in Cathodic and Floating Electric Potential: Influence on Morphology, Chemical Characteristics and Tribological Behavior
verfasst von
Yang Li
Yongyong He
Wei Wang
Junyuan Mao
Lei Zhang
Yijie Zhu
Qianwen Ye
Publikationsdatum
30.01.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3199-8

Weitere Artikel der Ausgabe 3/2018

Journal of Materials Engineering and Performance 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.