Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2021

19.04.2021

An Experimental Study on Mechanical, Thermal and Flame-Retardant Properties of 3D-Printed Glass-Fiber-Reinforced Polymer Composites

verfasst von: Ashish R. Prajapati, Harshit K. Dave, Harit K. Raval

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Usage of 3D printing is escalating in many industries due to its ability to manufacture complex geometries. Fused deposition modeling (FDM) is one of the most common 3D printing processes, and currently, several modifications have been applied to the FDM process where it can manufacture fiber-reinforced polymer composites (FRPC). FRPC made by FDM has attracted particular attention due to its improved properties by introducing fiber reinforcements into the polymer matrix. However, the detailed study of different thermal and mechanical properties of this 3D-printed FRPC is still limited. The present investigation aims to analyze the mechanical, thermal and flame-retardant properties of FRPC manufactured by the FDM process. Polymer composite filament (a mixture of nylon polymer and short carbon fibers) is used as a matrix, while fiberglass and high strength high temperature fiberglass are used as a fiber reinforcement. MarkTwo® 3D-printer from Markforged has been used to 3D print the FRPC parts. The change in different mechanical properties, viz. tensile and impact of polymer composite matrix by adding different fibers, is studied. In addition to that, thermogravimetric analysis, x-ray diffraction and flammability test are also carried out to analyze the thermal properties of composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S.F. Kabir, K. Mathur, and A.F.M. Seyam, A Critical Review on 3D Printed Continuous Fiber-Reinforced Composites: History, Mechanism, Materials and Properties, Compos. Struct., 2020, 232, p 111476.CrossRef S.F. Kabir, K. Mathur, and A.F.M. Seyam, A Critical Review on 3D Printed Continuous Fiber-Reinforced Composites: History, Mechanism, Materials and Properties, Compos. Struct., 2020, 232, p 111476.CrossRef
2.
Zurück zum Zitat B. Brenken, E. Barocio, A. Favaloro, V. Kunc, and R.B. Pipes, Fused Filament Fabrication of Fiber-Reinforced Polymers: A Review, Addit. Manuf., 2018, 21, p 1–16. B. Brenken, E. Barocio, A. Favaloro, V. Kunc, and R.B. Pipes, Fused Filament Fabrication of Fiber-Reinforced Polymers: A Review, Addit. Manuf., 2018, 21, p 1–16.
3.
Zurück zum Zitat S.H.R. Sanei and D. Popescu, 3D-Printed Carbon Fiber Reinforced Polymer Composites: A Systematic Review, J. Compos. Sci., 2020, 4(3), p 98.CrossRef S.H.R. Sanei and D. Popescu, 3D-Printed Carbon Fiber Reinforced Polymer Composites: A Systematic Review, J. Compos. Sci., 2020, 4(3), p 98.CrossRef
4.
Zurück zum Zitat N. Van de Werken, H. Tekinalp, P. Khanbolouki, S. Ozcan, A. Williams, and M. Tehrani, Additively Manufactured Carbon Fiber-Reinforced Composites: State of the Art and Perspective, Addit. Manuf., 2020, 31, p 100962. N. Van de Werken, H. Tekinalp, P. Khanbolouki, S. Ozcan, A. Williams, and M. Tehrani, Additively Manufactured Carbon Fiber-Reinforced Composites: State of the Art and Perspective, Addit. Manuf., 2020, 31, p 100962.
5.
Zurück zum Zitat G.D. Goh, V. Dikshit, A.P. Nagalingam, G.L. Goh, S. Agarwala, S.L. Sing, J. Wei, and W.Y. Yeong, Characterization of Mechanical Properties and Fracture Mode of Additively Manufactured Carbon Fiber and Glass Fiber Reinforced Thermoplastics, Mater. Des., 2018, 137, p 79–89.CrossRef G.D. Goh, V. Dikshit, A.P. Nagalingam, G.L. Goh, S. Agarwala, S.L. Sing, J. Wei, and W.Y. Yeong, Characterization of Mechanical Properties and Fracture Mode of Additively Manufactured Carbon Fiber and Glass Fiber Reinforced Thermoplastics, Mater. Des., 2018, 137, p 79–89.CrossRef
6.
Zurück zum Zitat S.H. Sanei, A. Arndt, and R. Doles, Open Hole Tensile Testing of 3D Printed Continuous Carbon Fiber Reinforced Composites, J. Compos. Mater., 2020, 54(20), p 2687–2695.CrossRef S.H. Sanei, A. Arndt, and R. Doles, Open Hole Tensile Testing of 3D Printed Continuous Carbon Fiber Reinforced Composites, J. Compos. Mater., 2020, 54(20), p 2687–2695.CrossRef
7.
Zurück zum Zitat Z. Weng, J. Wang, T. Senthil, and L. Wu, Mechanical and Thermal Properties of ABS/Montmorillonite Nanocomposites for Fused Deposition Modeling 3D Printing, Mater. Des., 2016, 102, p 276–283.CrossRef Z. Weng, J. Wang, T. Senthil, and L. Wu, Mechanical and Thermal Properties of ABS/Montmorillonite Nanocomposites for Fused Deposition Modeling 3D Printing, Mater. Des., 2016, 102, p 276–283.CrossRef
8.
Zurück zum Zitat G. Liao, Z. Li, Y. Cheng, D. Xu, D. Zhu, S. Jiang, J. Guo, X. Chen, G. Xu, and Y. Zhu, Properties of Oriented Carbon Fiber/Polyamide 12 Composite Parts Fabricated by Fused Deposition Modeling, Mater. Des., 2018, 139, p 283–292.CrossRef G. Liao, Z. Li, Y. Cheng, D. Xu, D. Zhu, S. Jiang, J. Guo, X. Chen, G. Xu, and Y. Zhu, Properties of Oriented Carbon Fiber/Polyamide 12 Composite Parts Fabricated by Fused Deposition Modeling, Mater. Des., 2018, 139, p 283–292.CrossRef
9.
Zurück zum Zitat K. Chen, M. Jia, H. Sun, and P. Xue, Thermoplastic Reaction Injection Pultrusion for Continuous Glass Fiber-Reinforced Polyamide-6 Composites, Materials, 2019, 12(3), p 463.CrossRef K. Chen, M. Jia, H. Sun, and P. Xue, Thermoplastic Reaction Injection Pultrusion for Continuous Glass Fiber-Reinforced Polyamide-6 Composites, Materials, 2019, 12(3), p 463.CrossRef
10.
Zurück zum Zitat G. Fredi, A. Dorigato, and A. Pegoretti, Multifunctional Glass Fiber/Polyamide Composites with Thermal Energy Storage/Release Capability, Express Polym. Lett., 2018, 12(4), p 349–364.CrossRef G. Fredi, A. Dorigato, and A. Pegoretti, Multifunctional Glass Fiber/Polyamide Composites with Thermal Energy Storage/Release Capability, Express Polym. Lett., 2018, 12(4), p 349–364.CrossRef
11.
Zurück zum Zitat A. Hassan, N.M. Salleh, R. Yahya, and M.R. Sheikh, Fiber Length, Thermal, Mechanical, and Dynamic Mechanical Properties of Injection-Molded Glass-Fiber/Polyamide 6, 6: Plasticization Effect, J. Reinf. Plast. Compos., 2011, 30(6), p 488–498.CrossRef A. Hassan, N.M. Salleh, R. Yahya, and M.R. Sheikh, Fiber Length, Thermal, Mechanical, and Dynamic Mechanical Properties of Injection-Molded Glass-Fiber/Polyamide 6, 6: Plasticization Effect, J. Reinf. Plast. Compos., 2011, 30(6), p 488–498.CrossRef
12.
Zurück zum Zitat J.W. Cho and D.R. Paul, Nylon 6 Nanocomposites by Melt Compounding, Polymer, 2001, 42(3), p 1083–1094.CrossRef J.W. Cho and D.R. Paul, Nylon 6 Nanocomposites by Melt Compounding, Polymer, 2001, 42(3), p 1083–1094.CrossRef
13.
Zurück zum Zitat W. Guo, L. Jiajia, Z. Ping, S. Lei, W. Xin, and H. Yuan, Multi-functional Hydroxyapatite/Polyvinyl Alcohol Composite Aerogels with Self-cleaning, Superior Fire Resistance and Low Thermal Conductivity, Compos. Sci. Technol., 2018, 158, p 128–136.CrossRef W. Guo, L. Jiajia, Z. Ping, S. Lei, W. Xin, and H. Yuan, Multi-functional Hydroxyapatite/Polyvinyl Alcohol Composite Aerogels with Self-cleaning, Superior Fire Resistance and Low Thermal Conductivity, Compos. Sci. Technol., 2018, 158, p 128–136.CrossRef
14.
Zurück zum Zitat L.L. Wei, D.Y. Wang, H.B. Chen, L. Chen, X.L. Wang, and Y.Z. Wang, Effect of a Phosphorus-Containing Flame Retardant on the Thermal Properties and Ease of Ignition of Poly (Lactic Acid), Polym. Degrad. Stab., 2011, 96(9), p 1557–1561.CrossRef L.L. Wei, D.Y. Wang, H.B. Chen, L. Chen, X.L. Wang, and Y.Z. Wang, Effect of a Phosphorus-Containing Flame Retardant on the Thermal Properties and Ease of Ignition of Poly (Lactic Acid), Polym. Degrad. Stab., 2011, 96(9), p 1557–1561.CrossRef
15.
Zurück zum Zitat F. Liao, J. Yaqing, D. Xiu, C. Yu, L. Jiawei, and W. Xinlong, A Novel Efficient Polymeric Flame Retardant for Poly(Lactic Acid) (PLA): Synthesis and Its Effects on Flame Retardancy and Crystallization of PLA, Polym. Degrad. Stab., 2015, 120, p 251–261.CrossRef F. Liao, J. Yaqing, D. Xiu, C. Yu, L. Jiawei, and W. Xinlong, A Novel Efficient Polymeric Flame Retardant for Poly(Lactic Acid) (PLA): Synthesis and Its Effects on Flame Retardancy and Crystallization of PLA, Polym. Degrad. Stab., 2015, 120, p 251–261.CrossRef
16.
Zurück zum Zitat G. Tang, X. Huang, H. Ding, X. Wang, S. Jiang, K. Zhou, B. Wang, W. Yang, and Y. Hu, Combustion Properties and Thermal Degradation Behaviors of Biobased Polylactide Composites Filled with Calcium Hypophosphite, RSC Adv., 2014, 4(18), p 8985–8993.CrossRef G. Tang, X. Huang, H. Ding, X. Wang, S. Jiang, K. Zhou, B. Wang, W. Yang, and Y. Hu, Combustion Properties and Thermal Degradation Behaviors of Biobased Polylactide Composites Filled with Calcium Hypophosphite, RSC Adv., 2014, 4(18), p 8985–8993.CrossRef
17.
Zurück zum Zitat J.H. Koo, S. Lao, W. Ho, K. Ngyuen, J. Cheng, L. Pilato, and M. Ervin, Polyamide Nanocomposites for Selective Laser Sintering, in International Solid Freeform Fabrication Symposium, August, (Austin). 2006, p 392–409 J.H. Koo, S. Lao, W. Ho, K. Ngyuen, J. Cheng, L. Pilato, and M. Ervin, Polyamide Nanocomposites for Selective Laser Sintering, in International Solid Freeform Fabrication Symposium, August, (Austin). 2006, p 392–409
18.
Zurück zum Zitat M.A. Caminero, J.M. Chacón, I. García-Moreno, and G.P. Rodríguez, Impact Damage Resistance of 3D Printed Continuous Fibre Reinforced Thermoplastic Composites Using Fused Deposition Modelling, Compos. B. Eng., 2018, 148, p 93–103.CrossRef M.A. Caminero, J.M. Chacón, I. García-Moreno, and G.P. Rodríguez, Impact Damage Resistance of 3D Printed Continuous Fibre Reinforced Thermoplastic Composites Using Fused Deposition Modelling, Compos. B. Eng., 2018, 148, p 93–103.CrossRef
20.
Zurück zum Zitat A.N. Dickson, J.N. Barry, K.A. McDonnell, and D.P. Dowling, Fabrication of Continuous Carbon, Glass and Kevlar Fibre Reinforced Polymer Composites Using Additive Manufacturing, Addit. Manuf., 2017, 16, p 146–152. A.N. Dickson, J.N. Barry, K.A. McDonnell, and D.P. Dowling, Fabrication of Continuous Carbon, Glass and Kevlar Fibre Reinforced Polymer Composites Using Additive Manufacturing, Addit. Manuf., 2017, 16, p 146–152.
21.
Zurück zum Zitat G. Dong, Y. Tang, D. Li, and Y.F. Zhao, Mechanical Properties of Continuous Kevlar Fiber Reinforced Composites Fabricated by Fused Deposition Modeling Process, Procedia Manuf., 2018, 26, p 774–781.CrossRef G. Dong, Y. Tang, D. Li, and Y.F. Zhao, Mechanical Properties of Continuous Kevlar Fiber Reinforced Composites Fabricated by Fused Deposition Modeling Process, Procedia Manuf., 2018, 26, p 774–781.CrossRef
22.
Zurück zum Zitat F. Van Der Klift, Y. Koga, A. Todoroki, M. Ueda, Y. Hirano, and R. Matsuzaki, 3D printing of Continuous Carbon Fibre Reinforced Thermo-plastic (CFRTP) Tensile Test Specimens, Open J. Compos. Mater, 2016, 6(1), p 18–27.CrossRef F. Van Der Klift, Y. Koga, A. Todoroki, M. Ueda, Y. Hirano, and R. Matsuzaki, 3D printing of Continuous Carbon Fibre Reinforced Thermo-plastic (CFRTP) Tensile Test Specimens, Open J. Compos. Mater, 2016, 6(1), p 18–27.CrossRef
23.
Zurück zum Zitat O.A. González-Estrada, A. Pertuz and J.E. Quiroga Mendez, Evaluation of Tensile Properties and Damage of Continuous Fibre Reinforced 3D-Printed Parts, Key Eng. Mater., 2018, 774, p 161–166.CrossRef O.A. González-Estrada, A. Pertuz and J.E. Quiroga Mendez, Evaluation of Tensile Properties and Damage of Continuous Fibre Reinforced 3D-Printed Parts, Key Eng. Mater., 2018, 774, p 161–166.CrossRef
24.
Zurück zum Zitat A. Imeri, I. Fidan, M. Allen, and G. Perry, Effect of Fiber Orientation in Fatigue Properties of FRAM Components, Procedia Manuf., 2018, 26, p 892–899.CrossRef A. Imeri, I. Fidan, M. Allen, and G. Perry, Effect of Fiber Orientation in Fatigue Properties of FRAM Components, Procedia Manuf., 2018, 26, p 892–899.CrossRef
25.
Zurück zum Zitat H.A.L. Abadi, H.T. Thai, V. Paton-Cole, and V.I. Patel, Elastic Properties of 3D Printed Fibre-Reinforced Structures, Compos. Struct., 2018, 193, p 8–18.CrossRef H.A.L. Abadi, H.T. Thai, V. Paton-Cole, and V.I. Patel, Elastic Properties of 3D Printed Fibre-Reinforced Structures, Compos. Struct., 2018, 193, p 8–18.CrossRef
26.
Zurück zum Zitat L.G. Blok, M.L. Longana, H. Yu, and B.K. Woods, An Investigation into 3D Printing of Fibre Reinforced Thermoplastic Composites, Addit. Manuf., 2018, 22, p 176–186. L.G. Blok, M.L. Longana, H. Yu, and B.K. Woods, An Investigation into 3D Printing of Fibre Reinforced Thermoplastic Composites, Addit. Manuf., 2018, 22, p 176–186.
27.
Zurück zum Zitat J. Justo, L. Távara, L. García-Guzmán, and F. París, Characterization of 3D Printed Long Fibre Reinforced Composites, Compos. Struct., 2018, 185, p 537–548.CrossRef J. Justo, L. Távara, L. García-Guzmán, and F. París, Characterization of 3D Printed Long Fibre Reinforced Composites, Compos. Struct., 2018, 185, p 537–548.CrossRef
28.
Zurück zum Zitat H. Mei, Z. Ali, Y. Yan, I. Ali, and L. Cheng, Influence of Mixed Isotropic Fiber Angles and Hot Press on the Mechanical Properties of 3D Printed Composites, Addit. Manuf., 2019, 27, p 150–158. H. Mei, Z. Ali, Y. Yan, I. Ali, and L. Cheng, Influence of Mixed Isotropic Fiber Angles and Hot Press on the Mechanical Properties of 3D Printed Composites, Addit. Manuf., 2019, 27, p 150–158.
29.
Zurück zum Zitat G.W. Melenka, B.K. Cheung, J.S. Schofield, M.R. Dawson, and J.P. Carey, Evaluation and Prediction of the Tensile Properties Of Continuous Fiber-Reinforced 3D Printed Structures, Compos. Struct., 2016, 153, p 866–875.CrossRef G.W. Melenka, B.K. Cheung, J.S. Schofield, M.R. Dawson, and J.P. Carey, Evaluation and Prediction of the Tensile Properties Of Continuous Fiber-Reinforced 3D Printed Structures, Compos. Struct., 2016, 153, p 866–875.CrossRef
30.
Zurück zum Zitat X. Tian, T. Liu, C. Yang, Q. Wang, and D. Li, Interface and Performance of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites, Compos. Part A Appl. Sci. Manuf., 2016, 88, p 198–205.CrossRef X. Tian, T. Liu, C. Yang, Q. Wang, and D. Li, Interface and Performance of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites, Compos. Part A Appl. Sci. Manuf., 2016, 88, p 198–205.CrossRef
31.
Zurück zum Zitat M. Mohammadizadeh, A. Imeri, I. Fidan, and M. Elkelany, 3D Printed Fiber Reinforced Polymer Composites-Structural Analysis, Compos. B Eng., 2019, 175, p 107112.CrossRef M. Mohammadizadeh, A. Imeri, I. Fidan, and M. Elkelany, 3D Printed Fiber Reinforced Polymer Composites-Structural Analysis, Compos. B Eng., 2019, 175, p 107112.CrossRef
32.
33.
Zurück zum Zitat K. Sugiyama, R. Matsuzaki, A.V. Malakhov, A.N. Polilov, M. Ueda, A. Todoroki, and Y. Hirano, 3D Printing of Optimized Composites with Variable Fiber Volume Fraction and Stiffness Using Continuous Fiber, Compos. Sci. Technol., 2020, 186, p 107905.CrossRef K. Sugiyama, R. Matsuzaki, A.V. Malakhov, A.N. Polilov, M. Ueda, A. Todoroki, and Y. Hirano, 3D Printing of Optimized Composites with Variable Fiber Volume Fraction and Stiffness Using Continuous Fiber, Compos. Sci. Technol., 2020, 186, p 107905.CrossRef
34.
Zurück zum Zitat F. Ning, W. Cong, J. Qiu, J. Wei, and S. Wang, Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused Deposition Modeling, Compos. B Eng., 2015, 80, p 369–378.CrossRef F. Ning, W. Cong, J. Qiu, J. Wei, and S. Wang, Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused Deposition Modeling, Compos. B Eng., 2015, 80, p 369–378.CrossRef
35.
Zurück zum Zitat R.T.L. Ferreira, I.C. Amatte, T.A. Dutra, and D. Bürger, Experimental Characterization and Micrography of 3D Printed PLA and PLA Reinforced with Short Carbon Fibers, Compos. B Eng., 2017, 124, p 88–100.CrossRef R.T.L. Ferreira, I.C. Amatte, T.A. Dutra, and D. Bürger, Experimental Characterization and Micrography of 3D Printed PLA and PLA Reinforced with Short Carbon Fibers, Compos. B Eng., 2017, 124, p 88–100.CrossRef
36.
Zurück zum Zitat M.L. Shofner, K. Lozano, F.J. Rodríguez-Macías, and E.V. Barrera, Nanofiber-Reinforced Polymers Prepared by Fused Deposition Modeling, J. Appl. Polym. Sci., 2003, 89(11), p 3081–3090.CrossRef M.L. Shofner, K. Lozano, F.J. Rodríguez-Macías, and E.V. Barrera, Nanofiber-Reinforced Polymers Prepared by Fused Deposition Modeling, J. Appl. Polym. Sci., 2003, 89(11), p 3081–3090.CrossRef
37.
Zurück zum Zitat A.R.T. Perez, D.A. Roberson, and R.B. Wicker, Fracture Surface Analysis of 3D-Printed Tensile Specimens of Novel ABS-Based Materials, J. Fail. Anal. Prev., 2014, 14(3), p 343–353.CrossRef A.R.T. Perez, D.A. Roberson, and R.B. Wicker, Fracture Surface Analysis of 3D-Printed Tensile Specimens of Novel ABS-Based Materials, J. Fail. Anal. Prev., 2014, 14(3), p 343–353.CrossRef
38.
Zurück zum Zitat H.L. Tekinalp, V. Kunc, G.M. Velez-Garcia, C.E. Duty, L.J. Love, A.K. Naskar, C.A. Blue, and S. Ozcan, Highly Oriented Carbon Fiber–Polymer Composites Via Additive Manufacturing, Compos. Sci. Technol., 2014, 105, p 144–150.CrossRef H.L. Tekinalp, V. Kunc, G.M. Velez-Garcia, C.E. Duty, L.J. Love, A.K. Naskar, C.A. Blue, and S. Ozcan, Highly Oriented Carbon Fiber–Polymer Composites Via Additive Manufacturing, Compos. Sci. Technol., 2014, 105, p 144–150.CrossRef
39.
Zurück zum Zitat M. Mehrabanian and M. Nasr-Esfahani, HA/nylon 6, 6 Porous Scaffolds Fabricated by Salt-Leaching/Solvent Casting Technique: Effect of Nano-sized Filler Content on Scaffold Properties, Int. J. Nanomed., 2011, 6, p 1651–1659. M. Mehrabanian and M. Nasr-Esfahani, HA/nylon 6, 6 Porous Scaffolds Fabricated by Salt-Leaching/Solvent Casting Technique: Effect of Nano-sized Filler Content on Scaffold Properties, Int. J. Nanomed., 2011, 6, p 1651–1659.
40.
Zurück zum Zitat F. Kayaci, C. Ozgit-Akgun, I. Donmez, N. Biyikli, and T. Uyar, Polymer–Inorganic Core–Shell Nanofibers by Electrospinning and Atomic Layer Deposition: Flexible Nylon–ZnO Core–Shell Nanofiber Mats and Their Photocatalytic Activity, ACS Appl. Mater. Interfaces, 2012, 4(11), p 6185–6194.CrossRef F. Kayaci, C. Ozgit-Akgun, I. Donmez, N. Biyikli, and T. Uyar, Polymer–Inorganic Core–Shell Nanofibers by Electrospinning and Atomic Layer Deposition: Flexible Nylon–ZnO Core–Shell Nanofiber Mats and Their Photocatalytic Activity, ACS Appl. Mater. Interfaces, 2012, 4(11), p 6185–6194.CrossRef
41.
Zurück zum Zitat H.K. Dave, A.R. Prajapati, S.R. Rajpurohit, N.H. Patadiya, and H.K. Raval, Open Hole Tensile Testing of 3D Printed Parts Using In-House Fabricated PLA Filament, Rapid Prototyp. J., 2020, 6(1), p 21–31.CrossRef H.K. Dave, A.R. Prajapati, S.R. Rajpurohit, N.H. Patadiya, and H.K. Raval, Open Hole Tensile Testing of 3D Printed Parts Using In-House Fabricated PLA Filament, Rapid Prototyp. J., 2020, 6(1), p 21–31.CrossRef
42.
Zurück zum Zitat H. Mei, Z. Ali, I. Ali, and L. Cheng, Tailoring Strength and Modulus by 3D Printing Different Continuous Fibers and Filled Structures into Composites, Adv. Compos. Hybrid Mater., 2019, 2(2), p 312–319.CrossRef H. Mei, Z. Ali, I. Ali, and L. Cheng, Tailoring Strength and Modulus by 3D Printing Different Continuous Fibers and Filled Structures into Composites, Adv. Compos. Hybrid Mater., 2019, 2(2), p 312–319.CrossRef
43.
Zurück zum Zitat J. Naranjo-Lozada, H. Ahuett-Garza, P. Orta-Castañón, W.M. Verbeeten, and D. Sáiz-González, Tensile Properties and Failure Behavior of Chopped and Continuous Carbon Fiber Composites Produced by Additive Manufacturing, Addit. Manuf., 2019, 26, p 227–241. J. Naranjo-Lozada, H. Ahuett-Garza, P. Orta-Castañón, W.M. Verbeeten, and D. Sáiz-González, Tensile Properties and Failure Behavior of Chopped and Continuous Carbon Fiber Composites Produced by Additive Manufacturing, Addit. Manuf., 2019, 26, p 227–241.
Metadaten
Titel
An Experimental Study on Mechanical, Thermal and Flame-Retardant Properties of 3D-Printed Glass-Fiber-Reinforced Polymer Composites
verfasst von
Ashish R. Prajapati
Harshit K. Dave
Harit K. Raval
Publikationsdatum
19.04.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05731-2

Weitere Artikel der Ausgabe 7/2021

Journal of Materials Engineering and Performance 7/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.