Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2019

28.05.2019

Microstructure Characteristics and Comparative Analysis of Constitutive Models for Flow Stress Prediction of Inconel 718 Alloy

verfasst von: Gauri Mahalle, Nitin Kotkunde, Amit Kumar Gupta, R. Sujith, Swadesh Kumar Singh, Y. C. Lin

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An accurate constitutive model is essential for analyzing deformation behavior of material and reliable numerical simulations in metal forming processes. In this study, hot tensile tests of Inconel 718 alloy have been conducted over a wide range of temperatures (300-973 K at an interval of 100 K), strains (0.01-0.3 at an interval of 0.01) and quasi-static strain rates (0.0001, 0.001, 0.01 s−1). Flow stress behavior is significantly affected by test temperatures and strain rates. Microstructure characteristics of deformed test specimens have been examined using scanning electron microscope and electron backscatter diffraction (EBSD). The fractography study revealed that fracture is mix-mode type, i.e., ductile and brittle. Subsequently, EBSD analysis shown that dynamic recrystallization mechanism is more pronounced at a higher temperature. Furthermore, four constitutive models, namely modified Cowper–Symonds, modified Johnson Cook, modified Zerillie-Armstrong and integrated Johnson Cook–Zerillie-Armstrong (JC-ZA) models have been investigated for flow stress prediction. Capability of models has been evaluated based on the correlation coefficient (R), average absolute error (Δ) and its standard deviation (δ). Accurate prediction of flow stress behavior is found by integrated JC-ZA model with R = 0.9873, Δ = 2.44 and δ = 4.08%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Special Metals, ‘INCONEL Alloy 718’, 2007, doi:SMC-066 Special Metals, ‘INCONEL Alloy 718’, 2007, doi:SMC-066
2.
Zurück zum Zitat R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge University Press, New York, 2006)CrossRef R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge University Press, New York, 2006)CrossRef
3.
Zurück zum Zitat R.E. Schafrik, D.D. Ward, and J.R. Groh, Application of Alloy 718 in GE Aircraft Engines: Past, Present and Next Five Years, International symposium; 5th, Superalloys; Superalloys 718, 625, 706 Var. Deriv. Minerals, Metals, and Materials Society, (Warrendale, PA, 2001) R.E. Schafrik, D.D. Ward, and J.R. Groh, Application of Alloy 718 in GE Aircraft Engines: Past, Present and Next Five Years, International symposium; 5th, Superalloys; Superalloys 718, 625, 706 Var. Deriv. Minerals, Metals, and Materials Society, (Warrendale, PA, 2001)
4.
Zurück zum Zitat Y.C. Lin, J. Deng, Y.Q. Jiang, D.X. Wen, and G. Liu, Effects of Initial δ Phase on Hot Tensile Deformation Behaviors and Fracture Characteristics of a Typical Ni-Based Superalloy, Mater. Sci. Eng. A, 2014, 598, p 251–262CrossRef Y.C. Lin, J. Deng, Y.Q. Jiang, D.X. Wen, and G. Liu, Effects of Initial δ Phase on Hot Tensile Deformation Behaviors and Fracture Characteristics of a Typical Ni-Based Superalloy, Mater. Sci. Eng. A, 2014, 598, p 251–262CrossRef
5.
Zurück zum Zitat P. Zhang, C. Hu, C. Gang Ding, Q. Zhu, and H. Yong Qin, Plastic Deformation Behavior and Processing Maps of a Ni-Based Superalloy, Mater. Des., 2015, 65, p 575–584CrossRef P. Zhang, C. Hu, C. Gang Ding, Q. Zhu, and H. Yong Qin, Plastic Deformation Behavior and Processing Maps of a Ni-Based Superalloy, Mater. Des., 2015, 65, p 575–584CrossRef
6.
Zurück zum Zitat Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32(4), p 1733–1759CrossRef Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32(4), p 1733–1759CrossRef
7.
Zurück zum Zitat M. Alves, Material Constitutive Law for Large Strains and Strain Rates, J. Eng. Mech., 2000, 126, p 215–218CrossRef M. Alves, Material Constitutive Law for Large Strains and Strain Rates, J. Eng. Mech., 2000, 126, p 215–218CrossRef
8.
Zurück zum Zitat G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21(1), p 31–48CrossRef G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21(1), p 31–48CrossRef
9.
Zurück zum Zitat G. Chen, L. Chen, G. Zhao, C. Zhang, and W. Cui, Microstructure Analysis of an Al-Zn-Mg Alloy during Porthole Die Extrusion Based on Modeling of Constitutive Equation and Dynamic Recrystallization, J. Alloys Compd., 2017, 710, p 80–91CrossRef G. Chen, L. Chen, G. Zhao, C. Zhang, and W. Cui, Microstructure Analysis of an Al-Zn-Mg Alloy during Porthole Die Extrusion Based on Modeling of Constitutive Equation and Dynamic Recrystallization, J. Alloys Compd., 2017, 710, p 80–91CrossRef
10.
Zurück zum Zitat H. Zhang, W. Wen, and H. Cui, Behaviors of IC10 Alloy over a Wide Range of Strain Rates and Temperatures: Experiments and Modeling, Mater. Sci. Eng. A, 2009, 504, p 99–103CrossRef H. Zhang, W. Wen, and H. Cui, Behaviors of IC10 Alloy over a Wide Range of Strain Rates and Temperatures: Experiments and Modeling, Mater. Sci. Eng. A, 2009, 504, p 99–103CrossRef
11.
Zurück zum Zitat Y.C. Lin, X.M. Chen, and G. Liu, A Modified Johnson-Cook Model for Tensile Behaviors of Typical High-Strength Alloy Steel, Mater. Sci. Eng. A, 2010, 527(26), p 6980–6986CrossRef Y.C. Lin, X.M. Chen, and G. Liu, A Modified Johnson-Cook Model for Tensile Behaviors of Typical High-Strength Alloy Steel, Mater. Sci. Eng. A, 2010, 527(26), p 6980–6986CrossRef
12.
Zurück zum Zitat F.J. Zerilli and R.W. Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61, p 1816–1825CrossRef F.J. Zerilli and R.W. Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61, p 1816–1825CrossRef
13.
Zurück zum Zitat W.-S. Lee and C.-Y. Liu, The Effects of Temperature and Strain Rate on the Dynamic Flow Behaviour of Different Steels, Mater. Sci. Eng. A, 2006, 426(1–2), p 101–113CrossRef W.-S. Lee and C.-Y. Liu, The Effects of Temperature and Strain Rate on the Dynamic Flow Behaviour of Different Steels, Mater. Sci. Eng. A, 2006, 426(1–2), p 101–113CrossRef
14.
Zurück zum Zitat D. Samantaray, S. Mandal, U. Borah, A.K. Bhaduri, and P.V. Sivaprasad, A Thermo-Viscoplastic Constitutive Model to Predict Elevated-Temperature Flow Behaviour in a Titanium-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 526(1–2), p 1–6CrossRef D. Samantaray, S. Mandal, U. Borah, A.K. Bhaduri, and P.V. Sivaprasad, A Thermo-Viscoplastic Constitutive Model to Predict Elevated-Temperature Flow Behaviour in a Titanium-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 526(1–2), p 1–6CrossRef
15.
Zurück zum Zitat L. Chen, G. Zhao, and J. Yu, Hot Deformation Behavior and Constitutive Modeling of Homogenized 6026 Aluminum Alloy, Mater. Des., 2015, 74, p 25–35CrossRef L. Chen, G. Zhao, and J. Yu, Hot Deformation Behavior and Constitutive Modeling of Homogenized 6026 Aluminum Alloy, Mater. Des., 2015, 74, p 25–35CrossRef
16.
Zurück zum Zitat Y.C. Lin, D.X. Wen, J. Deng, G. Liu, and J. Chen, Constitutive Models for High-Temperature Flow Behaviors of a Ni-Based Superalloy, Mater. Des., 2014, 47, p 115–123CrossRef Y.C. Lin, D.X. Wen, J. Deng, G. Liu, and J. Chen, Constitutive Models for High-Temperature Flow Behaviors of a Ni-Based Superalloy, Mater. Des., 2014, 47, p 115–123CrossRef
17.
Zurück zum Zitat Y.C. Lin, K.-K. Li, H.-B. Li, J. Chen, X.-M. Chen, and D.-X. Wen, New Constitutive Model for High-Temperature Deformation Behavior of Inconel 718 Superalloy, Mater. Des., 2015, 74, p 108–118CrossRef Y.C. Lin, K.-K. Li, H.-B. Li, J. Chen, X.-M. Chen, and D.-X. Wen, New Constitutive Model for High-Temperature Deformation Behavior of Inconel 718 Superalloy, Mater. Des., 2015, 74, p 108–118CrossRef
18.
Zurück zum Zitat B. Li, Y. Du, and Z. Peng, Investigation on the Hot Deformation Characteristics of Ni-Cr-Fe-Ti Alloy, Vacuum, 2018, 157, p 299–305CrossRef B. Li, Y. Du, and Z. Peng, Investigation on the Hot Deformation Characteristics of Ni-Cr-Fe-Ti Alloy, Vacuum, 2018, 157, p 299–305CrossRef
19.
Zurück zum Zitat A. Iturbe, E. Giraud, E. Hormaetxe, A. Garay, G. Germain, K. Ostolaza, and P.J. Arrazola, Mechanical Characterization and Modelling of Inconel 718 Material Behavior for Machining Process Assessment, Mater. Sci. Eng. A, 2017, 682, p 441–453CrossRef A. Iturbe, E. Giraud, E. Hormaetxe, A. Garay, G. Germain, K. Ostolaza, and P.J. Arrazola, Mechanical Characterization and Modelling of Inconel 718 Material Behavior for Machining Process Assessment, Mater. Sci. Eng. A, 2017, 682, p 441–453CrossRef
20.
Zurück zum Zitat G.E. Dieter and D. Bacon, Mechanical Metallurgy SI, Metric edn. (McGraw-Hill Book Company, London, 1988) G.E. Dieter and D. Bacon, Mechanical Metallurgy SI, Metric edn. (McGraw-Hill Book Company, London, 1988)
21.
Zurück zum Zitat P. Rodriguez, Serrated Plastic Flow, Bull. Mater. Sci., 1984, 6(4), p 653–663CrossRef P. Rodriguez, Serrated Plastic Flow, Bull. Mater. Sci., 1984, 6(4), p 653–663CrossRef
22.
Zurück zum Zitat Y.C. Lin, H. Yang, Y. Xin, and C.Z. Li, Effects of Initial Microstructures on Serrated Flow Features and Fracture Mechanisms of a Nickel-Based Superalloy, Mater. Charact., 2018, 144, p 9–21CrossRef Y.C. Lin, H. Yang, Y. Xin, and C.Z. Li, Effects of Initial Microstructures on Serrated Flow Features and Fracture Mechanisms of a Nickel-Based Superalloy, Mater. Charact., 2018, 144, p 9–21CrossRef
23.
Zurück zum Zitat D. Kuhlmann-Wilsdorf, Theory of Plastic Deformation: Properties of Low Energy Dislocation Structures. Mater. Sci. Eng. A 113, 1–41 (1989)CrossRef D. Kuhlmann-Wilsdorf, Theory of Plastic Deformation: Properties of Low Energy Dislocation Structures. Mater. Sci. Eng. A 113, 1–41 (1989)CrossRef
24.
Zurück zum Zitat N. Nayan, N.P. Gurao, S.V.S. Narayana Murty, A.K. Jha, B. Pant, and K.M. George, Microstructure and Micro-Texture Evolution during Large Strain Deformation of Inconel Alloy IN718, Mater. Charact., 2015, 110, p 241–256CrossRef N. Nayan, N.P. Gurao, S.V.S. Narayana Murty, A.K. Jha, B. Pant, and K.M. George, Microstructure and Micro-Texture Evolution during Large Strain Deformation of Inconel Alloy IN718, Mater. Charact., 2015, 110, p 241–256CrossRef
25.
Zurück zum Zitat S.M. Hussaini, S.K. Singh, and A.K. Gupta, Formability of Austenitic Stainless Steel 316 Sheet in Dynamic Strain Aging Regime, Acta Metall. Slovaca, 2014, 20(1), p 71–81CrossRef S.M. Hussaini, S.K. Singh, and A.K. Gupta, Formability of Austenitic Stainless Steel 316 Sheet in Dynamic Strain Aging Regime, Acta Metall. Slovaca, 2014, 20(1), p 71–81CrossRef
26.
Zurück zum Zitat Y.V.R.K. Prasad, K.P. Rao, and S. Sasidhara, Hot Working Guide—A Compendium of Processing Maps (ASM International, 2015) Y.V.R.K. Prasad, K.P. Rao, and S. Sasidhara, Hot Working Guide—A Compendium of Processing Maps (ASM International, 2015)
27.
Zurück zum Zitat S.S. Panicker, H.G. Singh, S.K. Panda, and R. Dashwood, Characterization of Tensile Properties, Limiting Strains, and Deep Drawing Behavior of AA5754-H22 Sheet at Elevated Temperature, J. Mater. Eng. Perform., 2015, 24(11), p 4267–4282CrossRef S.S. Panicker, H.G. Singh, S.K. Panda, and R. Dashwood, Characterization of Tensile Properties, Limiting Strains, and Deep Drawing Behavior of AA5754-H22 Sheet at Elevated Temperature, J. Mater. Eng. Perform., 2015, 24(11), p 4267–4282CrossRef
28.
Zurück zum Zitat Y. Tian, L. Huang, H. Ma, and J. Li, Establishment and Comparison of Four Constitutive Models of 5A02 Aluminium Alloy in High-Velocity Forming Process, Mater. Des., 2014, 54, p 587–597CrossRef Y. Tian, L. Huang, H. Ma, and J. Li, Establishment and Comparison of Four Constitutive Models of 5A02 Aluminium Alloy in High-Velocity Forming Process, Mater. Des., 2014, 54, p 587–597CrossRef
29.
Zurück zum Zitat N. Kotkunde, H.N. Krishnamurthy, P. Puranik, A.K. Gupta, and S.K. Singh, Microstructure Study and Constitutive Modeling of Ti-6Al-4V Alloy at Elevated Temperatures, Mater. Des., 2014, 54, p 96–103CrossRef N. Kotkunde, H.N. Krishnamurthy, P. Puranik, A.K. Gupta, and S.K. Singh, Microstructure Study and Constitutive Modeling of Ti-6Al-4V Alloy at Elevated Temperatures, Mater. Des., 2014, 54, p 96–103CrossRef
30.
Zurück zum Zitat D.G. Tari and M.J. Worswick, Journal of Materials Processing Technology Elevated Temperature Constitutive Behavior and Simulation of Warm Forming of AZ31B, J. Mater. Process. Technol., 2015, 221, p 40–55CrossRef D.G. Tari and M.J. Worswick, Journal of Materials Processing Technology Elevated Temperature Constitutive Behavior and Simulation of Warm Forming of AZ31B, J. Mater. Process. Technol., 2015, 221, p 40–55CrossRef
31.
Zurück zum Zitat D. Samantaray, S. Mandal, and A.K. Bhaduri, A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-Type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr-1Mo Steel, Comput. Mater. Sci., 2009, 47, p 568–576CrossRef D. Samantaray, S. Mandal, and A.K. Bhaduri, A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-Type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr-1Mo Steel, Comput. Mater. Sci., 2009, 47, p 568–576CrossRef
32.
Zurück zum Zitat J. Che, T. Zhou, Z. Liang, J. Wu, and X. Wang, An Integrated Johnson-Cook and Zerilli-Armstrong Model for Material Flow Behavior of Ti-6Al-4V at High Strain Rate and Elevated Temperature, J. Braz. Soc. Mech. Sci. Eng., 2018, 40(253), p 1–10 J. Che, T. Zhou, Z. Liang, J. Wu, and X. Wang, An Integrated Johnson-Cook and Zerilli-Armstrong Model for Material Flow Behavior of Ti-6Al-4V at High Strain Rate and Elevated Temperature, J. Braz. Soc. Mech. Sci. Eng., 2018, 40(253), p 1–10
33.
Zurück zum Zitat Y.C. Lin and X.M. Chen, A Combined Johnson-Cook and Zerilli-Armstrong Model for Hot Compressed Typical High-Strength Alloy Steel, Comput. Mater. Sci., 2010, 49(3), p 628–633CrossRef Y.C. Lin and X.M. Chen, A Combined Johnson-Cook and Zerilli-Armstrong Model for Hot Compressed Typical High-Strength Alloy Steel, Comput. Mater. Sci., 2010, 49(3), p 628–633CrossRef
34.
Zurück zum Zitat L. Chen, G. Zhao, J. Yu, and W. Zhang, Constitutive Analysis of Homogenized 7005 Aluminum Alloy at Evaluated Temperature for Extrusion Process, Mater. Des., 2015, 66, p 129–136CrossRef L. Chen, G. Zhao, J. Yu, and W. Zhang, Constitutive Analysis of Homogenized 7005 Aluminum Alloy at Evaluated Temperature for Extrusion Process, Mater. Des., 2015, 66, p 129–136CrossRef
35.
Zurück zum Zitat L. Chen, G. Zhao, J. Gong, X. Chen, and M. Chen, Hot Deformation Behaviors and Processing Maps of 2024 Aluminum Alloy in As-Cast and Homogenized States, J. Mater. Eng. Perform., 2015, 24, p 5002–5012CrossRef L. Chen, G. Zhao, J. Gong, X. Chen, and M. Chen, Hot Deformation Behaviors and Processing Maps of 2024 Aluminum Alloy in As-Cast and Homogenized States, J. Mater. Eng. Perform., 2015, 24, p 5002–5012CrossRef
36.
Zurück zum Zitat A. Mitchell, The Precipitation of Primary Carbides in IN718 and Its Relation to Solidification Conditions, Superalloys 718, 625, 706 Var. Deriv., 2005, 20, p 299–310CrossRef A. Mitchell, The Precipitation of Primary Carbides in IN718 and Its Relation to Solidification Conditions, Superalloys 718, 625, 706 Var. Deriv., 2005, 20, p 299–310CrossRef
Metadaten
Titel
Microstructure Characteristics and Comparative Analysis of Constitutive Models for Flow Stress Prediction of Inconel 718 Alloy
verfasst von
Gauri Mahalle
Nitin Kotkunde
Amit Kumar Gupta
R. Sujith
Swadesh Kumar Singh
Y. C. Lin
Publikationsdatum
28.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04116-w

Weitere Artikel der Ausgabe 6/2019

Journal of Materials Engineering and Performance 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.