Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 2/2019

04.02.2019 | Original Article

Characterization of products obtained from hydrothermal liquefaction of biomass (Anchusa azurea) compared to other thermochemical conversion methods

verfasst von: Halil Durak

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, biomass was converted into new products with catalyst (H3BO3, Na2CO3, Al2O3) and without catalyst at 300, 325, and 350 °C by the hydrothermal liquefaction method. The products obtained were analyzed by GC-MS, FT-IR, SEM, elemental analysis, and 1H NMR methods. Based on the trials, the highest liquid product yield (total bio-oil) was determined as 29.69% in the trial without catalyst at 350 °C. The higher heating value (HHV) has been calculated by Dulong’s formula, and the HHV values of all the (light bio-oil, heavy bio-oil, and solid residue) were determined to be higher than the HHV value of the feedstock. The highest HHV value was obtained from heavy bio-oil as 31.32 MJ/kg with the catalyst at 350 °C. This HHV value is higher than the HHV value attained by the pyrolysis and supercritical liquefaction method. The products obtained generally consisted of monoaromatics, polyaromatics, oxygen compounds, and aliphatics. Based on the results of the elemental analysis, HHV values varying between 16.22 and 31.78 MJ/kg were found for all products.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bhaskar T, Bhavya B, Singh R, Naik D, Kumar A, Goyal H (2011) Thermochemical conversion of biomass to biofuels. Biofuels; Alternative Feedstocks and Conversion Processes, pp 51–77 Bhaskar T, Bhavya B, Singh R, Naik D, Kumar A, Goyal H (2011) Thermochemical conversion of biomass to biofuels. Biofuels; Alternative Feedstocks and Conversion Processes, pp 51–77
2.
Zurück zum Zitat Kumar S, Gupta RB (2008) Hydrolysis of microcrystalline cellulose in subcritical and supercritical water in a continuous flow reactor. Ind Eng Chem Res 47:9321–9329CrossRef Kumar S, Gupta RB (2008) Hydrolysis of microcrystalline cellulose in subcritical and supercritical water in a continuous flow reactor. Ind Eng Chem Res 47:9321–9329CrossRef
3.
Zurück zum Zitat Delmer DP, Amor Y (1995) Cellulose biosynthesis. Am Soc Plant Physiol 7:987–1000 Delmer DP, Amor Y (1995) Cellulose biosynthesis. Am Soc Plant Physiol 7:987–1000
4.
Zurück zum Zitat Saisu M, Sato T, Watanabe M, Adschiri T, Arai K (2003) Conversion of lignin with supercritical water – phenol mixtures. Energy Fuel 17:922–928CrossRef Saisu M, Sato T, Watanabe M, Adschiri T, Arai K (2003) Conversion of lignin with supercritical water – phenol mixtures. Energy Fuel 17:922–928CrossRef
5.
Zurück zum Zitat Wahyudiono Kanetake T, Sasaki M, Goto M (2007) Decomposition of a lignin model compound under hydrothermal conditions. Chem Eng Technol 30:1113–1122CrossRef Wahyudiono Kanetake T, Sasaki M, Goto M (2007) Decomposition of a lignin model compound under hydrothermal conditions. Chem Eng Technol 30:1113–1122CrossRef
6.
Zurück zum Zitat Wang W, Kuang Y, Huang N (2011) Study on the decomposition of factors affecting energy-related carbon emissions in Guangdong province, China. Energies 4:2249–2272CrossRef Wang W, Kuang Y, Huang N (2011) Study on the decomposition of factors affecting energy-related carbon emissions in Guangdong province, China. Energies 4:2249–2272CrossRef
7.
Zurück zum Zitat Vallero D (2008) Fundamentals of air pollution, 4th edn. Elsevier Inc., San Diego Vallero D (2008) Fundamentals of air pollution, 4th edn. Elsevier Inc., San Diego
8.
Zurück zum Zitat Gollakota ARK, Kishore N, Gu Sai (2017) A review on hydrothermal liquefaction of biomass. Renew Sust Energ Rev Gollakota ARK, Kishore N, Gu Sai (2017) A review on hydrothermal liquefaction of biomass. Renew Sust Energ Rev
9.
Zurück zum Zitat Kreith FGY (2007) Handbook of energy efficiency and renewable energy. Taylor and Francis, Boca RatonCrossRef Kreith FGY (2007) Handbook of energy efficiency and renewable energy. Taylor and Francis, Boca RatonCrossRef
10.
Zurück zum Zitat Elliott D (2011) Thermochemical processing of biomass. Wiley, Chichester Elliott D (2011) Thermochemical processing of biomass. Wiley, Chichester
11.
Zurück zum Zitat Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36:2328–2342CrossRef Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36:2328–2342CrossRef
12.
Zurück zum Zitat Patil V, Tran KQ, Giselrød HR (2008) Towards sustainable production of biofuels from microalgae. Int J Mol Scı 9:1188–1195CrossRef Patil V, Tran KQ, Giselrød HR (2008) Towards sustainable production of biofuels from microalgae. Int J Mol Scı 9:1188–1195CrossRef
13.
Zurück zum Zitat Tekin K, Karagöz S, Bektaş S (2012) Hydrothermal liquefaction of beech wood using a natural calcium borate mineral. J Supercrit Fluids 72:134–139CrossRef Tekin K, Karagöz S, Bektaş S (2012) Hydrothermal liquefaction of beech wood using a natural calcium borate mineral. J Supercrit Fluids 72:134–139CrossRef
14.
Zurück zum Zitat Martin JR, Kornsulle R (2011) Process for the extraction of macromolecules from biomass using the stillage. US Patent Martin JR, Kornsulle R (2011) Process for the extraction of macromolecules from biomass using the stillage. US Patent
15.
Zurück zum Zitat Zhang X, Wilson K, Lee AF (2016) Heterogeneously catalyzed hydrothermal processing of C5-C6 sugars. Chem Rev 116:12328–12368CrossRef Zhang X, Wilson K, Lee AF (2016) Heterogeneously catalyzed hydrothermal processing of C5-C6 sugars. Chem Rev 116:12328–12368CrossRef
16.
Zurück zum Zitat Savage PE, Levine RB, Huelsman CM (2010) Hydrothermal processing of biomass: thermochemical conversion of biomass to liquid fuels and chemicals. In: Crocker M (ed) RSC Publishing, Cambridge, pp 192–215 Savage PE, Levine RB, Huelsman CM (2010) Hydrothermal processing of biomass: thermochemical conversion of biomass to liquid fuels and chemicals. In: Crocker M (ed) RSC Publishing, Cambridge, pp 192–215
17.
Zurück zum Zitat Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts and engineering. Chem Rev 106(9):4044–4098CrossRef Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts and engineering. Chem Rev 106(9):4044–4098CrossRef
18.
Zurück zum Zitat Brown TM, Duan P, Savage PE (2010) Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energ Fuel 24:3639–3646CrossRef Brown TM, Duan P, Savage PE (2010) Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energ Fuel 24:3639–3646CrossRef
19.
Zurück zum Zitat Zou S, Wu Y, Yang M, Li C, Tong J (2010) Bio-oil production from sub- and supercritical water liquefaction of microalgae Dunaliella tertiolecta and related properties. Energy Environ Sci 3:1073–1078CrossRef Zou S, Wu Y, Yang M, Li C, Tong J (2010) Bio-oil production from sub- and supercritical water liquefaction of microalgae Dunaliella tertiolecta and related properties. Energy Environ Sci 3:1073–1078CrossRef
20.
Zurück zum Zitat Durak H, Aysu T (2016) Structural analysis of bio-oils from subcritical and supercritical hydrothermal liquefaction of Datura stramonium L. J Supercrit Fluids 108:123–135CrossRef Durak H, Aysu T (2016) Structural analysis of bio-oils from subcritical and supercritical hydrothermal liquefaction of Datura stramonium L. J Supercrit Fluids 108:123–135CrossRef
21.
Zurück zum Zitat Karagöz S, Bhaskar T, Muto A, Sakata Y, Oshiki T, Kishimoto T (2005) Low-temperature catalytic hydrothermal treatment of wood biomass: analysis of liquid products. Chem Eng J 108:127–137CrossRef Karagöz S, Bhaskar T, Muto A, Sakata Y, Oshiki T, Kishimoto T (2005) Low-temperature catalytic hydrothermal treatment of wood biomass: analysis of liquid products. Chem Eng J 108:127–137CrossRef
22.
Zurück zum Zitat Aysu T, Durak H (2016) Catalytic effects of borax and iron (III) chloride on supercritical liquefaction of Anchusa azurea with methanol and isopropanol. Energ Source Part A 38(12):1739–1749CrossRef Aysu T, Durak H (2016) Catalytic effects of borax and iron (III) chloride on supercritical liquefaction of Anchusa azurea with methanol and isopropanol. Energ Source Part A 38(12):1739–1749CrossRef
23.
Zurück zum Zitat Aysu T, Durak H, Güner S, Bengü AŞ, Esim N (2016) Bio-oil production via catalytic pyrolysis of Anchusa azurea: effects of operating conditions on product yields and chromatographic characterization. Bioresour Technol 205:7–14CrossRef Aysu T, Durak H, Güner S, Bengü AŞ, Esim N (2016) Bio-oil production via catalytic pyrolysis of Anchusa azurea: effects of operating conditions on product yields and chromatographic characterization. Bioresour Technol 205:7–14CrossRef
24.
Zurück zum Zitat Jae J, Tompsett GA, Lin YC, Carlson TR, Shen J, Zhang T, Yang B, Wyman CE, Conner WC, Huber GW (2010) Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis. Energy Environ Sci 3:358–365CrossRef Jae J, Tompsett GA, Lin YC, Carlson TR, Shen J, Zhang T, Yang B, Wyman CE, Conner WC, Huber GW (2010) Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis. Energy Environ Sci 3:358–365CrossRef
25.
Zurück zum Zitat Shen DK, Gu S, Luo KH, Bridgwater AV (2009) Analysis of wood structural changes under thermal radiation. Energ Fuels 23:1081–1088CrossRef Shen DK, Gu S, Luo KH, Bridgwater AV (2009) Analysis of wood structural changes under thermal radiation. Energ Fuels 23:1081–1088CrossRef
26.
Zurück zum Zitat Guo Y, Wang SZ, Xu DH, Gong YM, Ma HH, Tang XY (2010) Review of catalytic supercritical water gasification for hydrogen production from biomass. Renew Sust Energ Rev 14:334–343CrossRef Guo Y, Wang SZ, Xu DH, Gong YM, Ma HH, Tang XY (2010) Review of catalytic supercritical water gasification for hydrogen production from biomass. Renew Sust Energ Rev 14:334–343CrossRef
27.
Zurück zum Zitat Kumar M, Oyedun AO, Kumar A (2017) A review on the current status of various hydrothermal technologies on biomass feedstock. In: Renew Sust Energ Rev Kumar M, Oyedun AO, Kumar A (2017) A review on the current status of various hydrothermal technologies on biomass feedstock. In: Renew Sust Energ Rev
28.
Zurück zum Zitat Arturi KR, Kucheryavskiy S, Søgaard EG (2016) Performance of hydrothermal liquefaction (HTL) of biomass by multivariate data analysis. Fuel Process Technol 150:94–103CrossRef Arturi KR, Kucheryavskiy S, Søgaard EG (2016) Performance of hydrothermal liquefaction (HTL) of biomass by multivariate data analysis. Fuel Process Technol 150:94–103CrossRef
29.
Zurück zum Zitat Sugano M, Takagi H, Hirano K, Mashimo K (2008) Hydrothermal liquefaction of plantation biomass with two kinds of wastewater from paper industry. J Mater Sci 43:2476–2486CrossRef Sugano M, Takagi H, Hirano K, Mashimo K (2008) Hydrothermal liquefaction of plantation biomass with two kinds of wastewater from paper industry. J Mater Sci 43:2476–2486CrossRef
30.
Zurück zum Zitat Minowa T, Murakami T, Dote Y, Ogi T, Yokoyama S (1995) Oil production from garbage by thermochemical liquefaction. Biomass Bioenergy 8(2):117–120CrossRef Minowa T, Murakami T, Dote Y, Ogi T, Yokoyama S (1995) Oil production from garbage by thermochemical liquefaction. Biomass Bioenergy 8(2):117–120CrossRef
31.
Zurück zum Zitat Liu HM, Li MF, Yang S, Sun RC (2013) Understanding the mechanism of cypress liquefaction in hot-compressed water through characterization of solid residues. Energies 6:1590–1603CrossRef Liu HM, Li MF, Yang S, Sun RC (2013) Understanding the mechanism of cypress liquefaction in hot-compressed water through characterization of solid residues. Energies 6:1590–1603CrossRef
32.
Zurück zum Zitat He W, Li G, Kong L, Wang H, Huang J, Xu J (2008) Application of hydrothermal reaction in resource recovery of organic wastes. Resour Conserv Recycl 52:691–699CrossRef He W, Li G, Kong L, Wang H, Huang J, Xu J (2008) Application of hydrothermal reaction in resource recovery of organic wastes. Resour Conserv Recycl 52:691–699CrossRef
33.
Zurück zum Zitat Gomes JANF, Mallion RB (2001) Aromaticity and ring currents. Chem Rev 101(5):1349–1384CrossRef Gomes JANF, Mallion RB (2001) Aromaticity and ring currents. Chem Rev 101(5):1349–1384CrossRef
34.
Zurück zum Zitat Durak H (2015) Thermochemical conversion of Phellinus pomaceus via supercritical fluid extraction and pyrolysis processes. Energy Convers Manag 99:282–298CrossRef Durak H (2015) Thermochemical conversion of Phellinus pomaceus via supercritical fluid extraction and pyrolysis processes. Energy Convers Manag 99:282–298CrossRef
35.
Zurück zum Zitat Akalın MK, Tekin K, Karagöz S (2012) Hydrothermal liquefaction of cornelian cherry stones for bio-oil production. Bioresour Technol 110:682–687CrossRef Akalın MK, Tekin K, Karagöz S (2012) Hydrothermal liquefaction of cornelian cherry stones for bio-oil production. Bioresour Technol 110:682–687CrossRef
36.
Zurück zum Zitat Peterson AA, Vogel F, Lachance RP, Fröling M, Antal MJ Jr, Teste JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65CrossRef Peterson AA, Vogel F, Lachance RP, Fröling M, Antal MJ Jr, Teste JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65CrossRef
37.
Zurück zum Zitat Durak H (2018) Trametes versicolor (L.) mushrooms liquefaction in supercritical solvents: Effects of operating conditions on product yields and chromatographic characterization. J Supercrit Fluid 131:140–149 Durak H (2018) Trametes versicolor (L.) mushrooms liquefaction in supercritical solvents: Effects of operating conditions on product yields and chromatographic characterization. J Supercrit Fluid 131:140–149
38.
Zurück zum Zitat Çolak U, Durak H, Genel S (2018) Hydrothermal liquefaction of Syrian mesquite (Prosopis farcta): Effects of operating parameters on product yields and characterization by different analysis methods. J Supercrit Fluid 140:53–61 Çolak U, Durak H, Genel S (2018) Hydrothermal liquefaction of Syrian mesquite (Prosopis farcta): Effects of operating parameters on product yields and characterization by different analysis methods. J Supercrit Fluid 140:53–61
Metadaten
Titel
Characterization of products obtained from hydrothermal liquefaction of biomass (Anchusa azurea) compared to other thermochemical conversion methods
verfasst von
Halil Durak
Publikationsdatum
04.02.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 2/2019
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-019-00379-4

Weitere Artikel der Ausgabe 2/2019

Biomass Conversion and Biorefinery 2/2019 Zur Ausgabe