Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2019

08.05.2019

Nanoindentation Creep Behavior of CoCrFeNiMn High-Entropy Alloy under Different High-Pressure Torsion Deformations

verfasst von: P. F. Zhou, D. H. Xiao, G. Li, M. Song

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

CoCrFeNiMn high-entropy alloy (HEA) has gained increasing attention in recent years. In this work, CoCrFeNiMn HEA was prepared by arc melting and casting method; and high-pressure torsion (HPT) technology was used to refine the grains. A series of nanoindentation experiments was used to investigate the effect of different loading rates and deformations on the nanoindentation creep behavior of the CoCrFeNiMn HEA. The results show that the grain size of the CoCrFeNiMn HEA refines to the nanoscale after HPT. However, grain refinement is not obvious with further increasing HPT rotation. The loading rate and HPT rotations have an obvious effect on the nanoindentation creep behaviors of the CoCrFeNiMn HEA. The creep behaviors of the as-cast and HPT-treated CoCrFeNiMn HEA may be controlled by dislocations and the collective effect of GB sliding and dislocations, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303CrossRef J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303CrossRef
2.
Zurück zum Zitat B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345, p 1153–1157CrossRef B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345, p 1153–1157CrossRef
3.
Zurück zum Zitat J.W. Yeh, Recent Progress in High-Entropy Alloys, Ann. Chim. Sci. des Mat., 2006, 31, p 633–648CrossRef J.W. Yeh, Recent Progress in High-Entropy Alloys, Ann. Chim. Sci. des Mat., 2006, 31, p 633–648CrossRef
4.
Zurück zum Zitat D.H. Xiao, P.F. Zhou, W.Q. Wu, H.Y. Diao, M.C. Gao, M. Song, and P.K. Liaw, Microstructure, Mechanical and Corrosion Behaviors of AlCoCuFeNi-(Cr, Ti) High Entropy Alloys, Mater. Des., 2017, 116, p 438–447CrossRef D.H. Xiao, P.F. Zhou, W.Q. Wu, H.Y. Diao, M.C. Gao, M. Song, and P.K. Liaw, Microstructure, Mechanical and Corrosion Behaviors of AlCoCuFeNi-(Cr, Ti) High Entropy Alloys, Mater. Des., 2017, 116, p 438–447CrossRef
5.
Zurück zum Zitat P.P. Bhattacharjee, G.D. Sathiaraj, M. Zaid, J.R. Gatti, C. Lee, C.W. Tsai, and J.W. Yeh, Microstructure and Texture Evolution During Annealing of Equiatomic CoCrFeMnNi High-Entropy Alloy, J. Alloy. Compd., 2014, 587, p 544–552CrossRef P.P. Bhattacharjee, G.D. Sathiaraj, M. Zaid, J.R. Gatti, C. Lee, C.W. Tsai, and J.W. Yeh, Microstructure and Texture Evolution During Annealing of Equiatomic CoCrFeMnNi High-Entropy Alloy, J. Alloy. Compd., 2014, 587, p 544–552CrossRef
6.
Zurück zum Zitat G. Laplanche, O. Horst, F. Otto, G. Eggeler, and E.P. George, Microstructural Evolution of a CoCrFeMnNi High-Entropy Alloy after Swaging and Annealing, J. Alloy. Compd., 2015, 647, p 548–557CrossRef G. Laplanche, O. Horst, F. Otto, G. Eggeler, and E.P. George, Microstructural Evolution of a CoCrFeMnNi High-Entropy Alloy after Swaging and Annealing, J. Alloy. Compd., 2015, 647, p 548–557CrossRef
7.
Zurück zum Zitat D.H. Lee, J.A. Lee, Y.K. Zhao, Z.P. Lu, J.Y. Suh, J.Y. Kim, U. Ramamurty, M. Kawasaki, T.G. Langdon, and J. Jang, Annealing Effect on Plastic Flow in Nanocrystalline CoCrFeMnNi High-Entropy Alloy: A Nanomechanical Analysis, Acta Mater., 2017, 140, p 443–451CrossRef D.H. Lee, J.A. Lee, Y.K. Zhao, Z.P. Lu, J.Y. Suh, J.Y. Kim, U. Ramamurty, M. Kawasaki, T.G. Langdon, and J. Jang, Annealing Effect on Plastic Flow in Nanocrystalline CoCrFeMnNi High-Entropy Alloy: A Nanomechanical Analysis, Acta Mater., 2017, 140, p 443–451CrossRef
8.
Zurück zum Zitat D. Kumar, O. Maulik, V.K. Sharma, Y.V.S.S. Prasad, and V. Kumar, Understanding the Effect of Tungsten on Corrosion Behavior of AlCuCrFeMnWx High-Entropy Alloys in 3.5 wt.% NaCl Solution, J. Mater. Eng. Perform., 2018, 27, p 4481–4488CrossRef D. Kumar, O. Maulik, V.K. Sharma, Y.V.S.S. Prasad, and V. Kumar, Understanding the Effect of Tungsten on Corrosion Behavior of AlCuCrFeMnWx High-Entropy Alloys in 3.5 wt.% NaCl Solution, J. Mater. Eng. Perform., 2018, 27, p 4481–4488CrossRef
9.
Zurück zum Zitat W. Ji, W.M. Wang, H. Wang, J.Y. Zhang, Y.C. Wang, F. Zhang, and Z.Y. Fu, Alloying Behavior and Novel Properties of CoCrFeNiMn High-Entropy Alloy Fabricated by Mechanical Alloying and Spark Plasma Sintering, Intermetallics, 2015, 56, p 24–27CrossRef W. Ji, W.M. Wang, H. Wang, J.Y. Zhang, Y.C. Wang, F. Zhang, and Z.Y. Fu, Alloying Behavior and Novel Properties of CoCrFeNiMn High-Entropy Alloy Fabricated by Mechanical Alloying and Spark Plasma Sintering, Intermetallics, 2015, 56, p 24–27CrossRef
10.
Zurück zum Zitat M. Zhang, X.L. Zhou, and J.H. Li, Microstructure and Mechanical Properties of a Refractory CoCrMoNbTi High-Entropy Alloy, J. Mater. Eng. Perform., 2017, 26, p 3657–3665CrossRef M. Zhang, X.L. Zhou, and J.H. Li, Microstructure and Mechanical Properties of a Refractory CoCrMoNbTi High-Entropy Alloy, J. Mater. Eng. Perform., 2017, 26, p 3657–3665CrossRef
11.
Zurück zum Zitat Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength-Ductility Trade-Off, Nature, 2016, 534, p 227–230CrossRef Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength-Ductility Trade-Off, Nature, 2016, 534, p 227–230CrossRef
12.
Zurück zum Zitat W. Woo, E.W. Huang, J.W. Yeh, H. Choo, C. Lee, and S.Y. Tu, In-situ Neutron Diffraction Studies on High-Temperature Deformation Behavior in a CoCrFeMnNi High Entropy Alloy, Intermetallics, 2015, 62, p 1–6CrossRef W. Woo, E.W. Huang, J.W. Yeh, H. Choo, C. Lee, and S.Y. Tu, In-situ Neutron Diffraction Studies on High-Temperature Deformation Behavior in a CoCrFeMnNi High Entropy Alloy, Intermetallics, 2015, 62, p 1–6CrossRef
13.
Zurück zum Zitat D.H. Lee, M.Y. Seok, Y.K. Zhao, I.C. Choi, J.Y. He, Z.P. Lu, J.Y. Suh, U. Ramamurty, M. Kawasaki, T.G. Langdon, and J. Jang, Spherical Nanoindentation Creep Behavior of Nanocrystalline and Coarse Grained CoCrFeMnNi High-Entropy Alloys, Acta Mater., 2016, 109, p 314–322CrossRef D.H. Lee, M.Y. Seok, Y.K. Zhao, I.C. Choi, J.Y. He, Z.P. Lu, J.Y. Suh, U. Ramamurty, M. Kawasaki, T.G. Langdon, and J. Jang, Spherical Nanoindentation Creep Behavior of Nanocrystalline and Coarse Grained CoCrFeMnNi High-Entropy Alloys, Acta Mater., 2016, 109, p 314–322CrossRef
14.
Zurück zum Zitat L. Patriarca, A. Ojha, H. Sehitoglu, and Y.I. Chumlyakov, Slip Nucleation in Single Crystal FeNiCoCrMn High Entropy Alloy, Scripta Mater., 2016, 112, p 54–57CrossRef L. Patriarca, A. Ojha, H. Sehitoglu, and Y.I. Chumlyakov, Slip Nucleation in Single Crystal FeNiCoCrMn High Entropy Alloy, Scripta Mater., 2016, 112, p 54–57CrossRef
15.
Zurück zum Zitat Y. Liu, J.S. Wang, Q.H. Fang, B. Liu, Y. Wu, and S.Q. Chen, Preparation of Superfine-Grained High Entropy Alloy by Spark Plasma Sintering Gas Atomized Powder, Intermetallics, 2016, 68, p 16–22CrossRef Y. Liu, J.S. Wang, Q.H. Fang, B. Liu, Y. Wu, and S.Q. Chen, Preparation of Superfine-Grained High Entropy Alloy by Spark Plasma Sintering Gas Atomized Powder, Intermetallics, 2016, 68, p 16–22CrossRef
16.
Zurück zum Zitat G.D. Sathiaraj and P.P. Bhattacharjee, Effect of Cold-Rolling Strain on the Evolution of Annealing Texture of Equiatomic CoCrFeMnNi High Entropy Alloy, Mater. Charact., 2015, 109, p 189–197CrossRef G.D. Sathiaraj and P.P. Bhattacharjee, Effect of Cold-Rolling Strain on the Evolution of Annealing Texture of Equiatomic CoCrFeMnNi High Entropy Alloy, Mater. Charact., 2015, 109, p 189–197CrossRef
17.
Zurück zum Zitat B. Schuh, F. Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, and A. Hohenwarter, Mechani Mendez Cal Properties, Microstructure and Thermal Stability of a Nanocrystalline CoCrFeMnNi High-Entropy Alloy after Severe Plastic Deformation, Acta Mater., 2015, 96, p 258–268CrossRef B. Schuh, F. Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, and A. Hohenwarter, Mechani Mendez Cal Properties, Microstructure and Thermal Stability of a Nanocrystalline CoCrFeMnNi High-Entropy Alloy after Severe Plastic Deformation, Acta Mater., 2015, 96, p 258–268CrossRef
18.
Zurück zum Zitat N. Stepanov, M. Tikhonovsky, N. Yurchenko, D. Zyabkin, M. Klimova, S. Zherebtsov, A. Efimov, and G. Salishchev, Effect of Cryo-Deformation on Structure and Properties of CoCrFeNiMn High-Entropy Alloy, Intermetallics, 2015, 59, p 8–17CrossRef N. Stepanov, M. Tikhonovsky, N. Yurchenko, D. Zyabkin, M. Klimova, S. Zherebtsov, A. Efimov, and G. Salishchev, Effect of Cryo-Deformation on Structure and Properties of CoCrFeNiMn High-Entropy Alloy, Intermetallics, 2015, 59, p 8–17CrossRef
19.
Zurück zum Zitat G.D. Sathiaraj, P.P. Bhattacharjee, C.W. Tsai, and J.W. Yeh, Effect of Heavy Cryo-Rolling on the Evolution of Microstructure and Texture during Annealing of Equiatomic CoCrFeMnNi High Entropy Alloy, Intermetallics, 2016, 69, p 1–9CrossRef G.D. Sathiaraj, P.P. Bhattacharjee, C.W. Tsai, and J.W. Yeh, Effect of Heavy Cryo-Rolling on the Evolution of Microstructure and Texture during Annealing of Equiatomic CoCrFeMnNi High Entropy Alloy, Intermetallics, 2016, 69, p 1–9CrossRef
20.
Zurück zum Zitat V. Maier-Kiener, B. Schuh, E.P. George, H. Clemens, and A. Hohenwarter, Nanoindentation Testing as a Powerful Screening Tool for Assessing Phase Stability of Nanocrystalline High-Entropy Alloys, Mater. Des., 2017, 115, p 479–485CrossRef V. Maier-Kiener, B. Schuh, E.P. George, H. Clemens, and A. Hohenwarter, Nanoindentation Testing as a Powerful Screening Tool for Assessing Phase Stability of Nanocrystalline High-Entropy Alloys, Mater. Des., 2017, 115, p 479–485CrossRef
21.
Zurück zum Zitat N.D. Stepanov, D.G. Shaysultanov, NYu Yurchenko, S.V. Zherebtsov, A.N. Ladygin, G.A. Salishchev, and M.A. Tikhonovsky, High Temperature Deformation Behavior and Dynamic Recrystallization in CoCrFeNiMn High Entropy Alloy, Mater. Sci. Eng. A, 2015, 636, p 188-195CrossRef N.D. Stepanov, D.G. Shaysultanov, NYu Yurchenko, S.V. Zherebtsov, A.N. Ladygin, G.A. Salishchev, and M.A. Tikhonovsky, High Temperature Deformation Behavior and Dynamic Recrystallization in CoCrFeNiMn High Entropy Alloy, Mater. Sci. Eng. A, 2015, 636, p 188-195CrossRef
22.
Zurück zum Zitat V.I. Kyryliv, Improvement of the Wear Resistance of Medium-Carbon Steel by Nanodispersion of Surface Layers, Mater. Sci., 2012, 48, p 119–123CrossRef V.I. Kyryliv, Improvement of the Wear Resistance of Medium-Carbon Steel by Nanodispersion of Surface Layers, Mater. Sci., 2012, 48, p 119–123CrossRef
23.
Zurück zum Zitat M. Kerr and N. Chawla, Creep Deformation Behavior of Sn-3.5Ag Solder/Cu Couple at Small Length Scales, Acta Mater., 2004, 52, p 4527–4535CrossRef M. Kerr and N. Chawla, Creep Deformation Behavior of Sn-3.5Ag Solder/Cu Couple at Small Length Scales, Acta Mater., 2004, 52, p 4527–4535CrossRef
24.
Zurück zum Zitat Y. Ma, G.J. Peng, D.H. Wen, and T.H. Zhang, Nanoindentation Creep Behavior in a CoCrFeCuNi High-Entropy Alloy Film with Two Different Structure States, Mater. Sci. Eng. A, 2015, 621, p 111–117CrossRef Y. Ma, G.J. Peng, D.H. Wen, and T.H. Zhang, Nanoindentation Creep Behavior in a CoCrFeCuNi High-Entropy Alloy Film with Two Different Structure States, Mater. Sci. Eng. A, 2015, 621, p 111–117CrossRef
25.
Zurück zum Zitat L.J. Zhang, P.F. Yu, H. Cheng, H. Zhang, H.Y. Diao, Y.Z. Shi, B.L. Chen, P.Y. Chen, R. Feng, J. Bai, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li, and R.P. Liu, Nanoindentation Creep Behavior of an Al0.3CoCrFeNi High-Entropy Alloy, Metall. Mater. Trans. A, 2016, 47, p 5871–5875CrossRef L.J. Zhang, P.F. Yu, H. Cheng, H. Zhang, H.Y. Diao, Y.Z. Shi, B.L. Chen, P.Y. Chen, R. Feng, J. Bai, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li, and R.P. Liu, Nanoindentation Creep Behavior of an Al0.3CoCrFeNi High-Entropy Alloy, Metall. Mater. Trans. A, 2016, 47, p 5871–5875CrossRef
26.
Zurück zum Zitat C.L. Wang, M. Zhang, and T.G. Nieh, Nanoindentation Creep of Nanocrystalline Nickel at Elevated Temperatures, J. Phys. D Appl. Phys., 2009, 42, p 115405CrossRef C.L. Wang, M. Zhang, and T.G. Nieh, Nanoindentation Creep of Nanocrystalline Nickel at Elevated Temperatures, J. Phys. D Appl. Phys., 2009, 42, p 115405CrossRef
27.
Zurück zum Zitat X.Y. Wang, P. Gong, L. Deng, J.S. Jin, S.B. Wang, and P. Zhou, Nanoindentation Study on the Room Temperature Creep Characteristics of a Senary Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 High Entropy Bulk Metallic Glass, J. Non-Crys. Solids, 2017, 470, p 27–37CrossRef X.Y. Wang, P. Gong, L. Deng, J.S. Jin, S.B. Wang, and P. Zhou, Nanoindentation Study on the Room Temperature Creep Characteristics of a Senary Ti16.7Zr16.7Hf16.7Cu16.7Ni16.7Be16.7 High Entropy Bulk Metallic Glass, J. Non-Crys. Solids, 2017, 470, p 27–37CrossRef
28.
Zurück zum Zitat P. Gong, J.S. Jin, L. Deng, S.B. Wang, J.L. Gu, K.F. Yao, and X.Y. Wang, Room Temperature Nanoindentation Creep Behavior of TiZrHfBeCu(Ni) High Entropy Bulk Metallic Glasses, Mater. Sci. Eng. A, 2017, 688, p 174–179CrossRef P. Gong, J.S. Jin, L. Deng, S.B. Wang, J.L. Gu, K.F. Yao, and X.Y. Wang, Room Temperature Nanoindentation Creep Behavior of TiZrHfBeCu(Ni) High Entropy Bulk Metallic Glasses, Mater. Sci. Eng. A, 2017, 688, p 174–179CrossRef
29.
Zurück zum Zitat F.C. Li, J. Gu, M. Song, S. Ni, and S.F. Guo, The Evolution of Local Mechanical Properties of Bulk Metallic Glasses Caused by Structural Inhomogeneity, J. Alloy. Compd., 2014, 591, p 315–319CrossRef F.C. Li, J. Gu, M. Song, S. Ni, and S.F. Guo, The Evolution of Local Mechanical Properties of Bulk Metallic Glasses Caused by Structural Inhomogeneity, J. Alloy. Compd., 2014, 591, p 315–319CrossRef
30.
Zurück zum Zitat P.F. Yu, H. Cheng, L.J. Zhang, H. Zhang, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li, and R.P. Liu, Effects of High Pressure Torsion on Microstructures and Properties of an Al0.1CoCrFeNi High-Entropy Alloy, Mater. Sci. Eng. A, 2016, 655, p 283–291CrossRef P.F. Yu, H. Cheng, L.J. Zhang, H. Zhang, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li, and R.P. Liu, Effects of High Pressure Torsion on Microstructures and Properties of an Al0.1CoCrFeNi High-Entropy Alloy, Mater. Sci. Eng. A, 2016, 655, p 283–291CrossRef
31.
Zurück zum Zitat C. Zhu, Z.P. Lu, and T.G. Nieh, Incipient Plasticity and Dislocation Nucleation of FeCoCrNiMn High-Entropy Alloy, Acta Mater., 2013, 61, p 2993–3001CrossRef C. Zhu, Z.P. Lu, and T.G. Nieh, Incipient Plasticity and Dislocation Nucleation of FeCoCrNiMn High-Entropy Alloy, Acta Mater., 2013, 61, p 2993–3001CrossRef
32.
Zurück zum Zitat M. Komarasamy, N. Kumar, R.S. Mishra, and P.K. Liaw, Anomalies in the Deformation Mechanism and Kinetics of Coarse-Grained High Entropy Alloy, Mater. Sci. Eng. A, 2016, 654, p 256–263CrossRef M. Komarasamy, N. Kumar, R.S. Mishra, and P.K. Liaw, Anomalies in the Deformation Mechanism and Kinetics of Coarse-Grained High Entropy Alloy, Mater. Sci. Eng. A, 2016, 654, p 256–263CrossRef
33.
Zurück zum Zitat K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero-Sesin, and Z. Horita, Influence of Dislocation–Solute Atom Interactions and Stacking Fault Energy on Grain Size of Single-Phase Alloys after Severe Plastic Deformation using High-Pressure Torsion, Acta Mater., 2013, 69, p 68–77CrossRef K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero-Sesin, and Z. Horita, Influence of Dislocation–Solute Atom Interactions and Stacking Fault Energy on Grain Size of Single-Phase Alloys after Severe Plastic Deformation using High-Pressure Torsion, Acta Mater., 2013, 69, p 68–77CrossRef
34.
Zurück zum Zitat W.Q. Wu, M. Song, S. Ni, J.S. Wang, Y. Liu, B. Liu, and X.Z. Liao, Dual Mechanisms of Grain Refinement in a FeCoCrNi High-Entropy Alloy Processed by High-Pressure Torsion, Sci. Rep., 2017, 7, p 46720CrossRef W.Q. Wu, M. Song, S. Ni, J.S. Wang, Y. Liu, B. Liu, and X.Z. Liao, Dual Mechanisms of Grain Refinement in a FeCoCrNi High-Entropy Alloy Processed by High-Pressure Torsion, Sci. Rep., 2017, 7, p 46720CrossRef
35.
Zurück zum Zitat F.C. Li, M. Song, S. Ni, S.F. Guo, and X.Z. Liao, Correlation between Hardness and Shear Banding of Metallic Glasses under Nanoindentation, Mater. Sci. Eng. A, 2016, 657, p 38–42CrossRef F.C. Li, M. Song, S. Ni, S.F. Guo, and X.Z. Liao, Correlation between Hardness and Shear Banding of Metallic Glasses under Nanoindentation, Mater. Sci. Eng. A, 2016, 657, p 38–42CrossRef
36.
Zurück zum Zitat W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 2011, 7, p 1564–1583CrossRef W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 2011, 7, p 1564–1583CrossRef
37.
Zurück zum Zitat L. Tian, Z.M. Jiao, G.Z. Yuan, S.G. Ma, Z.H. Wang, H.J. Yang, Y. Zhang, and J.W. Qiao, Effect of Strain Rate on Deformation Behavior of AlCoCrFeNi High-Entropy Alloy by Nanoindentation, J. Mater. Eng. Perform., 2016, 25, p 2255–2260CrossRef L. Tian, Z.M. Jiao, G.Z. Yuan, S.G. Ma, Z.H. Wang, H.J. Yang, Y. Zhang, and J.W. Qiao, Effect of Strain Rate on Deformation Behavior of AlCoCrFeNi High-Entropy Alloy by Nanoindentation, J. Mater. Eng. Perform., 2016, 25, p 2255–2260CrossRef
38.
Zurück zum Zitat F.C. Li, Y. Xie, M. Song, S. Ni, S.F. Guo, and X.Z. Liao, A Detailed Appraisal of the Stress Exponent used for Characterizing Creep Behavior in Metallic Glasses, Mater. Sci. Eng. A, 2016, 654, p 53–59CrossRef F.C. Li, Y. Xie, M. Song, S. Ni, S.F. Guo, and X.Z. Liao, A Detailed Appraisal of the Stress Exponent used for Characterizing Creep Behavior in Metallic Glasses, Mater. Sci. Eng. A, 2016, 654, p 53–59CrossRef
39.
Zurück zum Zitat Z.J. Wang, S. Guo, Q. Wang, Z.Y. Liu, J.C. Wang, Y. Yang, and C.T. Liu, Nanoindentation Characterized Initial Creep Behavior of a High-Entropy-Based Alloy CoFeNi, Intermetallics, 2014, 53, p 183–186CrossRef Z.J. Wang, S. Guo, Q. Wang, Z.Y. Liu, J.C. Wang, Y. Yang, and C.T. Liu, Nanoindentation Characterized Initial Creep Behavior of a High-Entropy-Based Alloy CoFeNi, Intermetallics, 2014, 53, p 183–186CrossRef
40.
Zurück zum Zitat T.G. Langdon, Grain Boundary Sliding Revisited: Developments in Sliding over Four Decades, J. Mater. Sci., 2006, 41, p 597–609CrossRef T.G. Langdon, Grain Boundary Sliding Revisited: Developments in Sliding over Four Decades, J. Mater. Sci., 2006, 41, p 597–609CrossRef
41.
Zurück zum Zitat A.H. Chokshi, High Temperature Deformation in Fine Grained High Entropy Alloys, Mater. Chem. Phys., 2018, 210, p 152–161CrossRef A.H. Chokshi, High Temperature Deformation in Fine Grained High Entropy Alloys, Mater. Chem. Phys., 2018, 210, p 152–161CrossRef
42.
Zurück zum Zitat B. Wang, H.Y. He, M. Naeem, S. Lan, S. Harjo, T. Kawasaki, Y.X. Nie, H.W. Kui, T. Ungár, D. Ma, A.D. Stoica, Q. Li, Y.B. Ke, C.T. Liu, and X.L. Wang, Deformation of CoCrFeNi High Entropy Alloy at Large Strain, Scripta Mater., 2018, 155, p 54–57CrossRef B. Wang, H.Y. He, M. Naeem, S. Lan, S. Harjo, T. Kawasaki, Y.X. Nie, H.W. Kui, T. Ungár, D. Ma, A.D. Stoica, Q. Li, Y.B. Ke, C.T. Liu, and X.L. Wang, Deformation of CoCrFeNi High Entropy Alloy at Large Strain, Scripta Mater., 2018, 155, p 54–57CrossRef
Metadaten
Titel
Nanoindentation Creep Behavior of CoCrFeNiMn High-Entropy Alloy under Different High-Pressure Torsion Deformations
verfasst von
P. F. Zhou
D. H. Xiao
G. Li
M. Song
Publikationsdatum
08.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04092-1

Weitere Artikel der Ausgabe 5/2019

Journal of Materials Engineering and Performance 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.