Skip to main content
Erschienen in: Physics of Metals and Metallography 1/2020

01.01.2020 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Structure and Surface Properties of Metastable Austenitic Steel Subjected to Liquid Carburizing at a Reduced Temperature

verfasst von: R. A. Savrai, P. A. Skorynina, A. V. Makarov, A. L. Osintseva

Erschienen in: Physics of Metals and Metallography | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work investigates the effect of liquid carburizing at 780°C on the structure, chemical and phase composition, microhardness, and surface roughness of corrosion-resistant austenitic chromium-nickel steel. The depth of the carburized layer has been determined to be about 2 mm. The steel structure at a distance of 0.15 mm from the surface consists of carbon-saturated austenite γC, α' martensite, and fine Cr23C6 chromium carbides located along austenitic grain boundaries. No carbides are observed in the grain body. There are austenite γC and chromium Cr23C6 carbides in the structure at a depth from 0.15 to 2 mm. The number and the size of carbides decrease with distance from the steel surface. Carburizing increased the microhardness of the steel surface by a factor of four (from 200 to 800 HV0.025) and the roughness parameter Ra to 1.35 μm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. F. McGuire, Stainless Steels for Design Engineers (ASM Int., 2008).CrossRef M. F. McGuire, Stainless Steels for Design Engineers (ASM Int., 2008).CrossRef
2.
Zurück zum Zitat W. Qin, J. Kang, J. Li, W. Yue, Y. Liu, D. She, Q. Mao, and Y. Li, “Tribological behavior of the 316L stainless steel with heterogeneous lamella structure,” Materials 11 (10), art. 1839 (2018).CrossRef W. Qin, J. Kang, J. Li, W. Yue, Y. Liu, D. She, Q. Mao, and Y. Li, “Tribological behavior of the 316L stainless steel with heterogeneous lamella structure,” Materials 11 (10), art. 1839 (2018).CrossRef
3.
Zurück zum Zitat R. A. Savrai, A. V. Makarov, A. L. Osintseva, and I. Yu. Malygina, “Estimating the contact endurance of the AISI 321 stainless steel under contact gigacycle fatigue tests,” J. Mater. Eng. Perform. 27, 601–611 (2018).CrossRef R. A. Savrai, A. V. Makarov, A. L. Osintseva, and I. Yu. Malygina, “Estimating the contact endurance of the AISI 321 stainless steel under contact gigacycle fatigue tests,” J. Mater. Eng. Perform. 27, 601–611 (2018).CrossRef
4.
Zurück zum Zitat V. P. Kuznetsov, A. V. Makarov, A. L. Osintseva, A. S. Yurovskikh, R. A. Savrai, S. A. Rogovaya, and A. E. Kiryakov, “The increase of strength and surface quality of austenitic stainless steel parts by diamond burnishing on a turning/milling center,” Uprochn. Tekhnol. Pokryt., No. 11, 16–26 (2011). V. P. Kuznetsov, A. V. Makarov, A. L. Osintseva, A. S. Yurovskikh, R. A. Savrai, S. A. Rogovaya, and A. E. Kiryakov, “The increase of strength and surface quality of austenitic stainless steel parts by diamond burnishing on a turning/milling center,” Uprochn. Tekhnol. Pokryt., No. 11, 16–26 (2011).
5.
Zurück zum Zitat A. V. Makarov, P. A. Skorynina, A. L. Osintseva, A. S. Yurovskikh, and R. A. Savrai, “Improving the tribological properties of austenitic 12Kh18N10T steel by nanostructuring frictional treatment,” Obrab. Met. (Tekhnol., Oborud., Instrum.), No. 4 (69), 80–92 (2015). A. V. Makarov, P. A. Skorynina, A. L. Osintseva, A. S. Yurovskikh, and R. A. Savrai, “Improving the tribological properties of austenitic 12Kh18N10T steel by nanostructuring frictional treatment,” Obrab. Met. (Tekhnol., Oborud., Instrum.), No. 4 (69), 80–92 (2015).
6.
Zurück zum Zitat R. A. Savrai, A. V. Makarov, I. Yu. Malygina, S. A. Rogovaya, and A. L. Osintseva, “Improving the strength of the AISI 321 austenitic stainless steel by frictional treatment,” Diagnostics, Resource and Mechanics of Materials and Structures, No. 5, 43–62 (2017). http:// dream-journal.org/issues/2017-5/2017-5_149.html. R. A. Savrai, A. V. Makarov, I. Yu. Malygina, S. A. Rogovaya, and A. L. Osintseva, “Improving the strength of the AISI 321 austenitic stainless steel by frictional treatment,” Diagnostics, Resource and Mechanics of Materials and Structures, No. 5, 43–62 (2017). http:// dream-journal.org/issues/2017-5/2017-5_149.html.
7.
Zurück zum Zitat N. A. Narkevich, I. A. Shulepov and Yu. P. Mironov, “Structure, mechanical, and tribotechnical properties of an austenitic nitrogen steel after frictional treatment,” Phys. Met. Metallogr. 118, 399–406 (2017).CrossRef N. A. Narkevich, I. A. Shulepov and Yu. P. Mironov, “Structure, mechanical, and tribotechnical properties of an austenitic nitrogen steel after frictional treatment,” Phys. Met. Metallogr. 118, 399–406 (2017).CrossRef
8.
Zurück zum Zitat A. V. Makarov, P. A. Skorynina, A. S. Yurovskikh, and A. L. Osintseva, “Effect of the conditions of the nanostructuring frictional treatment process on the structural and phase states and the strengthening of metastable austenitic steel,” Phys. Met. Metallogr. 118, 1225–1235 (2017).CrossRef A. V. Makarov, P. A. Skorynina, A. S. Yurovskikh, and A. L. Osintseva, “Effect of the conditions of the nanostructuring frictional treatment process on the structural and phase states and the strengthening of metastable austenitic steel,” Phys. Met. Metallogr. 118, 1225–1235 (2017).CrossRef
9.
Zurück zum Zitat Y. Cao, F. Ernst, and G. M. Michal, “Colossal carbon supersaturation in austenitic stainless steels carburized at low temperature,” Acta Mater. 51, 4171–4181 (2003).CrossRef Y. Cao, F. Ernst, and G. M. Michal, “Colossal carbon supersaturation in austenitic stainless steels carburized at low temperature,” Acta Mater. 51, 4171–4181 (2003).CrossRef
10.
Zurück zum Zitat I. C. Silva, J. M. A. Rebello, A. C. Bruno, P. J. Jacques, B. Nysten, and J. Dille, “Structural and magnetic characterization of a carburized cast austenitic steel,” Scr. Mater. 59, 1010–1013 (2008).CrossRef I. C. Silva, J. M. A. Rebello, A. C. Bruno, P. J. Jacques, B. Nysten, and J. Dille, “Structural and magnetic characterization of a carburized cast austenitic steel,” Scr. Mater. 59, 1010–1013 (2008).CrossRef
11.
Zurück zum Zitat F. A. P. Fernandes and L. C. C. J. Gallego, “Microstructure of nitrided and nitrocarburized layers produced on a superaustenitic stainless steel,” J. Mater. Res. Technol. 2, 158–164 (2008).CrossRef F. A. P. Fernandes and L. C. C. J. Gallego, “Microstructure of nitrided and nitrocarburized layers produced on a superaustenitic stainless steel,” J. Mater. Res. Technol. 2, 158–164 (2008).CrossRef
12.
Zurück zum Zitat L. Ceschini, C. Chiavari, A. Marconi, and C. Martini, “Influence of the countermaterial on the dry sliding friction and wear behaviour of low temperature carburized AISI316L steel,” Tribol. Int. 67, 36–43 (2013).CrossRef L. Ceschini, C. Chiavari, A. Marconi, and C. Martini, “Influence of the countermaterial on the dry sliding friction and wear behaviour of low temperature carburized AISI316L steel,” Tribol. Int. 67, 36–43 (2013).CrossRef
13.
Zurück zum Zitat A. V. Makarov, N. V. Gavrilov, G. V. Samoilova, A. S. Mamaev, A. L. Osintseva, and R. A. Savrai, “Effect of a continuous and gas-cyclic plasma nitriding on the quality of nanostructured austenitic stainless steel,” Obrab. Met. (Tekhnol., Oborud., Instrum.), No. 2 (75), 55–66 (2017). A. V. Makarov, N. V. Gavrilov, G. V. Samoilova, A. S. Mamaev, A. L. Osintseva, and R. A. Savrai, “Effect of a continuous and gas-cyclic plasma nitriding on the quality of nanostructured austenitic stainless steel,” Obrab. Met. (Tekhnol., Oborud., Instrum.), No. 2 (75), 55–66 (2017).
14.
Zurück zum Zitat M. Tsujikawa, M. Egawa, T. Sone, N. Ueda, and K. Higashi, “Modification of S phase on austenitic stainless steel using fine particle shot peening steel,” Surf. Coat. Technol. 228, 318–322 (2013).CrossRef M. Tsujikawa, M. Egawa, T. Sone, N. Ueda, and K. Higashi, “Modification of S phase on austenitic stainless steel using fine particle shot peening steel,” Surf. Coat. Technol. 228, 318–322 (2013).CrossRef
15.
Zurück zum Zitat F. Ma, L. Pan, L. J. Zhang, Y. F. Zhu, P. Li, and M. Yang, “Structure and wear resistance of 0Cr17Ni14Mo2 austenitic stainless steel after low temperature gas carburising,” Mater. Res. Innovations 18, 1023–1027 (2014). F. Ma, L. Pan, L. J. Zhang, Y. F. Zhu, P. Li, and M. Yang, “Structure and wear resistance of 0Cr17Ni14Mo2 austenitic stainless steel after low temperature gas carburising,” Mater. Res. Innovations 18, 1023–1027 (2014).
16.
Zurück zum Zitat L. H. Cheng and K. S. Hwang, “Surface hardening of powder injection molded 316l stainless steels through low-temperature carburization,” Metall. Mater. Trans. A 44, 827–834 (2013).CrossRef L. H. Cheng and K. S. Hwang, “Surface hardening of powder injection molded 316l stainless steels through low-temperature carburization,” Metall. Mater. Trans. A 44, 827–834 (2013).CrossRef
17.
Zurück zum Zitat P. A. Skorynina, A. V. Makarov, A. I. Men’shakov, and A. L. Osintseva, “Effect of low-temperature carburization in electron-beam plasma on the hardening and surface roughness of the metastable austenitic steel,” Obrab. Met. (Tekhnol., Oborud., Instrum.) 21, 97–109 (2019). P. A. Skorynina, A. V. Makarov, A. I. Men’shakov, and A. L. Osintseva, “Effect of low-temperature carburization in electron-beam plasma on the hardening and surface roughness of the metastable austenitic steel,” Obrab. Met. (Tekhnol., Oborud., Instrum.) 21, 97–109 (2019).
18.
Zurück zum Zitat L. G. Korshunov, V. V. Sagaradze, N. L. Chernenko, and V. A. Shabashov, “Friction-induced structural transformations of the carbide phase in Hadfield steel,” Phys. Met. Metallogr. 116, 823–828 (2015).CrossRef L. G. Korshunov, V. V. Sagaradze, N. L. Chernenko, and V. A. Shabashov, “Friction-induced structural transformations of the carbide phase in Hadfield steel,” Phys. Met. Metallogr. 116, 823–828 (2015).CrossRef
19.
Zurück zum Zitat R. A. Savrai, A. V. Makarov, I. Yu. Pyshmintsev, and M. A. Uimin, “Use of a magnetic method for estimating the deformation stability of retained austenite in sheet high-strength economically alloyed steels used in the automotive industry,” Russ. J. Nondestr. Test. 42, 203–207 (2006).CrossRef R. A. Savrai, A. V. Makarov, I. Yu. Pyshmintsev, and M. A. Uimin, “Use of a magnetic method for estimating the deformation stability of retained austenite in sheet high-strength economically alloyed steels used in the automotive industry,” Russ. J. Nondestr. Test. 42, 203–207 (2006).CrossRef
20.
Zurück zum Zitat V. V. Sagaradze and A. I. Uvarov, Strengthening and Properties of Austenitic Alloys (RIO UrO RAN, Ekaterinburg, 2013) [in Russian]. V. V. Sagaradze and A. I. Uvarov, Strengthening and Properties of Austenitic Alloys (RIO UrO RAN, Ekaterinburg, 2013) [in Russian].
21.
Zurück zum Zitat G. Maistro, L. Nyborg, S. Vezzu, and Y. Cao, “Microstructural characterization and layer stability of low-temperature carburized AISI 304L and AISI 904L austenitic stainless steel,” La Metallurgia Italiana, Nos. 11–12, 21‒30 (2015). G. Maistro, L. Nyborg, S. Vezzu, and Y. Cao, “Microstructural characterization and layer stability of low-temperature carburized AISI 304L and AISI 904L austenitic stainless steel,” La Metallurgia Italiana, Nos. 11–12, 21‒30 (2015).
22.
Zurück zum Zitat S. R. Collins, P. C. Williams, S. V. Marx, A. Heuer, F. Ernst, and H. Kahn, “Low-temperature carburization of austenitic stainless steel” in ASM Handbook. Vol. 4D, Heat Treating of Irons and Steels, Ed. by J. Dossett and G. E. Totten, (ASM Int., 2014), pp. 451–460. S. R. Collins, P. C. Williams, S. V. Marx, A. Heuer, F. Ernst, and H. Kahn, “Low-temperature carburization of austenitic stainless steel” in ASM Handbook. Vol. 4D, Heat Treating of Irons and Steels, Ed. by J. Dossett and G. E. Totten, (ASM Int., 2014), pp. 451–460.
23.
Zurück zum Zitat X. Tong, T. Zhang, and W. Ye, “Effect of carburizing atmosphere proportion on low temperature plasma carburizing of austenitic stainless steel,” Adv. Mater. Mech. Ind. Eng. 598, 90–93 (2014). X. Tong, T. Zhang, and W. Ye, “Effect of carburizing atmosphere proportion on low temperature plasma carburizing of austenitic stainless steel,” Adv. Mater. Mech. Ind. Eng. 598, 90–93 (2014).
24.
Zurück zum Zitat M. C. S. Duarte, C. Godoya, and J. C. A. B. Wilson, “Analysis of sliding wear tests of plasma processed AISI 316L steel,” Surf. Coat. Technol. 260, 316–325 (2014).CrossRef M. C. S. Duarte, C. Godoya, and J. C. A. B. Wilson, “Analysis of sliding wear tests of plasma processed AISI 316L steel,” Surf. Coat. Technol. 260, 316–325 (2014).CrossRef
25.
Zurück zum Zitat T. L. Christiansen, K. Ståhl, B. K. Brink, and M. A. J. Somers, “On the carbon solubility in expanded austenite and formation of Hägg carbide in AISI 316 stainless steel,” Steel Res. Int. 87, 1395–1405 (2016).CrossRef T. L. Christiansen, K. Ståhl, B. K. Brink, and M. A. J. Somers, “On the carbon solubility in expanded austenite and formation of Hägg carbide in AISI 316 stainless steel,” Steel Res. Int. 87, 1395–1405 (2016).CrossRef
26.
Zurück zum Zitat Y. Sun, “Kinetics of low temperature plasma carburizing of austenitic stainless steels,” J. Mater. Process. Technol. 168, 189–194 (2005).CrossRef Y. Sun, “Kinetics of low temperature plasma carburizing of austenitic stainless steels,” J. Mater. Process. Technol. 168, 189–194 (2005).CrossRef
Metadaten
Titel
Structure and Surface Properties of Metastable Austenitic Steel Subjected to Liquid Carburizing at a Reduced Temperature
verfasst von
R. A. Savrai
P. A. Skorynina
A. V. Makarov
A. L. Osintseva
Publikationsdatum
01.01.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 1/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20010135

Weitere Artikel der Ausgabe 1/2020

Physics of Metals and Metallography 1/2020 Zur Ausgabe