Skip to main content
Erschienen in: Journal of Computer and Systems Sciences International 4/2020

01.07.2020 | CONTROL IN DETERMINISTIC SYSTEMS

Unstable Oscillating Systems with Hysteresis: Problems of Stabilization and Control

verfasst von: A. L. Medvedskii, P. A. Meleshenko, V. A. Nesterov, O. O. Reshetova, M. E. Semenov, A. M. Solovyov

Erschienen in: Journal of Computer and Systems Sciences International | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The work is devoted to studying the dynamics of unstable oscillating systems (in the form of an inverted pendulum) controlled by the action of a hysteretic type. The results for different types of motion of a suspension point are presented, in particular, for vertical and horizontal motion. A mathematical model of the inverted pendulum with an oscillating suspension is considered. For this pendulum the explicit criteria of stability are obtained using the linearized equations of motion. The dependences between the initial conditions and the value of the control parameters providing periodic oscillations of the pendulum are described. A mathematical model of the inverted pendulum with feedback control is given under the conditions of the horizontal motion of the suspension point. The conditions that guarantee the stabilization of the considered system are obtained; the conditions are formulated in terms of constraints on the initial conditions. The solution to the problem of the optimal control of an oscillating system is presented in the sense of minimization of a quadratic goal functional. The stabilization problem for an unstable system with distributed parameters, the flexible inverted pendulum, is also considered, and the stabilization conditions are formulated. Fulfilment of these conditions ensures the boundedness of the phase coordinates in the infinite interval of time. The optimal parameters (in the sense of minimization of a quadratic goal functional) corresponding to stabilization of the distributed system are identified.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. L. Kapitsa, “Pendulum with vibrating suspension,” Usp. Fiz. Nauk 44, 7–20 (1951).CrossRef P. L. Kapitsa, “Pendulum with vibrating suspension,” Usp. Fiz. Nauk 44, 7–20 (1951).CrossRef
2.
Zurück zum Zitat P. L. Kapitsa, “Dynamic stability of the pendulum with an oscillating suspension point,” Zh. Eksp. Teor. Fiz. 21, 588–597 (1951).MathSciNet P. L. Kapitsa, “Dynamic stability of the pendulum with an oscillating suspension point,” Zh. Eksp. Teor. Fiz. 21, 588–597 (1951).MathSciNet
3.
Zurück zum Zitat A. Stephenson, “On an induced stability,” Phylos. Mag. 15, 233 (1908).CrossRef A. Stephenson, “On an induced stability,” Phylos. Mag. 15, 233 (1908).CrossRef
4.
Zurück zum Zitat E. I. Butikov, “An improved criterion for Kapitza’s pendulum stability,” J. Phys. A: Math. Theor. 44, 295202 (2011).MathSciNetCrossRef E. I. Butikov, “An improved criterion for Kapitza’s pendulum stability,” J. Phys. A: Math. Theor. 44, 295202 (2011).MathSciNetCrossRef
5.
Zurück zum Zitat E. I. Butikov, “Oscillations of a simple pendulum with extremely large amplitudes,” Eur. J. Phys. 33, 1555–1563 (2012).CrossRef E. I. Butikov, “Oscillations of a simple pendulum with extremely large amplitudes,” Eur. J. Phys. 33, 1555–1563 (2012).CrossRef
6.
Zurück zum Zitat Y. V. Mikheev, V. A. Sobolev, and E. M. Fridman, “Asymptotic analysis of digital control systems,” Autom. Remote Control 49, 1175–1180 (1988).MathSciNetMATH Y. V. Mikheev, V. A. Sobolev, and E. M. Fridman, “Asymptotic analysis of digital control systems,” Autom. Remote Control 49, 1175–1180 (1988).MathSciNetMATH
7.
Zurück zum Zitat M. E. Semenov, O. O. Reshetova, A. V. Tolkachev, A. M. Solovyov, and P. A. Meleshenko, “Oscillations under hysteretic conditions: From simple oscillator to discrete Sine-Gordon model,” in Topics in Nonlinear Mechanics and Physics: Selected Papers from CSNDD 2018 (Singapore, 2019), pp. 229–253. M. E. Semenov, O. O. Reshetova, A. V. Tolkachev, A. M. Solovyov, and P. A. Meleshenko, “Oscillations under hysteretic conditions: From simple oscillator to discrete Sine-Gordon model,” in Topics in Nonlinear Mechanics and Physics: Selected Papers from CSNDD 2018 (Singapore, 2019), pp. 229–253.
8.
Zurück zum Zitat M. E. Semenov, M. G. Matveev, P. A. Meleshenko, and A. M. Solov’ev, “Dynamics of a damping device based on ishlinsky material,” Mekhatron., Avtomatiz., Upravl., No. 20, 106–113 (2019). M. E. Semenov, M. G. Matveev, P. A. Meleshenko, and A. M. Solov’ev, “Dynamics of a damping device based on ishlinsky material,” Mekhatron., Avtomatiz., Upravl., No. 20, 106–113 (2019).
9.
Zurück zum Zitat M. E. Semenov, M. G. Matveev, G. N. Lebedev, and A. M. Solov’ev, “Stabilization of a flexible inverted pendulum with the hysteretic properties,” Mekhatron., Avtomatiz., Upravl., No. 8, 516–525 (2017). M. E. Semenov, M. G. Matveev, G. N. Lebedev, and A. M. Solov’ev, “Stabilization of a flexible inverted pendulum with the hysteretic properties,” Mekhatron., Avtomatiz., Upravl., No. 8, 516–525 (2017).
10.
Zurück zum Zitat Z. Y. Zhang and X. J. Miao, “Global existence and uniform decay forwave equation with dissipative term and boundary damping,” Comput. Math. Appl. 59, 1003–1018 (2010).MathSciNetCrossRef Z. Y. Zhang and X. J. Miao, “Global existence and uniform decay forwave equation with dissipative term and boundary damping,” Comput. Math. Appl. 59, 1003–1018 (2010).MathSciNetCrossRef
11.
Zurück zum Zitat E. I. Butikov, “Subharmonic resonances of the parametrically driven pendulum,” J. Phys. A: Math. Theor. 35, 6209–6231 (2002).CrossRef E. I. Butikov, “Subharmonic resonances of the parametrically driven pendulum,” J. Phys. A: Math. Theor. 35, 6209–6231 (2002).CrossRef
12.
Zurück zum Zitat J. Y. Sun, X. C. Huang, and X. T. Liu, “Study on the force transmissibility of vibration isolators with geometric nonlinear,” Nonlin. Dyn. 74, 1103–1112 (2013).CrossRef J. Y. Sun, X. C. Huang, and X. T. Liu, “Study on the force transmissibility of vibration isolators with geometric nonlinear,” Nonlin. Dyn. 74, 1103–1112 (2013).CrossRef
13.
Zurück zum Zitat V. I. Ryazhskikh, M. E. Semenov, A. G. Rukavitsyn, O. I. Kanishcheva, A. A. Demchuk, and P. A. Meleshenko, “Stabilization of inverted pendulum on a two-wheeled vehicle,” Vestn. YuUGU, Ser. Mat., Fiz., Mekh. 9 (3), 27–33 (2017).MATH V. I. Ryazhskikh, M. E. Semenov, A. G. Rukavitsyn, O. I. Kanishcheva, A. A. Demchuk, and P. A. Meleshenko, “Stabilization of inverted pendulum on a two-wheeled vehicle,” Vestn. YuUGU, Ser. Mat., Fiz., Mekh. 9 (3), 27–33 (2017).MATH
14.
Zurück zum Zitat F. L. Chernous’ko, L. D. Akulenko, and B. N. Sokolov, Swing Control (Nauka, Moscow, 1980) [in Russian. F. L. Chernous’ko, L. D. Akulenko, and B. N. Sokolov, Swing Control (Nauka, Moscow, 1980) [in Russian.
15.
Zurück zum Zitat Lipo Wang and J. Ross, “Synchronous neural networks of nonlinear threshold elements with hysteresis,” Neurobiology 87, 988–992 (1990). Lipo Wang and J. Ross, “Synchronous neural networks of nonlinear threshold elements with hysteresis,” Neurobiology 87, 988–992 (1990).
16.
Zurück zum Zitat Z. Y. Zhang, Z. H. Liu, X. J. Miao, and Y. Z. Chen, “Global existence and uniform stabilization of a generalized dissipative Klein-Gordon equation type with boundary damping,” Math. Phys. 52, 023502 (2011).MathSciNetCrossRef Z. Y. Zhang, Z. H. Liu, X. J. Miao, and Y. Z. Chen, “Global existence and uniform stabilization of a generalized dissipative Klein-Gordon equation type with boundary damping,” Math. Phys. 52, 023502 (2011).MathSciNetCrossRef
17.
Zurück zum Zitat A. M. Solovyov, M. E. Semenov, P. A. Meleshenko, O. O. Reshetova, M. A. Popov, and E. G. Kabulova, “Hysteretic nonlinearity and unbounded solutions in oscillating systems,” Proc. Eng. 201, 578–583 (2017).CrossRef A. M. Solovyov, M. E. Semenov, P. A. Meleshenko, O. O. Reshetova, M. A. Popov, and E. G. Kabulova, “Hysteretic nonlinearity and unbounded solutions in oscillating systems,” Proc. Eng. 201, 578–583 (2017).CrossRef
18.
Zurück zum Zitat M. E. Semenov, A. M. Solovyov, J. M. Balthazar, and P. A. Meleshenko, “Nonlinear damping: From viscous to hysteretic,” in Recent Trends in Applied Nonlinear Mechanics and Physics, Ed. by M. Belhaq, Springer Proc. Phys. 199, 259–275 (2018). M. E. Semenov, A. M. Solovyov, J. M. Balthazar, and P. A. Meleshenko, “Nonlinear damping: From viscous to hysteretic,” in Recent Trends in Applied Nonlinear Mechanics and Physics, Ed. by M. Belhaq, Springer Proc. Phys. 199, 259–275 (2018).
19.
Zurück zum Zitat S. A. Reshmin, “Finding the principal bifurcation value of the maximum control torque in the problem of optimal control synthesis for a pendulum,” J. Comput. Syst. Sci. Int. 47, 163 (2008).MathSciNetCrossRef S. A. Reshmin, “Finding the principal bifurcation value of the maximum control torque in the problem of optimal control synthesis for a pendulum,” J. Comput. Syst. Sci. Int. 47, 163 (2008).MathSciNetCrossRef
20.
Zurück zum Zitat S. A. Reshmin and F. L. Chernous’ko, “Time-optimal control of an inverted pendulum in the feedback form,” J. Comput. Syst. Sci. Int. 45, 383 (2006).MathSciNetCrossRef S. A. Reshmin and F. L. Chernous’ko, “Time-optimal control of an inverted pendulum in the feedback form,” J. Comput. Syst. Sci. Int. 45, 383 (2006).MathSciNetCrossRef
21.
Zurück zum Zitat N. V. Anokhin, “Bringing a multilink pendulum to the equilibrium position using a single control torque,” J. Comput. Syst. Sci. Int. 52, 717 (2013).MathSciNetCrossRef N. V. Anokhin, “Bringing a multilink pendulum to the equilibrium position using a single control torque,” J. Comput. Syst. Sci. Int. 52, 717 (2013).MathSciNetCrossRef
22.
Zurück zum Zitat A. M. Formal’skii, “On stabilization of an inverted double pendulum with one control torque,” J. Comput. Syst. Sci. Int. 45, 337 (2006).MathSciNetCrossRef A. M. Formal’skii, “On stabilization of an inverted double pendulum with one control torque,” J. Comput. Syst. Sci. Int. 45, 337 (2006).MathSciNetCrossRef
23.
Zurück zum Zitat S. V. Aranovskii, A. E. Biryuk, E. V. Nikulchev, I. V. Ryadchikov, and D. V. Sokolov, “Observer design for an inverted pendulum with biased position sensors,” J. Comput. Syst. Sci. Int. 58, 297 (2019).CrossRef S. V. Aranovskii, A. E. Biryuk, E. V. Nikulchev, I. V. Ryadchikov, and D. V. Sokolov, “Observer design for an inverted pendulum with biased position sensors,” J. Comput. Syst. Sci. Int. 58, 297 (2019).CrossRef
24.
Zurück zum Zitat M. S. Osintsev and V. A. Sobolev, “Reduction of dimension of optimal estimation problems for dynamical systems with singular perturbations,” Comput. Math. Math. Phys. 54, 45 (2014).MathSciNetCrossRef M. S. Osintsev and V. A. Sobolev, “Reduction of dimension of optimal estimation problems for dynamical systems with singular perturbations,” Comput. Math. Math. Phys. 54, 45 (2014).MathSciNetCrossRef
25.
Zurück zum Zitat K. Magnus, Vibrations (Blackie and Son, London, 1965). K. Magnus, Vibrations (Blackie and Son, London, 1965).
26.
Zurück zum Zitat R. A. Nelepin, Research Methods for Nonlinear Automatic Control Systems, Ed. by R. A. Nelepin (Nauka, Moscow, 1979) [in Russian]. R. A. Nelepin, Research Methods for Nonlinear Automatic Control Systems, Ed. by R. A. Nelepin (Nauka, Moscow, 1979) [in Russian].
27.
Zurück zum Zitat M. A. Krasnosel’skii and A. V. Pokrovskii, Hysteresis Systems (Nauka, Moscow, 1983) [in Russian].MATH M. A. Krasnosel’skii and A. V. Pokrovskii, Hysteresis Systems (Nauka, Moscow, 1983) [in Russian].MATH
28.
Zurück zum Zitat N. V. Butenin, Yu. I. Neimark, and N. L. Fufaev, Introduction to the Theory of Nonlinear Oscillations (Nauka, Moscow, 1987) [in Russian].MATH N. V. Butenin, Yu. I. Neimark, and N. L. Fufaev, Introduction to the Theory of Nonlinear Oscillations (Nauka, Moscow, 1987) [in Russian].MATH
29.
Zurück zum Zitat V. A. Pliss, Nonlocal Problems of the Theory of Oscillations (Nauka, Moscow, 1964) [in Russian]. V. A. Pliss, Nonlocal Problems of the Theory of Oscillations (Nauka, Moscow, 1964) [in Russian].
30.
Zurück zum Zitat M. A. Krasnosel’skii and A. V. Pokrovskii, “Periodic oscillations in systems with relay nonlinearities,” Dokl. Akad. Nauk SSSR 216, 733–736 (1974).MathSciNet M. A. Krasnosel’skii and A. V. Pokrovskii, “Periodic oscillations in systems with relay nonlinearities,” Dokl. Akad. Nauk SSSR 216, 733–736 (1974).MathSciNet
31.
Zurück zum Zitat F. R. Gantmakher, Matrix Theory (Nauka, Moscow, 1966) [in Russian]. F. R. Gantmakher, Matrix Theory (Nauka, Moscow, 1966) [in Russian].
32.
Zurück zum Zitat Chao Xu and Xin Yu, “Mathematical model of elastic inverted pendulum control system,” J. Control Theory Appl. 3, 281–282 (2004).CrossRef Chao Xu and Xin Yu, “Mathematical model of elastic inverted pendulum control system,” J. Control Theory Appl. 3, 281–282 (2004).CrossRef
33.
Zurück zum Zitat M. Dadfarnia, N. Jalili, B. Xian, and D. M. Dawson, “A Lyapunov-based piezoelectric controller for flexible cartesian robot manipulators,” J. Dyn. Syst., Meas. Control 126, 347 (2004).CrossRef M. Dadfarnia, N. Jalili, B. Xian, and D. M. Dawson, “A Lyapunov-based piezoelectric controller for flexible cartesian robot manipulators,” J. Dyn. Syst., Meas. Control 126, 347 (2004).CrossRef
34.
Zurück zum Zitat E. P. Dadios, P. S. Fernandez, and D. J. Williams, “Genetic algorithm on line controller for the flexible inverted pendulum,” J. Adv. Comput. Intell. Intell. Inform. 10 (2) (2006). E. P. Dadios, P. S. Fernandez, and D. J. Williams, “Genetic algorithm on line controller for the flexible inverted pendulum,” J. Adv. Comput. Intell. Intell. Inform. 10 (2) (2006).
35.
Zurück zum Zitat Zheng-Hua Luo and Bao-Zhu Guo, “Shear force feedback control of a single-link flexible robot with a revolute joint,” IEEE Trans. Autom. Control 42 (1) (1997). Zheng-Hua Luo and Bao-Zhu Guo, “Shear force feedback control of a single-link flexible robot with a revolute joint,” IEEE Trans. Autom. Control 42 (1) (1997).
36.
Zurück zum Zitat Guangpu Xia, Tang Zheng, and Yong Li, “Hopfield neural network with hysteresis for maximum cut problem,” Neural Inform. Process. Lett. Rev. 4 (5) (2004). Guangpu Xia, Tang Zheng, and Yong Li, “Hopfield neural network with hysteresis for maximum cut problem,” Neural Inform. Process. Lett. Rev. 4 (5) (2004).
37.
Zurück zum Zitat J. T. Pierce-Shimomura, T. M. Morse, and S. R. Lockery, “The fundamental role of pirouettes in caenorhabditis elegance chemotaxis,” Neuroscience 19, 9557–9569 (1999).CrossRef J. T. Pierce-Shimomura, T. M. Morse, and S. R. Lockery, “The fundamental role of pirouettes in caenorhabditis elegance chemotaxis,” Neuroscience 19, 9557–9569 (1999).CrossRef
Metadaten
Titel
Unstable Oscillating Systems with Hysteresis: Problems of Stabilization and Control
verfasst von
A. L. Medvedskii
P. A. Meleshenko
V. A. Nesterov
O. O. Reshetova
M. E. Semenov
A. M. Solovyov
Publikationsdatum
01.07.2020
Verlag
Pleiades Publishing
Erschienen in
Journal of Computer and Systems Sciences International / Ausgabe 4/2020
Print ISSN: 1064-2307
Elektronische ISSN: 1555-6530
DOI
https://doi.org/10.1134/S1064230720030090

Weitere Artikel der Ausgabe 4/2020

Journal of Computer and Systems Sciences International 4/2020 Zur Ausgabe

CONTROL SYSTEMS OF MOVING OBJECTS

Hybrid Simulation of Spacecraft Berthing

Premium Partner