Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2018

20.06.2018

The Corrosion Behavior of Zn/Graphene Oxide Composite Coatings Fabricated by Direct Current Electrodeposition

verfasst von: Xixun Shen, Junwei Sheng, Qinghui Zhang, Qunjie Xu, Danhong Cheng

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The zinc (Zn) and Zn/graphene oxide (Zn/GO) composite coatings on the mild steel were fabricated by direct current electrodeposition from an acidic chloride bath without GO and that with four different concentrations (50, 100, 200 and 300 mg/L) of GO, respectively. The GO first is synthesized by using the typical Hummer method. Physical characterizations including the surface and cross-sectional morphology, chemical composition and crystal structure of the Zn and Zn/GO composite coatings were done by scanning electron microscope, energy-dispersive x-ray and x-ray diffraction. The crystalline size, texture coefficient, water contact angle and hardness of the Zn and Zn/GO composite coatings were measured. The corrosion behavior of the Zn and Zn/GO composite coatings was studied by the electrochemical corrosion tests including the potentiodynamic polarization test and the electrochemical impedance spectroscopy test and the immersion test. The result reveals that the corrosion resistance of the Zn coating is remarkably increased by the incorporation of GO. Furthermore, it does not show a linear increase with the increase in the amount of incorporated GO and an optimal corrosion resistance is provided by the Zn/GO composite coating attained from the electrolyte containing 100 mg/L GO. The influence of the incorporation of GO on the corrosion resistance of the Zn coating is explained in combination with their physical characterizations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Barceló, M. Sarret, C. Müller, and J. Pregonas, Corrosion Resistance and Mechanical Properties of Zinc Electrocoatings, Electrochim. Acta, 1988, 43, p 13–20CrossRef G. Barceló, M. Sarret, C. Müller, and J. Pregonas, Corrosion Resistance and Mechanical Properties of Zinc Electrocoatings, Electrochim. Acta, 1988, 43, p 13–20CrossRef
2.
Zurück zum Zitat K.L. Lin, C.F. Yang, and J.T. Lee, Correlation of Microstructure with Corrosion and Electrochemical Behavior of the Batch-Type Hot-Dip Al-Zn Coatings: Part I. Zn and 5% Al-Zn Coatings, Corrosion, 1991, 47, p 9–12CrossRef K.L. Lin, C.F. Yang, and J.T. Lee, Correlation of Microstructure with Corrosion and Electrochemical Behavior of the Batch-Type Hot-Dip Al-Zn Coatings: Part I. Zn and 5% Al-Zn Coatings, Corrosion, 1991, 47, p 9–12CrossRef
3.
Zurück zum Zitat A.Y. Hosny, M.E. El-Rofei, T.A. Ramadan, and B.A. El-Gafari, Corrosion Resistance of Zinc Coatings Produced from a Sulfate Bath, Met. Finish., 1995, 93, p 55–59CrossRef A.Y. Hosny, M.E. El-Rofei, T.A. Ramadan, and B.A. El-Gafari, Corrosion Resistance of Zinc Coatings Produced from a Sulfate Bath, Met. Finish., 1995, 93, p 55–59CrossRef
4.
Zurück zum Zitat J.P.G. Farr and S.V. Kulkarni, The Chromate and Dichromate Passivation of Zinc, Trans. IMF, 1966, 44(1), p 21–26CrossRef J.P.G. Farr and S.V. Kulkarni, The Chromate and Dichromate Passivation of Zinc, Trans. IMF, 1966, 44(1), p 21–26CrossRef
5.
Zurück zum Zitat A. Suda and M. Asari, Zariyo-to-Kankyo, Behavior and Mechanism of Corrosion Protection for Galvanized Steels by Self-Healing Effect of Chromate Coatings, Corros. Eng., 1997, 46, p 95–102CrossRef A. Suda and M. Asari, Zariyo-to-Kankyo, Behavior and Mechanism of Corrosion Protection for Galvanized Steels by Self-Healing Effect of Chromate Coatings, Corros. Eng., 1997, 46, p 95–102CrossRef
6.
Zurück zum Zitat K. Vathsala and T.V. Venkatesha, Zn-ZrO2 Nanocomposite Coatings: Elecrodeposition and Evaluation of Corrosion Resistance, Appl. Surf. Sci., 2011, 257(21), p 8929–8936CrossRef K. Vathsala and T.V. Venkatesha, Zn-ZrO2 Nanocomposite Coatings: Elecrodeposition and Evaluation of Corrosion Resistance, Appl. Surf. Sci., 2011, 257(21), p 8929–8936CrossRef
7.
Zurück zum Zitat B. Veeraraghavan, B. Haran, S. Prabhu, and B. Popov, Corrosion Protection of Steel Using Nonanomalous Ni-Zn-P Coatings, J. Electrochem. Soc., 2003, 150, p B131–B139CrossRef B. Veeraraghavan, B. Haran, S. Prabhu, and B. Popov, Corrosion Protection of Steel Using Nonanomalous Ni-Zn-P Coatings, J. Electrochem. Soc., 2003, 150, p B131–B139CrossRef
8.
Zurück zum Zitat M. Ramasubramanian, B.N. Popov, and R.E. White, Characterization of Hydrogen Permeation Through Zinc-Nickel Alloys Under Corroding Conditions, J. Electrochem. Soc., 1998, 145, p 1907–1913CrossRef M. Ramasubramanian, B.N. Popov, and R.E. White, Characterization of Hydrogen Permeation Through Zinc-Nickel Alloys Under Corroding Conditions, J. Electrochem. Soc., 1998, 145, p 1907–1913CrossRef
9.
Zurück zum Zitat P. Ganesan, S.P. Kumaraguru, and B.N. Popov, Development of Compositionally Modulated Multilayer Zn-Ni Deposits as Replacement for Cadmium, Surf. Coat. Technol., 2007, 201, p 7896–7904CrossRef P. Ganesan, S.P. Kumaraguru, and B.N. Popov, Development of Compositionally Modulated Multilayer Zn-Ni Deposits as Replacement for Cadmium, Surf. Coat. Technol., 2007, 201, p 7896–7904CrossRef
10.
Zurück zum Zitat C.J. Lan, W.Y. Liu, S.T. Ke, and T.S. Chin, Potassium Salt Based Alkaline Bath for Deposition of Zn-Fe Alloys, Surf. Coat. Technol., 2006, 201, p 3103–3108CrossRef C.J. Lan, W.Y. Liu, S.T. Ke, and T.S. Chin, Potassium Salt Based Alkaline Bath for Deposition of Zn-Fe Alloys, Surf. Coat. Technol., 2006, 201, p 3103–3108CrossRef
11.
Zurück zum Zitat S. Ganesan, G. Prabhu, and B.N. Popov, Electrodeposition and Characterization of Zn-Mn Coatings for Corrosion Protection, Surf. Coat. Technol., 2014, 238, p 143–151CrossRef S. Ganesan, G. Prabhu, and B.N. Popov, Electrodeposition and Characterization of Zn-Mn Coatings for Corrosion Protection, Surf. Coat. Technol., 2014, 238, p 143–151CrossRef
12.
Zurück zum Zitat H. Kim, B. Popov, and K.S. Chen, Comparison of Corrosion-Resistance and Hydrogen Permeation Properties of Zn-Ni, Zn-Ni-Cd and Cd Coatings on Low-Carbon Steel, Corros. Sci., 2003, 45, p 1505–1521CrossRef H. Kim, B. Popov, and K.S. Chen, Comparison of Corrosion-Resistance and Hydrogen Permeation Properties of Zn-Ni, Zn-Ni-Cd and Cd Coatings on Low-Carbon Steel, Corros. Sci., 2003, 45, p 1505–1521CrossRef
13.
Zurück zum Zitat P. Ganesan, S.P. Kumaraguru, and B.N. Popov, Development of Zn-Ni-Cd Coatings by Pulse Electrodeposition Process, Surf. Coat. Technol., 2006, 201, p 3658–3669CrossRef P. Ganesan, S.P. Kumaraguru, and B.N. Popov, Development of Zn-Ni-Cd Coatings by Pulse Electrodeposition Process, Surf. Coat. Technol., 2006, 201, p 3658–3669CrossRef
14.
Zurück zum Zitat B. Veeraraghavan, H. Kim, and B.N. Popov, Optimization of Electroless Ni-Zn-P Deposition Process: Experimental Study and Mathematical Modeling, Electrochim. Acta, 2004, 49, p 3143–3154CrossRef B. Veeraraghavan, H. Kim, and B.N. Popov, Optimization of Electroless Ni-Zn-P Deposition Process: Experimental Study and Mathematical Modeling, Electrochim. Acta, 2004, 49, p 3143–3154CrossRef
15.
Zurück zum Zitat C. Yao, W. Chen, T. Zhu, S.L. Tay, and W. Gao, A Study on Corrosion Behaviour of Magnetron Sputtered Zn-Mg Coating, Surf. Coat. Technol., 2014, 249, p 90–96CrossRef C. Yao, W. Chen, T. Zhu, S.L. Tay, and W. Gao, A Study on Corrosion Behaviour of Magnetron Sputtered Zn-Mg Coating, Surf. Coat. Technol., 2014, 249, p 90–96CrossRef
16.
Zurück zum Zitat S. Sugimura and J. Liao, Long-Term Corrosion Protection of Arc Spray Zn-Al-Si Coating System in dilute Chloride Solutions and Sulfate Solutions, Surf. Coat. Technol., 2016, 302, p 398–409CrossRef S. Sugimura and J. Liao, Long-Term Corrosion Protection of Arc Spray Zn-Al-Si Coating System in dilute Chloride Solutions and Sulfate Solutions, Surf. Coat. Technol., 2016, 302, p 398–409CrossRef
17.
Zurück zum Zitat S. Schuerz, M. Fleischanderl, G.H. Luckeneder, K. Preis, T. Haunschmied, G. Mori, and A.C. Kneissl, Corrosion Behavior of Zn-Al-Mg Coated Steel Sheet in Sodium Chloride-Containing Environment, Corros. Sci., 2009, 51, p 2355–2363CrossRef S. Schuerz, M. Fleischanderl, G.H. Luckeneder, K. Preis, T. Haunschmied, G. Mori, and A.C. Kneissl, Corrosion Behavior of Zn-Al-Mg Coated Steel Sheet in Sodium Chloride-Containing Environment, Corros. Sci., 2009, 51, p 2355–2363CrossRef
18.
Zurück zum Zitat H. Zheng and M. An, Electrodeposition of Zn-Ni-Al2O3 Nanocomposite Coatings Under Ultrasound Conditions, J. Alloys Compd., 2008, 459, p 548–552CrossRef H. Zheng and M. An, Electrodeposition of Zn-Ni-Al2O3 Nanocomposite Coatings Under Ultrasound Conditions, J. Alloys Compd., 2008, 459, p 548–552CrossRef
19.
Zurück zum Zitat B.M. Praveen and T.V. Venkatesha, Electrodeposition and Properties of Zn-Nanosized TiO2 Composite Coatings, Appl. Surf. Sci., 2008, 254(8), p 2418–2424CrossRef B.M. Praveen and T.V. Venkatesha, Electrodeposition and Properties of Zn-Nanosized TiO2 Composite Coatings, Appl. Surf. Sci., 2008, 254(8), p 2418–2424CrossRef
20.
Zurück zum Zitat C. Müller, M. Sarret, and M. Benballa, ZnNi/SiC Composites Obtained from an Alkalinebath, Surf. Coat. Technol., 2003, 162, p 49–53CrossRef C. Müller, M. Sarret, and M. Benballa, ZnNi/SiC Composites Obtained from an Alkalinebath, Surf. Coat. Technol., 2003, 162, p 49–53CrossRef
21.
Zurück zum Zitat S. Ranganatha, T.V. Venkatesha, K. Vathsala, and M.K. Punith Kumar, Electrochemical Studies on Zn/Nano-CeO2 Electrodeposited Composite Coatings, Surf. Coat. Technol., 2012, 208, p 64–72CrossRef S. Ranganatha, T.V. Venkatesha, K. Vathsala, and M.K. Punith Kumar, Electrochemical Studies on Zn/Nano-CeO2 Electrodeposited Composite Coatings, Surf. Coat. Technol., 2012, 208, p 64–72CrossRef
22.
Zurück zum Zitat B.M. Praveen, T.V. Venkatesha, Y. Arthoba Naik, and K. Prashantha, Corrosion Studies of Carbon Nanotubes-Zn Composite Coating, Surf. Coat. Technol., 2007, 201, p 5836–5942CrossRef B.M. Praveen, T.V. Venkatesha, Y. Arthoba Naik, and K. Prashantha, Corrosion Studies of Carbon Nanotubes-Zn Composite Coating, Surf. Coat. Technol., 2007, 201, p 5836–5942CrossRef
23.
Zurück zum Zitat K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer, Ultrahigh Electron Mobility in Suspended Graphene, Solid State Commun., 2008, 146, p 351–355CrossRef K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer, Ultrahigh Electron Mobility in Suspended Graphene, Solid State Commun., 2008, 146, p 351–355CrossRef
24.
Zurück zum Zitat A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett., 2008, 8, p 902–907CrossRef A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett., 2008, 8, p 902–907CrossRef
25.
Zurück zum Zitat C. Lee, X. Wei, J.W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 2008, 321, p 385–388CrossRef C. Lee, X. Wei, J.W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 2008, 321, p 385–388CrossRef
26.
Zurück zum Zitat S. Chen, L. Brown, and M. Levendorf, Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy, ACS Nano, 2011, 5(2), p 1321–1327CrossRef S. Chen, L. Brown, and M. Levendorf, Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy, ACS Nano, 2011, 5(2), p 1321–1327CrossRef
27.
Zurück zum Zitat C.M.P. Kumar, T.V. Venkatesha, and R. Shabadi, Preparation and Corrosion Behavior of Ni and Ni-Graphene Composite Coatings, Mater. Res. Bull., 2013, 48(4), p 1477–1483CrossRef C.M.P. Kumar, T.V. Venkatesha, and R. Shabadi, Preparation and Corrosion Behavior of Ni and Ni-Graphene Composite Coatings, Mater. Res. Bull., 2013, 48(4), p 1477–1483CrossRef
28.
Zurück zum Zitat Y. Jafari, S.M. Ghoreishi, and M. Shabani-Nooshabad, Polyaniline/Graphene Nanocomposite Coatings on Copper: Electropolymerization, Characterization, and Evaluation of Corrosion Protection Performance, Synth. Met., 2016, 217, p 220–230CrossRef Y. Jafari, S.M. Ghoreishi, and M. Shabani-Nooshabad, Polyaniline/Graphene Nanocomposite Coatings on Copper: Electropolymerization, Characterization, and Evaluation of Corrosion Protection Performance, Synth. Met., 2016, 217, p 220–230CrossRef
29.
Zurück zum Zitat R. Berlia, M.K. Punith Kumar, and C. Srivastava, Electrochemical Behavior of Sn-Graphene Composite Coating, RSC Adv., 2015, 5, p 71413–71418CrossRef R. Berlia, M.K. Punith Kumar, and C. Srivastava, Electrochemical Behavior of Sn-Graphene Composite Coating, RSC Adv., 2015, 5, p 71413–71418CrossRef
30.
Zurück zum Zitat M.K. PunithKumar, M. PratapSingh, and C. Srivastava, Electrochmical Behavior of Zn-Graphene Composite Coatings, RSC Adv., 2015, 5, p 25603–25608CrossRef M.K. PunithKumar, M. PratapSingh, and C. Srivastava, Electrochmical Behavior of Zn-Graphene Composite Coatings, RSC Adv., 2015, 5, p 25603–25608CrossRef
31.
Zurück zum Zitat H. He and C. Gao, General Approach to Individually Dispersed, Highly Soluble, and Conductive Graphene Nanosheets Functionalized by Nitrene Chemistry, Chem. Mater., 2010, 22, p 5054–5064CrossRef H. He and C. Gao, General Approach to Individually Dispersed, Highly Soluble, and Conductive Graphene Nanosheets Functionalized by Nitrene Chemistry, Chem. Mater., 2010, 22, p 5054–5064CrossRef
32.
Zurück zum Zitat T. Ramanathan, A. Abdala, S. Stankovich, D. Dikin, M. Herrera-Alonso, R. Piner, D. Adamson, H. Schniepp, X. Chen, and R. Ruoff, Functionalized Graphene Sheets for Polymer Nanocomposites, Nat. Nanotechnol., 2008, 3, p 327–331CrossRef T. Ramanathan, A. Abdala, S. Stankovich, D. Dikin, M. Herrera-Alonso, R. Piner, D. Adamson, H. Schniepp, X. Chen, and R. Ruoff, Functionalized Graphene Sheets for Polymer Nanocomposites, Nat. Nanotechnol., 2008, 3, p 327–331CrossRef
33.
Zurück zum Zitat N.R. Wilson, P.A. Pandey, R. Beanland, R.J. Young, I.A. Kinloch, L. Gong, Z. Liu, K. Suenaga, J.P. Rourke, and S.J. York, Graphene Oxide: Structural Analysis and Application as a Highly Transparent Support for Electron Microscopy, ACS Nano, 2009, 3, p 2547–2556CrossRef N.R. Wilson, P.A. Pandey, R. Beanland, R.J. Young, I.A. Kinloch, L. Gong, Z. Liu, K. Suenaga, J.P. Rourke, and S.J. York, Graphene Oxide: Structural Analysis and Application as a Highly Transparent Support for Electron Microscopy, ACS Nano, 2009, 3, p 2547–2556CrossRef
34.
Zurück zum Zitat D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff, The Chemistry of Graphene Oxide, Chem. Soc. Rev., 2010, 39, p 228–240CrossRef D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff, The Chemistry of Graphene Oxide, Chem. Soc. Rev., 2010, 39, p 228–240CrossRef
35.
Zurück zum Zitat C. Liu, F. Su, and J. Liang, Producing Cobalt-Graphene Composite Coating by Pulse Electrodeposition with Excellent Wear and Corrosion Resistance, Appl. Surf. Sci., 2015, 351, p 889–896CrossRef C. Liu, F. Su, and J. Liang, Producing Cobalt-Graphene Composite Coating by Pulse Electrodeposition with Excellent Wear and Corrosion Resistance, Appl. Surf. Sci., 2015, 351, p 889–896CrossRef
36.
Zurück zum Zitat W.S. Hummers, Jr, and R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc., 1958, 80, p 1339CrossRef W.S. Hummers, Jr, and R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc., 1958, 80, p 1339CrossRef
37.
Zurück zum Zitat H.P. Mungse and O.P. Khatri, Chemically Functionalized Reduced Graphene Oxide as a Novel Material for Reduction of Friction and Wear, J. Phys. Chem. C, 2014, 118, p 14394–14402CrossRef H.P. Mungse and O.P. Khatri, Chemically Functionalized Reduced Graphene Oxide as a Novel Material for Reduction of Friction and Wear, J. Phys. Chem. C, 2014, 118, p 14394–14402CrossRef
38.
Zurück zum Zitat S. Esmailzadeh, S. Khorsand, and K. Raeissi, Microstructural Evolution and Corrosion Resistance of Super-Hydrophobic Electrodeposited Nickel Films, Surf. Coat. Technol., 2015, 283, p 337–346CrossRef S. Esmailzadeh, S. Khorsand, and K. Raeissi, Microstructural Evolution and Corrosion Resistance of Super-Hydrophobic Electrodeposited Nickel Films, Surf. Coat. Technol., 2015, 283, p 337–346CrossRef
39.
Zurück zum Zitat D.C. Marcano, D.V. Kosynkin, and J.M. Berlin, Improved Synthesis of Graphene Oxide, ACS Nano, 2010, 4(8), p 4806–4810CrossRef D.C. Marcano, D.V. Kosynkin, and J.M. Berlin, Improved Synthesis of Graphene Oxide, ACS Nano, 2010, 4(8), p 4806–4810CrossRef
40.
Zurück zum Zitat L. Muresan, L. Oniciu, M. Froment, and G. Maurin, Inhibition of Lead Electrocrystallization by Organic Additives, Electrochim. Acta, 1992, 37, p 2249–2254CrossRef L. Muresan, L. Oniciu, M. Froment, and G. Maurin, Inhibition of Lead Electrocrystallization by Organic Additives, Electrochim. Acta, 1992, 37, p 2249–2254CrossRef
41.
Zurück zum Zitat J. Han, Q.J. Xu, W. Liu, and Y.L. Min, Etching and Heating Treatment Combined Approach for Superhydrophobic Surface on Brass Substrates and the Consequent Corrosion Resistance, Corros. Sci., 2016, 102, p 251–258CrossRef J. Han, Q.J. Xu, W. Liu, and Y.L. Min, Etching and Heating Treatment Combined Approach for Superhydrophobic Surface on Brass Substrates and the Consequent Corrosion Resistance, Corros. Sci., 2016, 102, p 251–258CrossRef
42.
Zurück zum Zitat W. Liu, Q. Xu, J. Han, X. Chen, and Y. Min, A Novel Combination Approach for the Preparation of Superhydrophobic Surface on Copper and the Consequent Corrosion Resistance, Corros. Sci., 2016, 110, p 105–113CrossRef W. Liu, Q. Xu, J. Han, X. Chen, and Y. Min, A Novel Combination Approach for the Preparation of Superhydrophobic Surface on Copper and the Consequent Corrosion Resistance, Corros. Sci., 2016, 110, p 105–113CrossRef
43.
Zurück zum Zitat L. Yang, Y. Wan, Z. Qin, Q. Xu, and Y. Min, Fabrication and Corrosion Resistance of a Graphene-Tin Oxide Composite Film on Aluminium Alloy 6061, Corros. Sci., 2018, 130, p 85–94CrossRef L. Yang, Y. Wan, Z. Qin, Q. Xu, and Y. Min, Fabrication and Corrosion Resistance of a Graphene-Tin Oxide Composite Film on Aluminium Alloy 6061, Corros. Sci., 2018, 130, p 85–94CrossRef
44.
Zurück zum Zitat M. Mouanga and P. Berçot, Comparison of Corrosion Behaviour of Zinc in NaCl and in NaOH Solutions; Part II: Electrochemical Analyses, Corros. Sci., 2010, 52, p 3993–4000CrossRef M. Mouanga and P. Berçot, Comparison of Corrosion Behaviour of Zinc in NaCl and in NaOH Solutions; Part II: Electrochemical Analyses, Corros. Sci., 2010, 52, p 3993–4000CrossRef
45.
Zurück zum Zitat J.C. Liu, S.W. Park, S. Nagao, M. Nogi, H. Koga, J.S. Ma, G. Zhang, and K. Suganuma, The Role of Zn Precipitates and Cl Anions in Pitting Corrosion of Sn-Zn Solder Alloys, Corros. Sci., 2015, 92, p 263–271CrossRef J.C. Liu, S.W. Park, S. Nagao, M. Nogi, H. Koga, J.S. Ma, G. Zhang, and K. Suganuma, The Role of Zn Precipitates and Cl Anions in Pitting Corrosion of Sn-Zn Solder Alloys, Corros. Sci., 2015, 92, p 263–271CrossRef
46.
Zurück zum Zitat S. Khabazian and S. Sanjabi, The Effect of Multi-walled Carbon Nanotube Pretreatments on the Electrodeposition of Ni-MWCNTs Coatings, Appl. Surf. Sci., 2011, 257, p 5850–5856CrossRef S. Khabazian and S. Sanjabi, The Effect of Multi-walled Carbon Nanotube Pretreatments on the Electrodeposition of Ni-MWCNTs Coatings, Appl. Surf. Sci., 2011, 257, p 5850–5856CrossRef
47.
Zurück zum Zitat S. Tao and D. Li, Tribological, Mechanical and Electrochemical Properties of Nanocrystalline Copper Deposits Produced by Pulse Electrodeposition, Nanotechnology, 2006, 17, p 65–69CrossRef S. Tao and D. Li, Tribological, Mechanical and Electrochemical Properties of Nanocrystalline Copper Deposits Produced by Pulse Electrodeposition, Nanotechnology, 2006, 17, p 65–69CrossRef
48.
Zurück zum Zitat H. Park and J.A. Szpunar, The Role of Texture and Morphology in Optimizing the Corrosion Resistance of Zinc-Based Electrogalvanized Coatings, Corros. Sci., 1998, 40, p 525–545CrossRef H. Park and J.A. Szpunar, The Role of Texture and Morphology in Optimizing the Corrosion Resistance of Zinc-Based Electrogalvanized Coatings, Corros. Sci., 1998, 40, p 525–545CrossRef
49.
Zurück zum Zitat M.K. Punith Kumar and C. Srivastava, Enhancement of Corrosion Resistance of Zinc Coatings Using Green Additives, J. Mater. Eng. Perform., 2014, 23, p 3418–3424CrossRef M.K. Punith Kumar and C. Srivastava, Enhancement of Corrosion Resistance of Zinc Coatings Using Green Additives, J. Mater. Eng. Perform., 2014, 23, p 3418–3424CrossRef
50.
Zurück zum Zitat L.Y. Wang, J. Tu, W. Chen, Y. Wang, X. Liu, C. Olk, D. Cheng, and X. Zhang, Friction and Wear Behavior of Electroless Ni-Based CNT Composite Coatings, Wear, 2003, 254, p 1289–1293CrossRef L.Y. Wang, J. Tu, W. Chen, Y. Wang, X. Liu, C. Olk, D. Cheng, and X. Zhang, Friction and Wear Behavior of Electroless Ni-Based CNT Composite Coatings, Wear, 2003, 254, p 1289–1293CrossRef
Metadaten
Titel
The Corrosion Behavior of Zn/Graphene Oxide Composite Coatings Fabricated by Direct Current Electrodeposition
verfasst von
Xixun Shen
Junwei Sheng
Qinghui Zhang
Qunjie Xu
Danhong Cheng
Publikationsdatum
20.06.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3461-0

Weitere Artikel der Ausgabe 7/2018

Journal of Materials Engineering and Performance 7/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.