Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2021

17.05.2021

Melt Pool and Heat Treatment Optimization for the Fabrication of High-Strength and High-Toughness Additively Manufactured 4340 Steel

verfasst von: Matthew A. Ryder, Colt J. Montgomery, Michael J. Brand, John S. Carpenter, Peggy E. Jones, Anthony G. Spangenberger, Diana A. Lados

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Additively manufactured (AM) components offer superior design flexibility compared to their conventionally manufactured counterparts and require process parameter optimization to achieve high-quality depositions with desirable and predictable mechanical properties. This study was focused on 4340 steel fabricated using laser powder bed fusion (LPBF), and 42 laser power and scan speed combinations have been systematically investigated to optimize the melt pool geometry and ensure fully dense parts. The AM material was compared with a wrought 4340 equivalent and studied in both as-fabricated and heat-treated conditions. Two heat treatments were designed and used to optimize the materials for strength and toughness, respectively. Microstructure, tensile, and fractographic studies were conducted to assess build integrity and establish processing–structure–performance relationships. Tensile properties of the AM materials in all studied conditions were equivalent or better than the comparable wrought materials. The high performance of the AM materials was attributed to the absence of both manganese sulfide inclusions and rolling-induced banding, typically found in the wrought materials. The fine cellular substructure is thought to additionally contribute to the high strength of the as-fabricated AM material. Complementary to the knowledge that has emerged from the experimental investigations, the dataset was further leveraged to make recommendations for future design of experiments to optimize AM build parameters in other material systems. A statistical Monte Carlo analysis was used to predict the interpolation error produced when using reduced datasets and to enable informed processing parameters selection. These findings are discussed to make recommendations for the use of AM materials for high-integrity structural applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Taub, E. De Moor, A. Luo, D.K. Matlock, J.G. Speer and U. Vaidya, Materials for Automotive Lightweighting, Annu. Rev. Mater. Res., 2019, 49(1), p 327–359.CrossRef A. Taub, E. De Moor, A. Luo, D.K. Matlock, J.G. Speer and U. Vaidya, Materials for Automotive Lightweighting, Annu. Rev. Mater. Res., 2019, 49(1), p 327–359.CrossRef
2.
Zurück zum Zitat A.I. Taub, P.E. Krajewski, A.A. Luo and J.N. Owens, The Evolution of Technology for Materials Processing over the Last 50 Years: the Automotive Example, JOM, 2007, 59(2), p 48–57.CrossRef A.I. Taub, P.E. Krajewski, A.A. Luo and J.N. Owens, The Evolution of Technology for Materials Processing over the Last 50 Years: the Automotive Example, JOM, 2007, 59(2), p 48–57.CrossRef
3.
Zurück zum Zitat M.E. Orme, M. Gschweitl, M. Ferrari, I. Madera and F. Mouriaux, Designing for Additive Manufacturing: Lightweighting Through Topology Optimization Enables Lunar Spacecraft, J. Mech. Des., 2017, 139(10), p 100905.CrossRef M.E. Orme, M. Gschweitl, M. Ferrari, I. Madera and F. Mouriaux, Designing for Additive Manufacturing: Lightweighting Through Topology Optimization Enables Lunar Spacecraft, J. Mech. Des., 2017, 139(10), p 100905.CrossRef
4.
Zurück zum Zitat K.-S. Park, J.H. Lee and S.-K. Youn, Lightweight Mirror Design Method Using Topology Optimization, Opt. Eng., 2005, 44(5), p 053002.CrossRef K.-S. Park, J.H. Lee and S.-K. Youn, Lightweight Mirror Design Method Using Topology Optimization, Opt. Eng., 2005, 44(5), p 053002.CrossRef
5.
Zurück zum Zitat K. Fiedler, B.F. Rolfe and T. De Souza, Integrated Shape and Topology Optimization - Applications in Automotive Design and Manufacturing, SAE Int. J. Mater. Manuf., 2017, 10(3), p 385–394.CrossRef K. Fiedler, B.F. Rolfe and T. De Souza, Integrated Shape and Topology Optimization - Applications in Automotive Design and Manufacturing, SAE Int. J. Mater. Manuf., 2017, 10(3), p 385–394.CrossRef
6.
Zurück zum Zitat D. Ye, G.S. Hong, K. Zhu and J.Y.H. Fuh, Defect Detection in Selective Laser Melting Technology by Acoustic Signals with Deep Belief Networks, Int. J. Adv. Manuf. Tech., 2018, 96, p 2791–2801.CrossRef D. Ye, G.S. Hong, K. Zhu and J.Y.H. Fuh, Defect Detection in Selective Laser Melting Technology by Acoustic Signals with Deep Belief Networks, Int. J. Adv. Manuf. Tech., 2018, 96, p 2791–2801.CrossRef
7.
Zurück zum Zitat P. Yadav, O. Rigo, C. Arvieu, E. Le Guen and E. Lacoste, Drift Detection in Selective Laser Melting (SLM) Using a Machine Learning Approach, Industrializing Additive Manufacturing. AMPA 2020, M. Meboldt and C. Klahn, Ed., 2020, p 177–191. P. Yadav, O. Rigo, C. Arvieu, E. Le Guen and E. Lacoste, Drift Detection in Selective Laser Melting (SLM) Using a Machine Learning Approach, Industrializing Additive Manufacturing. AMPA 2020, M. Meboldt and C. Klahn, Ed., 2020, p 177–191.
8.
Zurück zum Zitat C. Wang, X.P. Tan, S.B. Tor and C.S. Lim, Machine Learning in Additive Manufacturing: State-of-the-Art and Perspectives, Addit. Manuf., 2020, 36, p 101538. C. Wang, X.P. Tan, S.B. Tor and C.S. Lim, Machine Learning in Additive Manufacturing: State-of-the-Art and Perspectives, Addit. Manuf., 2020, 36, p 101538.
9.
Zurück zum Zitat X. Shi, S. Ma, C. Liu and Q. Wu, Parameter Optimization for Ti-47Al-2Cr-2Nb in Selective Laser Melting Based on Geometric Characteristics of Single Scan Tracks, Opt. Laser Technol., 2017, 90, p 71–79.CrossRef X. Shi, S. Ma, C. Liu and Q. Wu, Parameter Optimization for Ti-47Al-2Cr-2Nb in Selective Laser Melting Based on Geometric Characteristics of Single Scan Tracks, Opt. Laser Technol., 2017, 90, p 71–79.CrossRef
10.
Zurück zum Zitat Y. He, C. Montgomery, J. Beuth and B. Webler, Melt Pool Geometry and Microstructure of Ti6Al4V with B Additions Processed by Selective Laser Melting Additive Manufacturing, Mater. Des., 2019, 183, p 108126.CrossRef Y. He, C. Montgomery, J. Beuth and B. Webler, Melt Pool Geometry and Microstructure of Ti6Al4V with B Additions Processed by Selective Laser Melting Additive Manufacturing, Mater. Des., 2019, 183, p 108126.CrossRef
11.
Zurück zum Zitat M. Letenneur, A. Kreitcberg and V. Brailovski, Optimization of Laser Powder Bed Fusion Processing Using a Combination of Melt Pool Modeling and Design of Experiment Approaches: Density Control, J. Manuf. Mater. Process., 2019, 3(1), p 21–33. M. Letenneur, A. Kreitcberg and V. Brailovski, Optimization of Laser Powder Bed Fusion Processing Using a Combination of Melt Pool Modeling and Design of Experiment Approaches: Density Control, J. Manuf. Mater. Process., 2019, 3(1), p 21–33.
12.
Zurück zum Zitat S. Greco, K. Gutzeit, H. Hotz, B. Kirsch and J. Aurich, Selective Laser Melting (SLM) of AISI 316L – Impact of Laser Power, Layer Thickness, and Hatch Spacing on Roughness, Density, and Microhardness at Constant Input Energy Density, Int. J. Adv. Manuf. Tech., 2020, 108, p 1551–1562.CrossRef S. Greco, K. Gutzeit, H. Hotz, B. Kirsch and J. Aurich, Selective Laser Melting (SLM) of AISI 316L – Impact of Laser Power, Layer Thickness, and Hatch Spacing on Roughness, Density, and Microhardness at Constant Input Energy Density, Int. J. Adv. Manuf. Tech., 2020, 108, p 1551–1562.CrossRef
13.
Zurück zum Zitat Q.Y. Lu, N.V. Nguyen, A.J.W. Hum, T. Tran and C.H. Wong, Optical In-Situ Monitoring and Correlation of Density and Mechanical Properties of Stainless Steel Parts Produced by Selective Laser Melting Process Based on Varied Energy Density, J. Mater. Process. Technol., 2019, 271, p 520–531.CrossRef Q.Y. Lu, N.V. Nguyen, A.J.W. Hum, T. Tran and C.H. Wong, Optical In-Situ Monitoring and Correlation of Density and Mechanical Properties of Stainless Steel Parts Produced by Selective Laser Melting Process Based on Varied Energy Density, J. Mater. Process. Technol., 2019, 271, p 520–531.CrossRef
14.
Zurück zum Zitat J. Wang, Y. Liu, C.D. Rabadia, S.-X. Liang, T.B. Sercombe and L.-C. Zhang, Microstructural Homogeneity and Mechanical Behavior of a Selective Laser Melted Ti-35Nb Alloy Produced from an Elemental Powder Mixture, Mater. Sci. Technol., 2021, 61, p 221–233.CrossRef J. Wang, Y. Liu, C.D. Rabadia, S.-X. Liang, T.B. Sercombe and L.-C. Zhang, Microstructural Homogeneity and Mechanical Behavior of a Selective Laser Melted Ti-35Nb Alloy Produced from an Elemental Powder Mixture, Mater. Sci. Technol., 2021, 61, p 221–233.CrossRef
15.
Zurück zum Zitat C. Wang, X. Tan, E. Liu and S.B. Tor, Process Parameter Optimization and Mechanical Properties for Additively Manufactured Stainless Steel 316L Parts by Selective Electron Beam Melting, Mater. Des., 2018, 147, p 157–166.CrossRef C. Wang, X. Tan, E. Liu and S.B. Tor, Process Parameter Optimization and Mechanical Properties for Additively Manufactured Stainless Steel 316L Parts by Selective Electron Beam Melting, Mater. Des., 2018, 147, p 157–166.CrossRef
16.
Zurück zum Zitat Z. Dong, Y. Liu, W. Wen, J. Ge and J. Liang, Effect of Hatch Spacing on Melt Pool and As-Built Quality During Selective Laser Melting of Stainless Steel: Modeling and Experimental Approaches, Materials, 2019, 12(1), p 50–64.CrossRef Z. Dong, Y. Liu, W. Wen, J. Ge and J. Liang, Effect of Hatch Spacing on Melt Pool and As-Built Quality During Selective Laser Melting of Stainless Steel: Modeling and Experimental Approaches, Materials, 2019, 12(1), p 50–64.CrossRef
17.
Zurück zum Zitat J. Mutua, S. Nakata, T. Onda and Z.-C. Chen, Optimization of Selective Laser Melting Parameters and Influence of Post Heat Treatment on Microstructure and Mechanical Properties of Maraging Steel, Mater. Des., 2018, 139, p 486–497.CrossRef J. Mutua, S. Nakata, T. Onda and Z.-C. Chen, Optimization of Selective Laser Melting Parameters and Influence of Post Heat Treatment on Microstructure and Mechanical Properties of Maraging Steel, Mater. Des., 2018, 139, p 486–497.CrossRef
18.
Zurück zum Zitat A. Suzuki, R. Nishida, N. Takata, M. Kobashi and M. Kato, Design of Laser Parameters for Selectively Laser Melted Maraging Steel Based on Deposited Energy Density, Addit. Manuf., 2019, 28, p 160–168. A. Suzuki, R. Nishida, N. Takata, M. Kobashi and M. Kato, Design of Laser Parameters for Selectively Laser Melted Maraging Steel Based on Deposited Energy Density, Addit. Manuf., 2019, 28, p 160–168.
19.
Zurück zum Zitat Z. Wang, T.A. Palmer and A.M. Beese, Effect of Processing Parameters on Microstructure and Tensile Properties of Austenitic Stainless Steel 304l Made by Directed Energy Deposition Additive Manufacturing, Acta Mater., 2016, 110, p 226–235.CrossRef Z. Wang, T.A. Palmer and A.M. Beese, Effect of Processing Parameters on Microstructure and Tensile Properties of Austenitic Stainless Steel 304l Made by Directed Energy Deposition Additive Manufacturing, Acta Mater., 2016, 110, p 226–235.CrossRef
20.
Zurück zum Zitat T. Kurzynowski, K. Gruber, W. Stopyra, B. Kuźnicka and E. Chlebus, Correlation Between Process Parameters, Microstructure and Properties of 316 L Stainless Steel Processed by Selective Laser Melting, Mater. Sci. Eng. A, 2018, 718, p 64–73.CrossRef T. Kurzynowski, K. Gruber, W. Stopyra, B. Kuźnicka and E. Chlebus, Correlation Between Process Parameters, Microstructure and Properties of 316 L Stainless Steel Processed by Selective Laser Melting, Mater. Sci. Eng. A, 2018, 718, p 64–73.CrossRef
21.
Zurück zum Zitat H. Chen, D. Gu, D. Dai, C. Ma and M. Xia, Microstructure and Composition Homogeneity, Tensile Property, and Underlying Thermal Physical Mechanism of Selective Laser Melting Tool Steel Parts, Mater. Sci. Eng. A, 2017, 682, p 279–289.CrossRef H. Chen, D. Gu, D. Dai, C. Ma and M. Xia, Microstructure and Composition Homogeneity, Tensile Property, and Underlying Thermal Physical Mechanism of Selective Laser Melting Tool Steel Parts, Mater. Sci. Eng. A, 2017, 682, p 279–289.CrossRef
22.
Zurück zum Zitat I. Hemmati, V. Ocelík and J.T.M. De Hosson, Microstructural Characterization of AISI 431 Martensitic Stainless Steel Laser-Deposited Coatings, J. Mater. Sci., 2011, 46(10), p 3405–3414.CrossRef I. Hemmati, V. Ocelík and J.T.M. De Hosson, Microstructural Characterization of AISI 431 Martensitic Stainless Steel Laser-Deposited Coatings, J. Mater. Sci., 2011, 46(10), p 3405–3414.CrossRef
23.
Zurück zum Zitat J. Sander, J. Hufenbach, L. Giebeler, H. Wendrock, U. Kühn and J. Eckert, Microstructure and Properties of FeCrMoVC Tool Steel Produced by Selective Laser Melting, Mater. Des., 2016, 89, p 335–341.CrossRef J. Sander, J. Hufenbach, L. Giebeler, H. Wendrock, U. Kühn and J. Eckert, Microstructure and Properties of FeCrMoVC Tool Steel Produced by Selective Laser Melting, Mater. Des., 2016, 89, p 335–341.CrossRef
24.
Zurück zum Zitat M.H. Sk, R.A. Overfelt, R.L. Haney and J.W. Fergus, Hydrogen Embrittlement of 4340 Steel due to Condensation During Vaporized Hydrogen Peroxide Treatment, Mater. Sci. Eng. A, 2011, 528(10), p 3639–3645.CrossRef M.H. Sk, R.A. Overfelt, R.L. Haney and J.W. Fergus, Hydrogen Embrittlement of 4340 Steel due to Condensation During Vaporized Hydrogen Peroxide Treatment, Mater. Sci. Eng. A, 2011, 528(10), p 3639–3645.CrossRef
25.
Zurück zum Zitat E. Jelis, M. Clemente, S. Kerwien, N. Ravindra and M. Hespos, Metallurgical and Mechanical Evaluation of 4340 Steel Produced by Direct Metal Laser Sintering, JOM, 2015, 67, p 582–589.CrossRef E. Jelis, M. Clemente, S. Kerwien, N. Ravindra and M. Hespos, Metallurgical and Mechanical Evaluation of 4340 Steel Produced by Direct Metal Laser Sintering, JOM, 2015, 67, p 582–589.CrossRef
26.
Zurück zum Zitat W. Liu, J. Li, H. Wang and C. Shi, The Effect of Al-Mg Deoxidation on the Cleanliness of Steel During the Electroslag Remelting Process, Steel Res. Int., 2019, 90(10), p 1900185.CrossRef W. Liu, J. Li, H. Wang and C. Shi, The Effect of Al-Mg Deoxidation on the Cleanliness of Steel During the Electroslag Remelting Process, Steel Res. Int., 2019, 90(10), p 1900185.CrossRef
27.
Zurück zum Zitat C. Shi, H. Wang and J. Li, Effects of Reoxidation of Liquid Steel and Slag Composition on the Chemistry Evolution of inclusions During Electroslag Remelting, Metall. Mater. Trans. B, 2018, 49(4), p 1675–1689.CrossRef C. Shi, H. Wang and J. Li, Effects of Reoxidation of Liquid Steel and Slag Composition on the Chemistry Evolution of inclusions During Electroslag Remelting, Metall. Mater. Trans. B, 2018, 49(4), p 1675–1689.CrossRef
28.
Zurück zum Zitat J.H. Park and Y. Kang, Inclusions in Stainless Steels − A Review, Steel Res. Int., 2017, 88(12), p 1700130.CrossRef J.H. Park and Y. Kang, Inclusions in Stainless Steels − A Review, Steel Res. Int., 2017, 88(12), p 1700130.CrossRef
29.
Zurück zum Zitat Standard Test Methods for Rockwell Hardness of Metallic Materials, E18-20, ASTM International, 2020. Standard Test Methods for Rockwell Hardness of Metallic Materials, E18-20, ASTM International, 2020.
30.
Zurück zum Zitat Standard Test Method for Microindentation Hardness of Materials, E384-17, ASTM International, 2020. Standard Test Method for Microindentation Hardness of Materials, E384-17, ASTM International, 2020.
31.
Zurück zum Zitat Standard Test Methods for Tension Testing of Metallic Materials, E8/E8M-13, ASTM International, 2020. Standard Test Methods for Tension Testing of Metallic Materials, E8/E8M-13, ASTM International, 2020.
32.
Zurück zum Zitat T.T. Roehling, S.S.Q. Wu, S.A. Khairallah, J.D. Roehling, S.S. Soezeri, M.F. Crumb and M.J. Matthews, Modulating Laser Intensity Profile Ellipticity for Microstructural Control During Metal Additive Manufacturing, Acta Mater., 2017, 128, p 197–206.CrossRef T.T. Roehling, S.S.Q. Wu, S.A. Khairallah, J.D. Roehling, S.S. Soezeri, M.F. Crumb and M.J. Matthews, Modulating Laser Intensity Profile Ellipticity for Microstructural Control During Metal Additive Manufacturing, Acta Mater., 2017, 128, p 197–206.CrossRef
33.
Zurück zum Zitat A.V. Gusarov, I. Yadroitsev, P. Bertrand and I. Smurov, Model of Radiation and Heat Transfer in Laser-Powder Interaction Zone at Selective Laser Melting, J. Heat Transfer, 2009, 131(7), p 072101.CrossRef A.V. Gusarov, I. Yadroitsev, P. Bertrand and I. Smurov, Model of Radiation and Heat Transfer in Laser-Powder Interaction Zone at Selective Laser Melting, J. Heat Transfer, 2009, 131(7), p 072101.CrossRef
34.
Zurück zum Zitat W. Chen, G. Yin, Z. Feng and X. Liao, Effect of Powder Feedstock on Microstructure and Mechanical Properties of the 316L Stainless Steel Fabricated by Selective Laser Melting, Metals, 2018, 8(9), p 729–740.CrossRef W. Chen, G. Yin, Z. Feng and X. Liao, Effect of Powder Feedstock on Microstructure and Mechanical Properties of the 316L Stainless Steel Fabricated by Selective Laser Melting, Metals, 2018, 8(9), p 729–740.CrossRef
35.
Zurück zum Zitat D. Gu and Y. Shen, Balling Phenomena During Direct Laser Sintering of Multi-Component cu-Based Metal Powder, J. Alloys Compd., 2007, 432(1), p 163–166.CrossRef D. Gu and Y. Shen, Balling Phenomena During Direct Laser Sintering of Multi-Component cu-Based Metal Powder, J. Alloys Compd., 2007, 432(1), p 163–166.CrossRef
36.
Zurück zum Zitat R.W. Cunningham, Defect Formation Mechanisms in Powder-Bed Metal Additive Manufacturing. 2018, Thesis, Carnegie Mellon University. R.W. Cunningham, Defect Formation Mechanisms in Powder-Bed Metal Additive Manufacturing. 2018, Thesis, Carnegie Mellon University.
37.
Zurück zum Zitat L. Scime and J. Beuth, Melt Pool Geometry and Morphology Variability for the Inconel 718 Alloy in a Laser Powder Bed Fusion Additive Manufacturing Process, Addit. Manuf., 2019, 29, p 100830. L. Scime and J. Beuth, Melt Pool Geometry and Morphology Variability for the Inconel 718 Alloy in a Laser Powder Bed Fusion Additive Manufacturing Process, Addit. Manuf., 2019, 29, p 100830.
38.
Zurück zum Zitat Z.R. Francis, The effects of laser and electron beam spot size in additive manufacturing processes. 2017, Thesis, Carnegie Mellon University. Z.R. Francis, The effects of laser and electron beam spot size in additive manufacturing processes. 2017, Thesis, Carnegie Mellon University.
39.
Zurück zum Zitat L.C. Wei, L.E. Ehrlich, M.J. Powell-Palm, C. Montgomery, J. Beuth and J.A. Malen, Thermal Conductivity of Metal Powders for Powder Bed Additive Manufacturing, Addit. Manuf., 2018, 21, p 201–208. L.C. Wei, L.E. Ehrlich, M.J. Powell-Palm, C. Montgomery, J. Beuth and J.A. Malen, Thermal Conductivity of Metal Powders for Powder Bed Additive Manufacturing, Addit. Manuf., 2018, 21, p 201–208.
40.
Zurück zum Zitat S. Yagi and D. Kunii, Studies on Effective Thermal Conductivities in Packed Beds, AlChE J., 1957, 3(3), p 373–381.CrossRef S. Yagi and D. Kunii, Studies on Effective Thermal Conductivities in Packed Beds, AlChE J., 1957, 3(3), p 373–381.CrossRef
41.
Zurück zum Zitat M. Abdelwahed, R. Casati, S. Bengtsson, A. Larsson, M. Riccio and M. Vedani, Effects of Powder Atomisation on Microstructural and Mechanical Behaviour of L-PBF Processed Steels, Metals, 2020, 10(1474), p 1474–1494.CrossRef M. Abdelwahed, R. Casati, S. Bengtsson, A. Larsson, M. Riccio and M. Vedani, Effects of Powder Atomisation on Microstructural and Mechanical Behaviour of L-PBF Processed Steels, Metals, 2020, 10(1474), p 1474–1494.CrossRef
42.
Zurück zum Zitat W. Yang, X. Wang, L. Zhang, Q. Shan and X. Liu, Cleanliness of Low Carbon Aluminum-Killed Steels During Secondary Refining Processes, Steel Res. Int., 2013, 84(5), p 473–489.CrossRef W. Yang, X. Wang, L. Zhang, Q. Shan and X. Liu, Cleanliness of Low Carbon Aluminum-Killed Steels During Secondary Refining Processes, Steel Res. Int., 2013, 84(5), p 473–489.CrossRef
43.
Zurück zum Zitat Q. Wang, G. Cheng, J. Li, W. Dou and X. Hu, Formation Mechanism of Large Inclusions in 80t 20Cr–8Ni Stainless Steel Casting for Nuclear Power, Steel Res. Int., 2019, 90(12), p 1900349.CrossRef Q. Wang, G. Cheng, J. Li, W. Dou and X. Hu, Formation Mechanism of Large Inclusions in 80t 20Cr–8Ni Stainless Steel Casting for Nuclear Power, Steel Res. Int., 2019, 90(12), p 1900349.CrossRef
44.
Zurück zum Zitat S.M. Abbasi, M. Morakabati, R. Mahdavi and A. Momeni, Effect of Microalloying Additions on the Hot Ductility of Cast FeNi36, J. Alloys Compd., 2015, 639, p 602–610.CrossRef S.M. Abbasi, M. Morakabati, R. Mahdavi and A. Momeni, Effect of Microalloying Additions on the Hot Ductility of Cast FeNi36, J. Alloys Compd., 2015, 639, p 602–610.CrossRef
45.
Zurück zum Zitat M.-S. Pham, B. Dovgyy, P.A. Hooper, C.M. Gourlay and A. Piglione, The Role of Side-Branching in Microstructure Development in Laser Powder-Bed Fusion, Nat. Commun., 2020, 11(1), p 749–760.CrossRef M.-S. Pham, B. Dovgyy, P.A. Hooper, C.M. Gourlay and A. Piglione, The Role of Side-Branching in Microstructure Development in Laser Powder-Bed Fusion, Nat. Commun., 2020, 11(1), p 749–760.CrossRef
46.
Zurück zum Zitat R. Casati, J. Lemke and M. Vedani, Microstructure and Fracture Behavior of 316L Austenitic Stainless Steel Produced by Selective Laser Melting, J. Mater. Sci. Technol., 2016, 32(8), p 738–744.CrossRef R. Casati, J. Lemke and M. Vedani, Microstructure and Fracture Behavior of 316L Austenitic Stainless Steel Produced by Selective Laser Melting, J. Mater. Sci. Technol., 2016, 32(8), p 738–744.CrossRef
47.
Zurück zum Zitat M. Ziętala, T. Durejko, M. Polański, I. Kunce, T. Płociński, W. Zieliński, M. Łazińska, W. Stępniowski, T. Czujko, K.J. Kurzydłowski and Z. Bojar, The Microstructure, Mechanical Properties and Corrosion Resistance of 316L Stainless Steel Fabricated Using Laser Engineered Net Shaping, Mater. Sci. Eng. A, 2016, 677, p 1–10.CrossRef M. Ziętala, T. Durejko, M. Polański, I. Kunce, T. Płociński, W. Zieliński, M. Łazińska, W. Stępniowski, T. Czujko, K.J. Kurzydłowski and Z. Bojar, The Microstructure, Mechanical Properties and Corrosion Resistance of 316L Stainless Steel Fabricated Using Laser Engineered Net Shaping, Mater. Sci. Eng. A, 2016, 677, p 1–10.CrossRef
48.
Zurück zum Zitat K. Saeidi, Stainless steels fabricated by laser melting : scaled-down structural hierarchies and microstructural heterogeneities. 2016, Thesis, Stockholm University. K. Saeidi, Stainless steels fabricated by laser melting : scaled-down structural hierarchies and microstructural heterogeneities. 2016, Thesis, Stockholm University.
49.
Zurück zum Zitat A. Röttger, J. Boes, W. Theisen, M. Thiele, C. Esen, A. Edelmann and R. Hellmann, Microstructure and Mechanical Properties of 316L Austenitic Stainless Steel Processed by Different SLM Devices, Int. J. Adv. Manuf. Tech., 2020, 108(3), p 769–783.CrossRef A. Röttger, J. Boes, W. Theisen, M. Thiele, C. Esen, A. Edelmann and R. Hellmann, Microstructure and Mechanical Properties of 316L Austenitic Stainless Steel Processed by Different SLM Devices, Int. J. Adv. Manuf. Tech., 2020, 108(3), p 769–783.CrossRef
50.
Zurück zum Zitat J. Wang, S. Liu, Y. Fang and Z. He, A Short Review on Selective Laser Melting of H13 Steel, Int. J. Adv. Manuf. Tech., 2020, 108(7), p 2453–2466.CrossRef J. Wang, S. Liu, Y. Fang and Z. He, A Short Review on Selective Laser Melting of H13 Steel, Int. J. Adv. Manuf. Tech., 2020, 108(7), p 2453–2466.CrossRef
51.
Zurück zum Zitat A.G. Demir and B. Previtali, Investigation of Remelting and Preheating in SLM of 18Ni300 Maraging Steel as Corrective and Preventive Measures for Porosity Reduction, Int. J. Adv. Manuf. Tech., 2017, 93(5–8), p 2697–2709.CrossRef A.G. Demir and B. Previtali, Investigation of Remelting and Preheating in SLM of 18Ni300 Maraging Steel as Corrective and Preventive Measures for Porosity Reduction, Int. J. Adv. Manuf. Tech., 2017, 93(5–8), p 2697–2709.CrossRef
52.
Zurück zum Zitat Z. Yu, Y. Zheng, J. Chen, C. Wu, J. Xu, H. Lu and C. Yu, Effect of Laser Remelting Processing on Microstructure and Mechanical Properties of 17–4 PH Stainless Steel During Laser Direct Metal Deposition, J. Mater. Process. Technol., 2020, 284, p 116738.CrossRef Z. Yu, Y. Zheng, J. Chen, C. Wu, J. Xu, H. Lu and C. Yu, Effect of Laser Remelting Processing on Microstructure and Mechanical Properties of 17–4 PH Stainless Steel During Laser Direct Metal Deposition, J. Mater. Process. Technol., 2020, 284, p 116738.CrossRef
Metadaten
Titel
Melt Pool and Heat Treatment Optimization for the Fabrication of High-Strength and High-Toughness Additively Manufactured 4340 Steel
verfasst von
Matthew A. Ryder
Colt J. Montgomery
Michael J. Brand
John S. Carpenter
Peggy E. Jones
Anthony G. Spangenberger
Diana A. Lados
Publikationsdatum
17.05.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05836-8

Weitere Artikel der Ausgabe 7/2021

Journal of Materials Engineering and Performance 7/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.