Skip to main content
Erschienen in: Rare Metals 5/2020

12.05.2020 | Highlight

Two-electron oxygen reduction reaction by high-loading molybdenum single-atom catalysts

verfasst von: Xuan Zhao, Yan-Guang Li

Erschienen in: Rare Metals | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

Hydrogen peroxide (H2O2) is an important environmentally friendly chemical and potential energy carrier and has been widely used for a range of applications, such as paper and pulp bleaching, chemical synthesis and wastewater treatment [1, 2]. Nowadays, about 95% H2O2 is produced from the anthraquinone oxidation process, which unfortunately is energy intensive and far from economical [3]. The direct synthesis of H2O2 from H2 and O2 is a green method, but it has the potential hazard of explosion [4]. More recently, electrochemical production of H2O2 from the two-electron oxygen reduction reaction (2e-ORR) attracts quickly growing attention due to its mild operation condition and potential for decentralized production. To achieve so, suitable electrocatalysts with high activity and selectivity are needed. At present, the state-of-the-art candidates for 2e-ORR are noble metal alloys (PtHg or PdHg [5, 6], Au alloys [7]). However, their high costs greatly limit their practical applications. Single-atom catalysts (SACs) are an emerging class of materials. They are prepared by dispersing single transition metal atoms on high-surface-area supports. Their electronic structures can be regulated by tuning the metal atoms and surrounding coordinative environments for different purposes. For example, Choi et al. [8] reported that high-loading Pt SACs anchored on S-doped carbon could enable selective 2e-ORR instead of conventional 4e-ORR. Wang et al. shifted the reaction selectivity from 4e-ORR to 2e-ORR by changing the coordinative environment of Fe SACs from Fe–N–C to Fe–C–O [9]. …

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Fukuzumi S, Yamada Y, Karlin KD. Hydrogen peroxide as a sustainable energy carrier: electrocatalytic production of hydrogen peroxide and the fuel cell. Electrochim Acta. 2012;82:493.CrossRef Fukuzumi S, Yamada Y, Karlin KD. Hydrogen peroxide as a sustainable energy carrier: electrocatalytic production of hydrogen peroxide and the fuel cell. Electrochim Acta. 2012;82:493.CrossRef
[2]
Zurück zum Zitat Ciriminna R, Albanese L, Meneguzzo F, Pagliaro M. Hydrogen peroxide: a key chemical for today’s sustainable development. Chemsuschem. 2016;9(24):3374.CrossRef Ciriminna R, Albanese L, Meneguzzo F, Pagliaro M. Hydrogen peroxide: a key chemical for today’s sustainable development. Chemsuschem. 2016;9(24):3374.CrossRef
[3]
Zurück zum Zitat Campos-Martin JM, Blanco-Brieva G, Fierro JLG. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem Int Edit. 2006;45(42):6962.CrossRef Campos-Martin JM, Blanco-Brieva G, Fierro JLG. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem Int Edit. 2006;45(42):6962.CrossRef
[4]
Zurück zum Zitat Samanta C. Direct synthesis of hydrogen peroxide from hydrogen and oxygen: an overview of recent developments in the process. Appl Catal A Gen. 2008;350(2):133.CrossRef Samanta C. Direct synthesis of hydrogen peroxide from hydrogen and oxygen: an overview of recent developments in the process. Appl Catal A Gen. 2008;350(2):133.CrossRef
[5]
Zurück zum Zitat Siahrostami S, Verdaguer-Casadevall A, Karamad M, Deiana D, Malacrida P, Wickman B, Escudero-Escribano M, Paoli EA, Frydendal R, Hansen TW, Chorkendorff I, Stephens IEL, Rossmeisl J. Enabling direct H2O2 production through rational electrocatalyst design. Nat Mater. 2013;12(12):1137.CrossRef Siahrostami S, Verdaguer-Casadevall A, Karamad M, Deiana D, Malacrida P, Wickman B, Escudero-Escribano M, Paoli EA, Frydendal R, Hansen TW, Chorkendorff I, Stephens IEL, Rossmeisl J. Enabling direct H2O2 production through rational electrocatalyst design. Nat Mater. 2013;12(12):1137.CrossRef
[6]
Zurück zum Zitat Verdaguer-Casadevall A, Deiana D, Karamad M, Siahrostami S, Malacrida P, Hansen TW, Rossmeisl J, Chorkendorff I, Stephens IEL. Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 2014;14(3):1603.CrossRef Verdaguer-Casadevall A, Deiana D, Karamad M, Siahrostami S, Malacrida P, Hansen TW, Rossmeisl J, Chorkendorff I, Stephens IEL. Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 2014;14(3):1603.CrossRef
[7]
Zurück zum Zitat Jirkovský JS, Panas I, Ahlberg E, Halasa M, Romani S, Schiffrin DJ. Single atom hot-spots at Au–Pd nanoalloys for electrocatalytic H2O2 production. J Am Chem Soc. 2011;133(48):19432.CrossRef Jirkovský JS, Panas I, Ahlberg E, Halasa M, Romani S, Schiffrin DJ. Single atom hot-spots at Au–Pd nanoalloys for electrocatalytic H2O2 production. J Am Chem Soc. 2011;133(48):19432.CrossRef
[8]
Zurück zum Zitat Choi CH, Kim M, Kwon HC, Cho SJ, Yun S, Kim HT, Mayrhofer KJ, Kim H, Choi M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat Commun. 2016;7:10922.CrossRef Choi CH, Kim M, Kwon HC, Cho SJ, Yun S, Kim HT, Mayrhofer KJ, Kim H, Choi M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat Commun. 2016;7:10922.CrossRef
[9]
Zurück zum Zitat Jiang K, Back S, Akey AJ, Xia C, Hu Y, Liang W, Schaak D, Stavitski E, Norskov JK, Siahrostami S, Wang H. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat Commun. 2019;10:3997.CrossRef Jiang K, Back S, Akey AJ, Xia C, Hu Y, Liang W, Schaak D, Stavitski E, Norskov JK, Siahrostami S, Wang H. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nat Commun. 2019;10:3997.CrossRef
Metadaten
Titel
Two-electron oxygen reduction reaction by high-loading molybdenum single-atom catalysts
verfasst von
Xuan Zhao
Yan-Guang Li
Publikationsdatum
12.05.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 5/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01415-3

Weitere Artikel der Ausgabe 5/2020

Rare Metals 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.