Skip to main content

2013 | OriginalPaper | Buchkapitel

8. Lithium Ion Batteries, Electrochemical Reactions in

verfasst von : Paul J. Sideris, Steve G. Greenbaum

Erschienen in: Batteries for Sustainability

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Despite their spectacular success in portable electronics applications, continued technical advances of lithium-ion batteries are crucial to establishing large-scale storage applications such as electric vehicles and enabling development of renewable intermittent energy sources, i.e., wind and solar. Paramount considerations in realizing scaled-up battery systems are safety, cost, energy density, and service lifetime. Some of these applications also require rapid charge and discharge capability. To move beyond the current generation of lithium-ion batteries, it is necessary to understand some of the outstanding materials issues of the individual components (i.e., electrodes and electrolytes) as well as the battery system as a whole where the components interact under conditions of elevated temperature and electric current flow.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Goodenough J, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef Goodenough J, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef
2.
Zurück zum Zitat Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science 192(4244):1126–1127CrossRef Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science 192(4244):1126–1127CrossRef
3.
Zurück zum Zitat Dahn JR, von Sacken U, Juzkow MW, Al-Janaby H (1991) Rechargeable LiNiO2/carbon cells. J Electrochem Soc 138:2207–2211CrossRef Dahn JR, von Sacken U, Juzkow MW, Al-Janaby H (1991) Rechargeable LiNiO2/carbon cells. J Electrochem Soc 138:2207–2211CrossRef
4.
Zurück zum Zitat Delmas C, Peres J, Rougier A, Demourgues A, Weill F, Chadwick A, Broussely M, Perton F, Biensan P, Willmann P (1997) On the behavior of the LixNiO2 system: an electrochemical and structural overview. J Power Sources 68(1):120–125CrossRef Delmas C, Peres J, Rougier A, Demourgues A, Weill F, Chadwick A, Broussely M, Perton F, Biensan P, Willmann P (1997) On the behavior of the LixNiO2 system: an electrochemical and structural overview. J Power Sources 68(1):120–125CrossRef
5.
Zurück zum Zitat Saadoune I, Delmas C (1996) LiNi1–yCoyO2 positive electrode materials: relationships between the structure, physical properties and electrochemical behaviour. J Mater Chem 6(2):193–199CrossRef Saadoune I, Delmas C (1996) LiNi1–yCoyO2 positive electrode materials: relationships between the structure, physical properties and electrochemical behaviour. J Mater Chem 6(2):193–199CrossRef
6.
Zurück zum Zitat Capitaine F, Gravereau P, Delmas C (1996) A new variety of LiMnO2 with a layered structure. Solid State Ion 89(3–4):197–202CrossRef Capitaine F, Gravereau P, Delmas C (1996) A new variety of LiMnO2 with a layered structure. Solid State Ion 89(3–4):197–202CrossRef
7.
Zurück zum Zitat Rossen E, Jones C, Dahn J (1992) Structure and electrochemistry of LixMnyNi1–yO2. Solid State Ion 57(3–4):311–318CrossRef Rossen E, Jones C, Dahn J (1992) Structure and electrochemistry of LixMnyNi1–yO2. Solid State Ion 57(3–4):311–318CrossRef
8.
Zurück zum Zitat Liu Z, Yu A, Lee J (1999) Synthesis and characterization of LiNi1–x–yCoxMnyO2 as the cathode materials of secondary lithium batteries. J Power Sources 82:416–419CrossRef Liu Z, Yu A, Lee J (1999) Synthesis and characterization of LiNi1–x–yCoxMnyO2 as the cathode materials of secondary lithium batteries. J Power Sources 82:416–419CrossRef
9.
Zurück zum Zitat Yoshio M, Noguchi H, Itoh J, Okada M, Mouri T (2000) Preparation and properties of LiCoyMnxNi1–x–yO2 as a cathode for lithium ion batteries. J Power Sources 90(2):176–181CrossRef Yoshio M, Noguchi H, Itoh J, Okada M, Mouri T (2000) Preparation and properties of LiCoyMnxNi1–x–yO2 as a cathode for lithium ion batteries. J Power Sources 90(2):176–181CrossRef
10.
Zurück zum Zitat Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499CrossRef Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499CrossRef
11.
Zurück zum Zitat Li H, Richter G, Maier J (2003) Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv Mater 15(9):736–739 (Weinheim, Germany)CrossRef Li H, Richter G, Maier J (2003) Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv Mater 15(9):736–739 (Weinheim, Germany)CrossRef
12.
Zurück zum Zitat Li H, Balaya P, Maier J (2004) Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J Electrochem Soc 151(11):A1878–A1885CrossRef Li H, Balaya P, Maier J (2004) Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J Electrochem Soc 151(11):A1878–A1885CrossRef
13.
Zurück zum Zitat Badway F, Cosandey F, Pereira N, Amatucci G (2003) Carbon metal fluoride nanocomposites – high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J Electrochem Soc 150(10):A1318–A1327CrossRef Badway F, Cosandey F, Pereira N, Amatucci G (2003) Carbon metal fluoride nanocomposites – high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J Electrochem Soc 150(10):A1318–A1327CrossRef
14.
Zurück zum Zitat Badway F, Pereira N, Cosandey F, Amatucci G (2003) Carbon-metal fluoride nanocomposites – structure and electrochemistry of FeF3: C. J Electrochem Soc 150(9):A1209–A1218CrossRef Badway F, Pereira N, Cosandey F, Amatucci G (2003) Carbon-metal fluoride nanocomposites – structure and electrochemistry of FeF3: C. J Electrochem Soc 150(9):A1209–A1218CrossRef
15.
Zurück zum Zitat Badway F, Mansour A, Pereira N, Al-Sharab J, Cosandey F, Plitz I, Amatucci G (2007) Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices. Chem Mater 19(17):4129–4141CrossRef Badway F, Mansour A, Pereira N, Al-Sharab J, Cosandey F, Plitz I, Amatucci G (2007) Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices. Chem Mater 19(17):4129–4141CrossRef
16.
Zurück zum Zitat Armand M (1994) The history of polymer electrolytes. Solid State Ion 69:309–319CrossRef Armand M (1994) The history of polymer electrolytes. Solid State Ion 69:309–319CrossRef
17.
Zurück zum Zitat Armand M (1986) Polymer electrolytes. Annu Rev Mater Sci 16:245–261CrossRef Armand M (1986) Polymer electrolytes. Annu Rev Mater Sci 16:245–261CrossRef
18.
Zurück zum Zitat Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali-metal ions with poly(ethylene oxide). Polymer 14(11):589CrossRef Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali-metal ions with poly(ethylene oxide). Polymer 14(11):589CrossRef
19.
Zurück zum Zitat Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef
20.
Zurück zum Zitat Myung ST, Komaba S, Hirosaki N, Yashiro H, Kumagai N (2004) Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material. Electrochim Acta 49(24):4213–4222CrossRef Myung ST, Komaba S, Hirosaki N, Yashiro H, Kumagai N (2004) Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material. Electrochim Acta 49(24):4213–4222CrossRef
21.
Zurück zum Zitat Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRef Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRef
22.
Zurück zum Zitat Proffen T, Billinge SJL (1999) PDFFIT, a program for full profile structural refinement of the atomic pair distribution function. J Appl Crystallogr 32:572–575CrossRef Proffen T, Billinge SJL (1999) PDFFIT, a program for full profile structural refinement of the atomic pair distribution function. J Appl Crystallogr 32:572–575CrossRef
23.
Zurück zum Zitat McGreevy RL, Pusztai L (1988) Reverse monte carlo simulation: a new technique for the determination of disordered structures. Mol Simul 1:359–367CrossRef McGreevy RL, Pusztai L (1988) Reverse monte carlo simulation: a new technique for the determination of disordered structures. Mol Simul 1:359–367CrossRef
24.
Zurück zum Zitat Dedryvere R, Laruelle S, Grugeon S, Poizot P, Gonbeau D, Tarascon JM (2004) Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium. Chem Mater 16(6):1056–1061CrossRef Dedryvere R, Laruelle S, Grugeon S, Poizot P, Gonbeau D, Tarascon JM (2004) Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium. Chem Mater 16(6):1056–1061CrossRef
25.
Zurück zum Zitat Alamgir FM, Petersburg CF, Daniel RC, Jaye C, Fischer DA (2009) Soft X-ray characterization technique for Li batteries under operating conditions. J Synchrotron Radiat 16:610–615CrossRef Alamgir FM, Petersburg CF, Daniel RC, Jaye C, Fischer DA (2009) Soft X-ray characterization technique for Li batteries under operating conditions. J Synchrotron Radiat 16:610–615CrossRef
26.
Zurück zum Zitat Stern EA (1974) Theory of extended X-Ray-absorption fine-structure. Phys Rev B 10(8):3027–3037CrossRef Stern EA (1974) Theory of extended X-Ray-absorption fine-structure. Phys Rev B 10(8):3027–3037CrossRef
27.
Zurück zum Zitat Sayers DE, Stern EA, Lytle FW (1971) New technique for investigating noncrystalline structures – Fourier analysis of extended X-ray – absorption fine structure. Phys Rev Lett 27(18):1204–1207CrossRef Sayers DE, Stern EA, Lytle FW (1971) New technique for investigating noncrystalline structures – Fourier analysis of extended X-ray – absorption fine structure. Phys Rev Lett 27(18):1204–1207CrossRef
28.
Zurück zum Zitat Tsai YW, Hwang BJ, Ceder G, Sheu HS, Liu DG, Lee JF (2005) In-situ X-ray absorption spectroscopic study on variation of electronic transitions and local structure of LiNi1/3Co1/3Mn1/3O2 cathode material during electrochemical cycling. Chem Mater 17(12):3191–3199CrossRef Tsai YW, Hwang BJ, Ceder G, Sheu HS, Liu DG, Lee JF (2005) In-situ X-ray absorption spectroscopic study on variation of electronic transitions and local structure of LiNi1/3Co1/3Mn1/3O2 cathode material during electrochemical cycling. Chem Mater 17(12):3191–3199CrossRef
29.
Zurück zum Zitat Yoon W, Kim N, Yang X, McBreen J, Grey C (2003) Li-6 MAS NMR and in situ X-ray studies of lithium nickel manganese oxides. J Power Sources 119:649–653CrossRef Yoon W, Kim N, Yang X, McBreen J, Grey C (2003) Li-6 MAS NMR and in situ X-ray studies of lithium nickel manganese oxides. J Power Sources 119:649–653CrossRef
30.
Zurück zum Zitat Grey CP, Lee YJ (2003) Lithium MAS NMR studies of cathode materials for lithium-ion batteries. Solid State Sci 5(6):883–894CrossRef Grey CP, Lee YJ (2003) Lithium MAS NMR studies of cathode materials for lithium-ion batteries. Solid State Sci 5(6):883–894CrossRef
31.
Zurück zum Zitat Carlier D, Menetrier M, Grey C, Delmas C, Ceder G (2003) Understanding the NMR shifts in paramagnetic transition metal oxides using density functional theory calculations. Phys Rev B 67 174103:1–14 Carlier D, Menetrier M, Grey C, Delmas C, Ceder G (2003) Understanding the NMR shifts in paramagnetic transition metal oxides using density functional theory calculations. Phys Rev B 67 174103:1–14
32.
Zurück zum Zitat Letellier M, Chevallier F, Beguin F, Frackowiak E, Rouzaud J (2004) The first in situ Li-7 NMR study of the reversible lithium insertion mechanism in disorganised carbons. J Phys Chem Solids 65(2–3):245–251CrossRef Letellier M, Chevallier F, Beguin F, Frackowiak E, Rouzaud J (2004) The first in situ Li-7 NMR study of the reversible lithium insertion mechanism in disorganised carbons. J Phys Chem Solids 65(2–3):245–251CrossRef
33.
Zurück zum Zitat Levitt MH (2001) Spin dynamics: basics of nuclear magnetic resonance. Wiley, New York Levitt MH (2001) Spin dynamics: basics of nuclear magnetic resonance. Wiley, New York
34.
Zurück zum Zitat Slichter CP (1990) Principles of nuclear magnetic resonance. Springer, Berlin Slichter CP (1990) Principles of nuclear magnetic resonance. Springer, Berlin
35.
Zurück zum Zitat Stejskal E, Tanner J (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292CrossRef Stejskal E, Tanner J (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292CrossRef
36.
Zurück zum Zitat Kimmich R, Unrath W, Schnur G, Rommel E (1991) NMR measurement of small self-diffusion coefficients in the fringe-field of superconducting magnets. J Magn Reson 91(1):136–140 Kimmich R, Unrath W, Schnur G, Rommel E (1991) NMR measurement of small self-diffusion coefficients in the fringe-field of superconducting magnets. J Magn Reson 91(1):136–140
37.
Zurück zum Zitat Demco D, Johansson A, Tegenfeldt J (1994) Constant-relaxation methods for diffusion measurements in the fringe-field of superconducting magnets. J Magn Reson Ser A 110(2):183–193CrossRef Demco D, Johansson A, Tegenfeldt J (1994) Constant-relaxation methods for diffusion measurements in the fringe-field of superconducting magnets. J Magn Reson Ser A 110(2):183–193CrossRef
38.
Zurück zum Zitat Gorecki W, Jeannin M, Belorizky E, Roux C, Armand M (1995) Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes. J Phys Cond Matter 7(34):6823–6832CrossRef Gorecki W, Jeannin M, Belorizky E, Roux C, Armand M (1995) Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes. J Phys Cond Matter 7(34):6823–6832CrossRef
39.
Zurück zum Zitat Johansson A, Gogoll A, Tegenfeldt J (1996) Diffusion and ionic conductivity in Li(CF3SO3)PEG(10) and LiN(CF3SO2)(2)PEG(10). Polymer 37(8):1387–1393CrossRef Johansson A, Gogoll A, Tegenfeldt J (1996) Diffusion and ionic conductivity in Li(CF3SO3)PEG(10) and LiN(CF3SO2)(2)PEG(10). Polymer 37(8):1387–1393CrossRef
40.
Zurück zum Zitat Hayamizu K, Aihara Y, Price W (2000) Correlating the NMR self-diffusion and relaxation measurements with ionic conductivity in polymer electrolytes composed of cross-linked poly(ethylene oxide-propylene oxide) doped with LiN(SO2CF3)(2). J Chem Phys 113(11):4785–4793CrossRef Hayamizu K, Aihara Y, Price W (2000) Correlating the NMR self-diffusion and relaxation measurements with ionic conductivity in polymer electrolytes composed of cross-linked poly(ethylene oxide-propylene oxide) doped with LiN(SO2CF3)(2). J Chem Phys 113(11):4785–4793CrossRef
41.
Zurück zum Zitat Hayamizu K, Aihara Y, Price W (2001) NMR and ion conductivity studies on cross-linked poly(ethyleneoxide-propyleneoxide) and branched polyether doped with LiN(SO2CF3)(2). Electrochim Acta 46(10–11):1475–1485CrossRef Hayamizu K, Aihara Y, Price W (2001) NMR and ion conductivity studies on cross-linked poly(ethyleneoxide-propyleneoxide) and branched polyether doped with LiN(SO2CF3)(2). Electrochim Acta 46(10–11):1475–1485CrossRef
42.
Zurück zum Zitat Adebahr J, Forsyth M, Gavelin P, Jacobsson P, Oradd G (2002) Ion and solvent dynamics in gel electrolytes based on ethylene oxide grafted acrylate polymers. J Phys Chem B 106(47):12119–12123CrossRef Adebahr J, Forsyth M, Gavelin P, Jacobsson P, Oradd G (2002) Ion and solvent dynamics in gel electrolytes based on ethylene oxide grafted acrylate polymers. J Phys Chem B 106(47):12119–12123CrossRef
43.
Zurück zum Zitat Gorecki W, Roux C, Clemancey M, Armand M, Belorizky E (2002) NMR and conductivity study of polymer electrolytes in the imide family: P(EO)/Li[N(SO2CnF2n + 1)(SO2CmF2m + 1)]. Chemphyschem 3(7):620–625CrossRef Gorecki W, Roux C, Clemancey M, Armand M, Belorizky E (2002) NMR and conductivity study of polymer electrolytes in the imide family: P(EO)/Li[N(SO2CnF2n + 1)(SO2CmF2m + 1)]. Chemphyschem 3(7):620–625CrossRef
44.
Zurück zum Zitat Croce F, Appetecchi G, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458CrossRef Croce F, Appetecchi G, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458CrossRef
45.
Zurück zum Zitat Zhou F, MacFarlane D, Forsyth M (2003) Boroxine ring compounds as dissociation enhancers in gel polyelectrolytes. Electrochim Acta 48(12):1749–1758CrossRef Zhou F, MacFarlane D, Forsyth M (2003) Boroxine ring compounds as dissociation enhancers in gel polyelectrolytes. Electrochim Acta 48(12):1749–1758CrossRef
46.
Zurück zum Zitat Kalita M, Bukat M, Ciosek M, Siekierski M, Chung S, Rodriguez T, Greenbaum S, Kovarsky R, Golodnitsky D, Peled E, Zane D, Scrosati B, Wieczorek W (2005) Effect of calixpyrrole in PEO-LiBF4 polymer electrolytes. Electrochimia Acta 50(19):3942–3948CrossRef Kalita M, Bukat M, Ciosek M, Siekierski M, Chung S, Rodriguez T, Greenbaum S, Kovarsky R, Golodnitsky D, Peled E, Zane D, Scrosati B, Wieczorek W (2005) Effect of calixpyrrole in PEO-LiBF4 polymer electrolytes. Electrochimia Acta 50(19):3942–3948CrossRef
47.
Zurück zum Zitat Koudriachova MV, Harrison NM, de Leeuw SW (2002) Density-functional simulations of lithium intercalation in rutile. Phys Rev B 65 235423:1–12 Koudriachova MV, Harrison NM, de Leeuw SW (2002) Density-functional simulations of lithium intercalation in rutile. Phys Rev B 65 235423:1–12
48.
Zurück zum Zitat Kang K, Ceder G (2006) Factors that affect Li mobility in layered lithium transition metal oxides. Phys Rev B 74 094105:1–7 Kang K, Ceder G (2006) Factors that affect Li mobility in layered lithium transition metal oxides. Phys Rev B 74 094105:1–7
49.
Zurück zum Zitat Tibbetts K, Miranda CR, Meng YS, Ceder G (2007) An ab initio study of lithium diffusion in titanium disulfide nanotubes. Chem Mater 19(22):5302–5308CrossRef Tibbetts K, Miranda CR, Meng YS, Ceder G (2007) An ab initio study of lithium diffusion in titanium disulfide nanotubes. Chem Mater 19(22):5302–5308CrossRef
50.
Zurück zum Zitat Aydinol MK, Kohan AF, Ceder G, Cho K, Joannopoulos J (1997) Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B 56(3):1354–1365CrossRef Aydinol MK, Kohan AF, Ceder G, Cho K, Joannopoulos J (1997) Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B 56(3):1354–1365CrossRef
51.
Zurück zum Zitat Courtney IA, Tse JS, Mao O, Hafner J, Dahn JR (1998) Ab initio calculation of the lithium-tin voltage profile. Phys Rev B 58(23):15583–15588CrossRef Courtney IA, Tse JS, Mao O, Hafner J, Dahn JR (1998) Ab initio calculation of the lithium-tin voltage profile. Phys Rev B 58(23):15583–15588CrossRef
52.
Zurück zum Zitat Meng YS, Wu YW, Hwang BJ, Li Y, Ceder G (2004) Combining ab initio computation with experiments for designing new electrode materials for advanced lithium batteries: LiNi1/3Fe1/6Co1/6Mn1/3O2. J Electrochem Soc 151(8):A1134–A1140CrossRef Meng YS, Wu YW, Hwang BJ, Li Y, Ceder G (2004) Combining ab initio computation with experiments for designing new electrode materials for advanced lithium batteries: LiNi1/3Fe1/6Co1/6Mn1/3O2. J Electrochem Soc 151(8):A1134–A1140CrossRef
53.
Zurück zum Zitat Arroyo-DeDompablo ME, Van der Ven A, Ceder G (2002) First-principles calculations of lithium ordering and phase stability on LixNiO2. Phys Rev B 66 064112:1–9 Arroyo-DeDompablo ME, Van der Ven A, Ceder G (2002) First-principles calculations of lithium ordering and phase stability on LixNiO2. Phys Rev B 66 064112:1–9
54.
Zurück zum Zitat Wolverton C, Zunger A (1998) Prediction of Li intercalation and battery voltages in layered versus cubic LixCoO2. J Electrochem Soc 145(7):2424–2431CrossRef Wolverton C, Zunger A (1998) Prediction of Li intercalation and battery voltages in layered versus cubic LixCoO2. J Electrochem Soc 145(7):2424–2431CrossRef
55.
Zurück zum Zitat Hwang B, Tsai Y, Carlier D, Ceder G (2003) A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2. Chem Mater 15(19):3676–3682CrossRef Hwang B, Tsai Y, Carlier D, Ceder G (2003) A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2. Chem Mater 15(19):3676–3682CrossRef
56.
Zurück zum Zitat Kganyago KR, Ngoepe PE, Catlow CRA (2003) Ab initio calculation of the voltage profile for LiC6. Solid State Ion 159(1–2):21–23CrossRef Kganyago KR, Ngoepe PE, Catlow CRA (2003) Ab initio calculation of the voltage profile for LiC6. Solid State Ion 159(1–2):21–23CrossRef
57.
Zurück zum Zitat Launay M, Boucher F, Gressier P, Ouvrard G (2003) A DFT study of lithium battery materials: application to the β-VOXO4 systems (X = P, As, S). J Solid State Chem 176(2):556–566CrossRef Launay M, Boucher F, Gressier P, Ouvrard G (2003) A DFT study of lithium battery materials: application to the β-VOXO4 systems (X = P, As, S). J Solid State Chem 176(2):556–566CrossRef
58.
Zurück zum Zitat Zhou F, Cococcioni M, Marianetti CA, Morgan D, Ceder G (2004) First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Phys Rev B 70 235121:1–8 Zhou F, Cococcioni M, Marianetti CA, Morgan D, Ceder G (2004) First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Phys Rev B 70 235121:1–8
59.
Zurück zum Zitat Reed J, Ceder G (2002) Charge, potential, and phase stability of layered Li(Ni0.5Mn0.5)O-2. Electrochem State Lett 5(7):A145–A148CrossRef Reed J, Ceder G (2002) Charge, potential, and phase stability of layered Li(Ni0.5Mn0.5)O-2. Electrochem State Lett 5(7):A145–A148CrossRef
60.
Zurück zum Zitat Arroyo-DeDompablo ME, Ceder G (2003) First-principles calculations on LixNiO2: phase stability and monoclinic distortion. J Power Sources 119121:654–657CrossRef Arroyo-DeDompablo ME, Ceder G (2003) First-principles calculations on LixNiO2: phase stability and monoclinic distortion. J Power Sources 119121:654–657CrossRef
61.
Zurück zum Zitat Carlier D, Van der Ven A, Delmas C, Ceder G (2003) First-principles investigation of phase stability in the O-2-LiCoO2 system. Chem Mater 15(13):2651–2660CrossRef Carlier D, Van der Ven A, Delmas C, Ceder G (2003) First-principles investigation of phase stability in the O-2-LiCoO2 system. Chem Mater 15(13):2651–2660CrossRef
62.
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef
63.
Zurück zum Zitat Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979CrossRef Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979CrossRef
64.
Zurück zum Zitat Kresse G, Joubert J (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRef Kresse G, Joubert J (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRef
65.
Zurück zum Zitat Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRef Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRef
66.
Zurück zum Zitat Bar-Tow D, Peled E, Burstein L (1999) A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries. J Electrochem Soc 146(3):824–832CrossRef Bar-Tow D, Peled E, Burstein L (1999) A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries. J Electrochem Soc 146(3):824–832CrossRef
67.
Zurück zum Zitat Peled E, Tow DB, Merson A, Gladkich A, Burstein L, Golodnitsky D (2001) Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies. J Power Sources 97–98:52–57CrossRef Peled E, Tow DB, Merson A, Gladkich A, Burstein L, Golodnitsky D (2001) Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies. J Power Sources 97–98:52–57CrossRef
68.
Zurück zum Zitat Lu M, Cheng H, Yang Y (2008) A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells. Electrochim Acta 53(9):3539–3546CrossRef Lu M, Cheng H, Yang Y (2008) A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells. Electrochim Acta 53(9):3539–3546CrossRef
69.
Zurück zum Zitat Peled E, Golodnitsky D, Ulus A, Yufit V (2004) Effect of carbon substrate on SEI composition and morphology. Electrochim Acta 50(2–3):391–395CrossRef Peled E, Golodnitsky D, Ulus A, Yufit V (2004) Effect of carbon substrate on SEI composition and morphology. Electrochim Acta 50(2–3):391–395CrossRef
70.
Zurück zum Zitat Ota H, Kominato A, Chun WJ, Yasukawa E, Kasuya S (2003) Effect of cyclic phosphate additive in non-flammable electrolyte. J Power Sources 119:393–398CrossRef Ota H, Kominato A, Chun WJ, Yasukawa E, Kasuya S (2003) Effect of cyclic phosphate additive in non-flammable electrolyte. J Power Sources 119:393–398CrossRef
71.
Zurück zum Zitat Andersson AM, Edstrom K (2001) Chemical composition and morphology of the elevated temperature SEI on graphite. J Electrochem Soc 148(10):A1100–A1109CrossRef Andersson AM, Edstrom K (2001) Chemical composition and morphology of the elevated temperature SEI on graphite. J Electrochem Soc 148(10):A1100–A1109CrossRef
72.
Zurück zum Zitat Andersson AM, Edstrom K, Rao N, Wendsjo A (1999) Temperature dependence of the passivation layer on graphite. J Power Sources 82:286–290CrossRef Andersson AM, Edstrom K, Rao N, Wendsjo A (1999) Temperature dependence of the passivation layer on graphite. J Power Sources 82:286–290CrossRef
73.
Zurück zum Zitat Meyer BM, Leifer N, Sakamoto S, Greenbaum SG, Grey CP (2005) High field multinuclear NMR investigation of the SEI layer in lithium rechargeable batteries. Electrochem Solid State Lett 8(3):A145–A148CrossRef Meyer BM, Leifer N, Sakamoto S, Greenbaum SG, Grey CP (2005) High field multinuclear NMR investigation of the SEI layer in lithium rechargeable batteries. Electrochem Solid State Lett 8(3):A145–A148CrossRef
74.
Zurück zum Zitat Dupre N, Martin JF, Degryse J, Fernandez V, Soudan P, Guyomard D (2010) Aging of the LiFePO4 positive electrode interface in electrolyte. J Power Sources 195(21):7415–7425CrossRef Dupre N, Martin JF, Degryse J, Fernandez V, Soudan P, Guyomard D (2010) Aging of the LiFePO4 positive electrode interface in electrolyte. J Power Sources 195(21):7415–7425CrossRef
75.
Zurück zum Zitat Dupre N, Martin J, Oliveri J, Soudan P, Guyomard D, Yamada A, Kanno R (2009) Aging of the LiNi1/2Mn1/2O2 positive electrode interface in electrolyte. J Electrochem Soc 156(5):C180–C185CrossRef Dupre N, Martin J, Oliveri J, Soudan P, Guyomard D, Yamada A, Kanno R (2009) Aging of the LiNi1/2Mn1/2O2 positive electrode interface in electrolyte. J Electrochem Soc 156(5):C180–C185CrossRef
76.
Zurück zum Zitat Dupre N, Martin JF, Guyomard D, Yamada A, Kanno R (2008) Detection of surface layers using Li-7 MAS NMR. J Mater Chem 18(36):4266–4273CrossRef Dupre N, Martin JF, Guyomard D, Yamada A, Kanno R (2008) Detection of surface layers using Li-7 MAS NMR. J Mater Chem 18(36):4266–4273CrossRef
77.
Zurück zum Zitat Leifer N, Smart MC, Prakash GKS, Gonzalez L, Sanchez L, Smith KA, Bhalla P, Grey CP, Greenbaum SG (2011) 13C solid state NMR suggests unusual breakdown products in SEI formation on lithium ion electrodes. J Electrochem Soc 158(5):A471–A480CrossRef Leifer N, Smart MC, Prakash GKS, Gonzalez L, Sanchez L, Smith KA, Bhalla P, Grey CP, Greenbaum SG (2011) 13C solid state NMR suggests unusual breakdown products in SEI formation on lithium ion electrodes. J Electrochem Soc 158(5):A471–A480CrossRef
78.
Zurück zum Zitat Fernicola A, Weise F, Greenbaum S, Kagimoto J, Scrosati B, Soleto A (2009) Lithium-ion-conducting electrolytes: from an ionic liquid to the polymer membrane. J Electrochem Soc 156(7):A514–A520CrossRef Fernicola A, Weise F, Greenbaum S, Kagimoto J, Scrosati B, Soleto A (2009) Lithium-ion-conducting electrolytes: from an ionic liquid to the polymer membrane. J Electrochem Soc 156(7):A514–A520CrossRef
79.
Zurück zum Zitat Scrosati B (1995) Battery technology – challenge of portable power. Nature 373:557–558CrossRef Scrosati B (1995) Battery technology – challenge of portable power. Nature 373:557–558CrossRef
80.
Zurück zum Zitat Gray FM (1991) Solid polymer electrolytes: fundamentals and electrochemical applications. VCH, New York Gray FM (1991) Solid polymer electrolytes: fundamentals and electrochemical applications. VCH, New York
81.
Zurück zum Zitat Kalita M, Bukat M, Ciosek M, Siekierski M, Chung SH, Rodriguez T, Greenbaum SG, Kovarsky R, Golodnitsky D, Peled E, Zane D, Scrosati B, Wieczorek W (2005) Effect of calixpyrrole in PEO-LiBF4 polymer electrolytes. Electrochim Acta 50(19):3942–3948CrossRef Kalita M, Bukat M, Ciosek M, Siekierski M, Chung SH, Rodriguez T, Greenbaum SG, Kovarsky R, Golodnitsky D, Peled E, Zane D, Scrosati B, Wieczorek W (2005) Effect of calixpyrrole in PEO-LiBF4 polymer electrolytes. Electrochim Acta 50(19):3942–3948CrossRef
82.
Zurück zum Zitat Periasamy P, Tatsumi K, Shikano M, Fujieda T, Saito Y, Sakai T, Mizuhata M, Kajinami A, Deki S (2000) Studies on PVdF-based gel polymer electrolytes. J Power Sources 88(2):269–273CrossRef Periasamy P, Tatsumi K, Shikano M, Fujieda T, Saito Y, Sakai T, Mizuhata M, Kajinami A, Deki S (2000) Studies on PVdF-based gel polymer electrolytes. J Power Sources 88(2):269–273CrossRef
83.
Zurück zum Zitat Pawlowska A, Zukowska G, Kalita M, Solgala A, Parzuchowski P, Siekierski M (2007) The effect of receptor-polymer matrix compatibility on properties of PEO-based polymer electrolytes containing a supramolecular additive. Part 1. Studies on phenomenon of compatibility. J Power Sources 173(2):755–764CrossRef Pawlowska A, Zukowska G, Kalita M, Solgala A, Parzuchowski P, Siekierski M (2007) The effect of receptor-polymer matrix compatibility on properties of PEO-based polymer electrolytes containing a supramolecular additive. Part 1. Studies on phenomenon of compatibility. J Power Sources 173(2):755–764CrossRef
84.
Zurück zum Zitat Bloise A, Donoso J, Magon C, Rosario A, Pereira E (2003) NMR and conductivity study of PEO-based composite polymer electrolytes. Electrochim Acta 48(14–16):2239–2246CrossRef Bloise A, Donoso J, Magon C, Rosario A, Pereira E (2003) NMR and conductivity study of PEO-based composite polymer electrolytes. Electrochim Acta 48(14–16):2239–2246CrossRef
85.
Zurück zum Zitat Masuda Y, Seki M, Nakayama M, Wakihara M, Mita H (2006) Study on ionic conductivity of polymer electrolyte plasticized with PEG-aluminate ester for rechargeable lithium ion battery. Solid State Ion 117(9–10):843–846CrossRef Masuda Y, Seki M, Nakayama M, Wakihara M, Mita H (2006) Study on ionic conductivity of polymer electrolyte plasticized with PEG-aluminate ester for rechargeable lithium ion battery. Solid State Ion 117(9–10):843–846CrossRef
86.
Zurück zum Zitat Dai Y, Wang Y, Greenbaum S, Bajue S, Golodnitsky D, Ardel G, Strauss E, Peled E (1998) Electrical, thermal and NMR investigation of composite solid electrolytes based on PEO, LiI and high surface area inorganic oxides. Electrochim Acta 43(10–11):1557–1561CrossRef Dai Y, Wang Y, Greenbaum S, Bajue S, Golodnitsky D, Ardel G, Strauss E, Peled E (1998) Electrical, thermal and NMR investigation of composite solid electrolytes based on PEO, LiI and high surface area inorganic oxides. Electrochim Acta 43(10–11):1557–1561CrossRef
87.
Zurück zum Zitat Best A, Adebahr J, Jacobsson P, MacFarlane D, Forsyth M (2001) Microscopic interactions in nanocomposite electrolytes. Macromolecules 34(13):4549–4555CrossRef Best A, Adebahr J, Jacobsson P, MacFarlane D, Forsyth M (2001) Microscopic interactions in nanocomposite electrolytes. Macromolecules 34(13):4549–4555CrossRef
88.
Zurück zum Zitat Adebahr J, Best A, Byrne N, Jacobsson P, MacFarlane D, Forsyth M (2003) Ion transport in polymer electrolytes containing nanoparticulate TiO2: The influence of polymer morphology. Phys Chem Chem Phys 5:720–725CrossRef Adebahr J, Best A, Byrne N, Jacobsson P, MacFarlane D, Forsyth M (2003) Ion transport in polymer electrolytes containing nanoparticulate TiO2: The influence of polymer morphology. Phys Chem Chem Phys 5:720–725CrossRef
89.
Zurück zum Zitat Berthier C, Gorecki W, Minier M, Armand M, Chabagno J, Rigaud P (1983) Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ion 11(1):91–95CrossRef Berthier C, Gorecki W, Minier M, Armand M, Chabagno J, Rigaud P (1983) Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ion 11(1):91–95CrossRef
90.
Zurück zum Zitat Chung S, Jeffrey K, Stevens J (1991) A Li-7 nuclear magnetic resonance study of LiCF3SO3 complexed in poly(propylene-glycol). J Chem Phys 94(3):1803–1811CrossRef Chung S, Jeffrey K, Stevens J (1991) A Li-7 nuclear magnetic resonance study of LiCF3SO3 complexed in poly(propylene-glycol). J Chem Phys 94(3):1803–1811CrossRef
91.
Zurück zum Zitat Donoso J, Bonagamba T, Panepucci H, Oliveira L, Gorecki W, Berthier C, Armand M (1993) Nuclear magnetic relaxation study of poly(ethylene oxide)-lithium salt based electrolytes. J Chem Phys 98(12):10026–10036CrossRef Donoso J, Bonagamba T, Panepucci H, Oliveira L, Gorecki W, Berthier C, Armand M (1993) Nuclear magnetic relaxation study of poly(ethylene oxide)-lithium salt based electrolytes. J Chem Phys 98(12):10026–10036CrossRef
92.
Zurück zum Zitat Johansson A, Tegenfeldt J (1996) Segmental mobility in complexes of Pb(CF3SO3)(2) and poly(ethylene oxide) studied by NMR spectroscopy. J Chem Phys 104(13):5317–5325CrossRef Johansson A, Tegenfeldt J (1996) Segmental mobility in complexes of Pb(CF3SO3)(2) and poly(ethylene oxide) studied by NMR spectroscopy. J Chem Phys 104(13):5317–5325CrossRef
93.
Zurück zum Zitat Chung S, Wang Y, Greenbaum S, Golodnitsky D, Peled E (1999) Uniaxial stress effects in poly(ethylene oxide)-LiI polymer electrolyte film – a Li-7 nuclear magnetic resonance study. Electrochem Solid State Lett 2(11):553–555CrossRef Chung S, Wang Y, Greenbaum S, Golodnitsky D, Peled E (1999) Uniaxial stress effects in poly(ethylene oxide)-LiI polymer electrolyte film – a Li-7 nuclear magnetic resonance study. Electrochem Solid State Lett 2(11):553–555CrossRef
94.
Zurück zum Zitat Golodnitsky D, Livshits E, Kovarsky R, Peled E, Chung S, Suarez S, Greenbaum S (2004) New generation of ordered polymer electrolytes for lithium batteries. Electrochem Solid State Lett 7(11):A412–A415CrossRef Golodnitsky D, Livshits E, Kovarsky R, Peled E, Chung S, Suarez S, Greenbaum S (2004) New generation of ordered polymer electrolytes for lithium batteries. Electrochem Solid State Lett 7(11):A412–A415CrossRef
95.
Zurück zum Zitat Golodnitsky D, Livshits E, Ulus A, Barkay Z, Lapides I, Peled E, Chung S, Greenbaum S (2001) Fast ion transport phenomena in oriented semicrystalline LiI-P(EO)n-based polymer electrolytes. J Phys Chem A 105(44):10098–10106CrossRef Golodnitsky D, Livshits E, Ulus A, Barkay Z, Lapides I, Peled E, Chung S, Greenbaum S (2001) Fast ion transport phenomena in oriented semicrystalline LiI-P(EO)n-based polymer electrolytes. J Phys Chem A 105(44):10098–10106CrossRef
96.
Zurück zum Zitat Armand MB, Chabagno JM, Duclot MJ (1979) Fast ion transport in solids. Elsevier, New York Armand MB, Chabagno JM, Duclot MJ (1979) Fast ion transport in solids. Elsevier, New York
97.
Zurück zum Zitat Gadjourova Z, Andreev Y, Tunstall D, Bruce P (2001) Ionic conductivity in crystalline polymer electrolytes. Nature 412:520–523CrossRef Gadjourova Z, Andreev Y, Tunstall D, Bruce P (2001) Ionic conductivity in crystalline polymer electrolytes. Nature 412:520–523CrossRef
98.
Zurück zum Zitat Padhi A, Nanjundaswamy K, Goodenough J (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194CrossRef Padhi A, Nanjundaswamy K, Goodenough J (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194CrossRef
99.
Zurück zum Zitat Morgan D, Van der Ven A, Ceder G (2004) Li conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) olivine materials. Electrochem Solid State Lett 7(2):A30–A32CrossRef Morgan D, Van der Ven A, Ceder G (2004) Li conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) olivine materials. Electrochem Solid State Lett 7(2):A30–A32CrossRef
100.
Zurück zum Zitat Yamada A, Chung S, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148(3):A224–A229CrossRef Yamada A, Chung S, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148(3):A224–A229CrossRef
101.
Zurück zum Zitat Padhi A, Nanjundaswamy K, Masquelier C, Okada S, Goodenough J (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144(5):1609–1613CrossRef Padhi A, Nanjundaswamy K, Masquelier C, Okada S, Goodenough J (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144(5):1609–1613CrossRef
102.
Zurück zum Zitat Tucker M, Doeff M, Richardson T, Finones R, Cairns E, Reimer J (2002) Hyperfine fields at the Li site in LiFePO4-type olivine materials for lithium rechargeable batteries: a Li-7 MAS NMR and SQUID study. J Am Chem Soc 124(15):3832–3833CrossRef Tucker M, Doeff M, Richardson T, Finones R, Cairns E, Reimer J (2002) Hyperfine fields at the Li site in LiFePO4-type olivine materials for lithium rechargeable batteries: a Li-7 MAS NMR and SQUID study. J Am Chem Soc 124(15):3832–3833CrossRef
103.
Zurück zum Zitat Gee B, Horne CR, Cairns EJ, Reimer JA (1998) Supertransferred hyperfine fields at Li-7: Variable temperature Li-7 NMR studies of LiMn2O4-based spinels. J Phys Chem B 102(50):10142–10149CrossRef Gee B, Horne CR, Cairns EJ, Reimer JA (1998) Supertransferred hyperfine fields at Li-7: Variable temperature Li-7 NMR studies of LiMn2O4-based spinels. J Phys Chem B 102(50):10142–10149CrossRef
104.
Zurück zum Zitat Wilcke SL, Lee YJ, Cairns EJ, Reimer JA (2007) Covalency measurements via NMR in lithium metal phosphates. Appl Magn Reson 32(4):547–563CrossRef Wilcke SL, Lee YJ, Cairns EJ, Reimer JA (2007) Covalency measurements via NMR in lithium metal phosphates. Appl Magn Reson 32(4):547–563CrossRef
105.
Zurück zum Zitat Leifer N, Colon A, Martocci K, Greenbaum S, Alamgir F, Reddy T, Gleason N, Leising R, Takeuchi E (2007) Nuclear magnetic resonance and X-ray absorption spectroscopic studies of lithium insertion in silver vanadium oxide cathodes. J Electrochem Soc 154(6):A500–A506CrossRef Leifer N, Colon A, Martocci K, Greenbaum S, Alamgir F, Reddy T, Gleason N, Leising R, Takeuchi E (2007) Nuclear magnetic resonance and X-ray absorption spectroscopic studies of lithium insertion in silver vanadium oxide cathodes. J Electrochem Soc 154(6):A500–A506CrossRef
106.
Zurück zum Zitat Crespi A, Skarstad P, Zandbergen H (1995) Characterization of silver vanadium oxide cathode material by high-resolution electron microscopy. J Power Sources 54(1):68–71CrossRef Crespi A, Skarstad P, Zandbergen H (1995) Characterization of silver vanadium oxide cathode material by high-resolution electron microscopy. J Power Sources 54(1):68–71CrossRef
107.
Zurück zum Zitat Takeuchi K, Marschilok A, Davis S, Leising R, Takeuchi E (2001) Silver vanadium oxides and related battery applications. Coord Chem Rev 219–221:283–310CrossRef Takeuchi K, Marschilok A, Davis S, Leising R, Takeuchi E (2001) Silver vanadium oxides and related battery applications. Coord Chem Rev 219–221:283–310CrossRef
108.
Zurück zum Zitat Ramasamy R, Feger C, Strange T, Popov B (2006) Discharge characteristics of silver vanadium oxide cathodes. J Appl Electrochem 36(4):487–497CrossRef Ramasamy R, Feger C, Strange T, Popov B (2006) Discharge characteristics of silver vanadium oxide cathodes. J Appl Electrochem 36(4):487–497CrossRef
109.
Zurück zum Zitat Vijayakumar M, Selvasekarapandian S, Nakamura K, Kanashiro T, Kesavamoorthy R (2004) Li-7 MAS-NMR and vibrational spectroscopic investigations of LixV2O5 (x = 10, 12 and 14). Solid State Ion 167(1–2):41–47CrossRef Vijayakumar M, Selvasekarapandian S, Nakamura K, Kanashiro T, Kesavamoorthy R (2004) Li-7 MAS-NMR and vibrational spectroscopic investigations of LixV2O5 (x = 10, 12 and 14). Solid State Ion 167(1–2):41–47CrossRef
110.
Zurück zum Zitat Holland G, Buttry D, Yarger J (2002) Li-7 NMR studies of electrochemically lithiated V2O5 xerogels. Chem Mater 14(9):3875–3881CrossRef Holland G, Buttry D, Yarger J (2002) Li-7 NMR studies of electrochemically lithiated V2O5 xerogels. Chem Mater 14(9):3875–3881CrossRef
111.
Zurück zum Zitat Holland G, Yarger J, Buttry D, Huguenin F, Torresi R (2003) Solid-state NMR study of ion-exchange processes in V2O5 xerogel, polyaniline/V2O5, and sulfonated polyaniline/V2O5 nanocomposites. J Electrochem Soc 150(12):A1718–A1722CrossRef Holland G, Yarger J, Buttry D, Huguenin F, Torresi R (2003) Solid-state NMR study of ion-exchange processes in V2O5 xerogel, polyaniline/V2O5, and sulfonated polyaniline/V2O5 nanocomposites. J Electrochem Soc 150(12):A1718–A1722CrossRef
112.
Zurück zum Zitat Nakamura K, Nishioka D, Michihiro Y, Vijayakumar M, Selvasekarapandian S, Kanashiro T (2006) Li-7 and V-51 NMR study on Li+ ionic diffusion in lithium intercalated LixV2O5. Solid State Ion 177(1–2):129–135CrossRef Nakamura K, Nishioka D, Michihiro Y, Vijayakumar M, Selvasekarapandian S, Kanashiro T (2006) Li-7 and V-51 NMR study on Li+ ionic diffusion in lithium intercalated LixV2O5. Solid State Ion 177(1–2):129–135CrossRef
113.
Zurück zum Zitat West K, Crespi A (1995) Lithium insertion into silver vanadium-oxide, Ag2V4O11. J Power Sources 54(2):334–337CrossRef West K, Crespi A (1995) Lithium insertion into silver vanadium-oxide, Ag2V4O11. J Power Sources 54(2):334–337CrossRef
114.
Zurück zum Zitat Rozier P, Galy J (1997) Ag1.2V3O8 crystal structure: Relationship with Ag2V4O11–y interpretation of physical properties. J Solid State Chem 134(2):294–301CrossRef Rozier P, Galy J (1997) Ag1.2V3O8 crystal structure: Relationship with Ag2V4O11–y interpretation of physical properties. J Solid State Chem 134(2):294–301CrossRef
115.
Zurück zum Zitat Rozier P, Savariault J, Galy J, Marichal C, Hirschinger J, Granger P (1996) Epsilon-LixV2O5 bronzes (0.33 ≤ × ≤ 0.64) a joint study by X-ray powder diffraction and 6Li, 7Li MAS NMR. Eur J Solid State Inorg Chem 33(1):1–13 Rozier P, Savariault J, Galy J, Marichal C, Hirschinger J, Granger P (1996) Epsilon-LixV2O5 bronzes (0.33 ≤ × ≤ 0.64) a joint study by X-ray powder diffraction and 6Li, 7Li MAS NMR. Eur J Solid State Inorg Chem 33(1):1–13
116.
Zurück zum Zitat Kuwabara K, Itoh M, Sugiyama K (1986) Ionic-electronic mixed conduction in LixV2O5. Solid State Ion 20(2):135–139CrossRef Kuwabara K, Itoh M, Sugiyama K (1986) Ionic-electronic mixed conduction in LixV2O5. Solid State Ion 20(2):135–139CrossRef
117.
Zurück zum Zitat Garcia-Alvarado F, Tarascon J (1994) Lithium intercalation in Ag2V4O11. Solid State Ion 73(3–4):247–254CrossRef Garcia-Alvarado F, Tarascon J (1994) Lithium intercalation in Ag2V4O11. Solid State Ion 73(3–4):247–254CrossRef
118.
Zurück zum Zitat Stallworth P, Kostov S, denBoer M, Greenbaum S, Lampe-Onnerud C (1998) X-ray absorption and magnetic resonance spectroscopic studies of LixV6O13. J Appl Phys 83(3):1247–1255CrossRef Stallworth P, Kostov S, denBoer M, Greenbaum S, Lampe-Onnerud C (1998) X-ray absorption and magnetic resonance spectroscopic studies of LixV6O13. J Appl Phys 83(3):1247–1255CrossRef
119.
Zurück zum Zitat Yamakawa N, Jiang M, Grey CP (2009) Investigation of the conversion reaction mechanisms for binary copper(II) compounds by solid-state NMR spectroscopy and X-ray diffraction. Chem Mater 21(14):3162–3176CrossRef Yamakawa N, Jiang M, Grey CP (2009) Investigation of the conversion reaction mechanisms for binary copper(II) compounds by solid-state NMR spectroscopy and X-ray diffraction. Chem Mater 21(14):3162–3176CrossRef
120.
Zurück zum Zitat Yamakawa N, Jiang M, Key B, Grey CP (2009) Identifying the local structures formed during lithiation of the conversion material, iron fluoride, in a Li ion battery: a solid-state NMR, X-ray diffraction, and pair distribution function analysis study. J Am Chem Soc 131(30):10525–10536CrossRef Yamakawa N, Jiang M, Key B, Grey CP (2009) Identifying the local structures formed during lithiation of the conversion material, iron fluoride, in a Li ion battery: a solid-state NMR, X-ray diffraction, and pair distribution function analysis study. J Am Chem Soc 131(30):10525–10536CrossRef
121.
Zurück zum Zitat Chung JS, Sohn HJ (2002) Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries. J Power Sources 108(1–2):226–231CrossRef Chung JS, Sohn HJ (2002) Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries. J Power Sources 108(1–2):226–231CrossRef
122.
Zurück zum Zitat Debart A, Dupont L, Patrice R, Tarascon JM (2006) Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: the intriguing case of the copper sulphide. Solid State Sci 8(6):640–651CrossRef Debart A, Dupont L, Patrice R, Tarascon JM (2006) Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: the intriguing case of the copper sulphide. Solid State Sci 8(6):640–651CrossRef
123.
Zurück zum Zitat Ikeda H, Narukawa S (1983) Behavior of various cathode materials for non-aqueous lithium cells. J Power Sources 9(3–4):329–334CrossRef Ikeda H, Narukawa S (1983) Behavior of various cathode materials for non-aqueous lithium cells. J Power Sources 9(3–4):329–334CrossRef
124.
Zurück zum Zitat Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon J (2001) Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc 148(4):A285–A292CrossRef Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon J (2001) Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc 148(4):A285–A292CrossRef
125.
Zurück zum Zitat Arai H, Okada S, Sakurai Y, Yamaki J (1997) Cathode performance and voltage estimation of metal trihalides. J Power Sources 68(2):716–719CrossRef Arai H, Okada S, Sakurai Y, Yamaki J (1997) Cathode performance and voltage estimation of metal trihalides. J Power Sources 68(2):716–719CrossRef
126.
Zurück zum Zitat Cosandey F, Al-Sharab J, Badway F, Amatucci G, Stadelmann P (2007) EELS spectroscopy of iron fluorides and FeFx/C nanocomposite electrodes used in Li-ion batteries. Microsc Microanal 13(2):87–95CrossRef Cosandey F, Al-Sharab J, Badway F, Amatucci G, Stadelmann P (2007) EELS spectroscopy of iron fluorides and FeFx/C nanocomposite electrodes used in Li-ion batteries. Microsc Microanal 13(2):87–95CrossRef
127.
Zurück zum Zitat Doe R, Persson K, Meng Y, Ceder G (2008) First-principles investigation of the Li-Fe-F phase diagram and equilibrium and nonequilibrium conversion reactions of iron fluorides with lithium. Chem Mater 20(16):5274–5283CrossRef Doe R, Persson K, Meng Y, Ceder G (2008) First-principles investigation of the Li-Fe-F phase diagram and equilibrium and nonequilibrium conversion reactions of iron fluorides with lithium. Chem Mater 20(16):5274–5283CrossRef
128.
Zurück zum Zitat Nielsen U, Paik Y, Julmis K, Schoonen M, Reeder R, Grey C (2005) Investigating sorption on iron-oxyhydroxide soil minerals by solid-state NMR spectroscopy: A Li-6 MAS NMR study of adsorption and absorption on goethite. J Phys Chem B 109(39):18310–18315CrossRef Nielsen U, Paik Y, Julmis K, Schoonen M, Reeder R, Grey C (2005) Investigating sorption on iron-oxyhydroxide soil minerals by solid-state NMR spectroscopy: A Li-6 MAS NMR study of adsorption and absorption on goethite. J Phys Chem B 109(39):18310–18315CrossRef
129.
Zurück zum Zitat Kim J, Nielsen U, Grey C (2008) Local environments and lithium adsorption on the iron oxyhydroxides lepidocrocite (gamma-FeOOH) and goethite (alpha-FeOOH): A H-2 and Li-7 solid-state MAS NMR study. J Am Chem Soc 130(4):1285–1295CrossRef Kim J, Nielsen U, Grey C (2008) Local environments and lithium adsorption on the iron oxyhydroxides lepidocrocite (gamma-FeOOH) and goethite (alpha-FeOOH): A H-2 and Li-7 solid-state MAS NMR study. J Am Chem Soc 130(4):1285–1295CrossRef
130.
Zurück zum Zitat Liao P, MacDonald B, Dunlap R, Dahn J (2008) Combinatorially prepared [LiF](1-x)Fe-x nanocomposites for positive electrode materials in Li-ion batteries. Chem Mater 20(2):454–461CrossRef Liao P, MacDonald B, Dunlap R, Dahn J (2008) Combinatorially prepared [LiF](1-x)Fe-x nanocomposites for positive electrode materials in Li-ion batteries. Chem Mater 20(2):454–461CrossRef
131.
Zurück zum Zitat Breger J, Dupre N, Chupas P, Lee P, Proffen T, Parise J, Grey C (2005) Short- and long-range order in the positive electrode material, Li(NiMn)(0.5)O-2: a joint X-ray and neutron diffraction, pair distribution function analysis and NMR study. J Am Chem Soc 127(20):7529–7537CrossRef Breger J, Dupre N, Chupas P, Lee P, Proffen T, Parise J, Grey C (2005) Short- and long-range order in the positive electrode material, Li(NiMn)(0.5)O-2: a joint X-ray and neutron diffraction, pair distribution function analysis and NMR study. J Am Chem Soc 127(20):7529–7537CrossRef
132.
Zurück zum Zitat Yoon W, Paik Y, Yang X, Balasubramanian M, McBreen J, Grey C (2002) Investigation of the local structure of the LiNi0.5Mn0.5O2 cathode material during electrochemical cycling by X-ray absorption and NMR spectroscopy. Electrochem Solid State Lett 5(11):A263–A266CrossRef Yoon W, Paik Y, Yang X, Balasubramanian M, McBreen J, Grey C (2002) Investigation of the local structure of the LiNi0.5Mn0.5O2 cathode material during electrochemical cycling by X-ray absorption and NMR spectroscopy. Electrochem Solid State Lett 5(11):A263–A266CrossRef
133.
Zurück zum Zitat Yoon W, Iannopollo S, Grey C, Carlier D, Gorman J, Reed J, Ceder G (2004) Local structure and cation ordering in O3 lithium nickel manganese oxides with stoichiometry Li[NixMn(2–x)/3Li(1–2x)/3]O−2 – NMR studies and first principles calculations. Electrochem Solid State Lett 7(7):A167–A171CrossRef Yoon W, Iannopollo S, Grey C, Carlier D, Gorman J, Reed J, Ceder G (2004) Local structure and cation ordering in O3 lithium nickel manganese oxides with stoichiometry Li[NixMn(2–x)/3Li(1–2x)/3]O−2 – NMR studies and first principles calculations. Electrochem Solid State Lett 7(7):A167–A171CrossRef
134.
Zurück zum Zitat Van der Ven A, Ceder G (2004) Ordering in Li−x(Ni0.5Mn0.5)O–2 and its relation to charge capacity and electrochemical behavior in rechargeable lithium batteries. Electrochem Commun 6(10):1045–1050CrossRef Van der Ven A, Ceder G (2004) Ordering in Li−x(Ni0.5Mn0.5)O–2 and its relation to charge capacity and electrochemical behavior in rechargeable lithium batteries. Electrochem Commun 6(10):1045–1050CrossRef
135.
Zurück zum Zitat Meng YS, Ceder G, Grey CP, Yoon W-S, Shao-Horn Y (2004) Understanding the crystal structure of layered LiNi0.5Mn0.5O2 by electron diffraction and powder diffraction simulation. Electrochem Solid State Lett 7(6):A155–A158CrossRef Meng YS, Ceder G, Grey CP, Yoon W-S, Shao-Horn Y (2004) Understanding the crystal structure of layered LiNi0.5Mn0.5O2 by electron diffraction and powder diffraction simulation. Electrochem Solid State Lett 7(6):A155–A158CrossRef
136.
Zurück zum Zitat Cahill LS, Chapman RP, Britten JF, Goward GR (2006) Li-7 NMR and two-dimensional exchange study of lithium dynamics in monoclinic Li3V2(PO4)(3). J Phys Chem B 110(14):7171–7177CrossRef Cahill LS, Chapman RP, Britten JF, Goward GR (2006) Li-7 NMR and two-dimensional exchange study of lithium dynamics in monoclinic Li3V2(PO4)(3). J Phys Chem B 110(14):7171–7177CrossRef
137.
Zurück zum Zitat Matsumura Y, Wang S, Mondori J (1995) Interactions between disordered carbon and lithium in lithium ion rechargeable batteries. Carbon 33(10):1457–1462CrossRef Matsumura Y, Wang S, Mondori J (1995) Interactions between disordered carbon and lithium in lithium ion rechargeable batteries. Carbon 33(10):1457–1462CrossRef
138.
Zurück zum Zitat Wang S, Kakumoto T, Matsui H, Matsumura Y (1999) Mechanism of lithium insertion into disordered carbon. Synth Met 103(1–3):2523–2524CrossRef Wang S, Kakumoto T, Matsui H, Matsumura Y (1999) Mechanism of lithium insertion into disordered carbon. Synth Met 103(1–3):2523–2524CrossRef
139.
Zurück zum Zitat Nakagawa Y, Wang S, Matsumura Y, Yamaguchi C (1997) Li-7-NMR study of lithium charged in carbon electrode. Synth Met 85(1–3):1363–1364CrossRef Nakagawa Y, Wang S, Matsumura Y, Yamaguchi C (1997) Li-7-NMR study of lithium charged in carbon electrode. Synth Met 85(1–3):1363–1364CrossRef
140.
Zurück zum Zitat Conard J, Estrade H (1977) Résonance magnétique nucléaire du lithium interstitiel dans le graphite. Mater Sci Eng 31:173–176CrossRef Conard J, Estrade H (1977) Résonance magnétique nucléaire du lithium interstitiel dans le graphite. Mater Sci Eng 31:173–176CrossRef
141.
Zurück zum Zitat Peled E, Menachem C, BarTow D, Melman A (1996) Improved graphite anode for lithium-ion batteries – chemically bonded solid electrolyte interface and nanochannel formation. J Electrochem Soc 143(1):L4–L7CrossRef Peled E, Menachem C, BarTow D, Melman A (1996) Improved graphite anode for lithium-ion batteries – chemically bonded solid electrolyte interface and nanochannel formation. J Electrochem Soc 143(1):L4–L7CrossRef
142.
Zurück zum Zitat Menachem C, Wang Y, Flowers J, Peled E, Greenbaum S (1998) Characterization of lithiated natural graphite before and after mild oxidation. J Power Sources 76(2):180–185CrossRef Menachem C, Wang Y, Flowers J, Peled E, Greenbaum S (1998) Characterization of lithiated natural graphite before and after mild oxidation. J Power Sources 76(2):180–185CrossRef
143.
Zurück zum Zitat Wang Y, Yufit V, Guo X, Peled E, Greenbaum S (2001) Li-7 nuclear magnetic resonance study of lithium insertion in pristine and partially oxidized graphite. J Power Sources 94(2):230–237CrossRef Wang Y, Yufit V, Guo X, Peled E, Greenbaum S (2001) Li-7 nuclear magnetic resonance study of lithium insertion in pristine and partially oxidized graphite. J Power Sources 94(2):230–237CrossRef
144.
Zurück zum Zitat Gotoh K, Maeda M, Nagai A, Goto A, Tansho M, Hashi K, Shimizu T, Ishida H (2006) Properties of a novel hard-carbon optimized to large size Li ion secondary battery studied by Li-7 NMR. J Power Sources 162(2):1322–1328CrossRef Gotoh K, Maeda M, Nagai A, Goto A, Tansho M, Hashi K, Shimizu T, Ishida H (2006) Properties of a novel hard-carbon optimized to large size Li ion secondary battery studied by Li-7 NMR. J Power Sources 162(2):1322–1328CrossRef
145.
Zurück zum Zitat Persson K, Sethuraman VA, Hardwick LJ, Hinuma Y, Meng YS, van der Ven A, Srinivasan V, Kostecki R, Ceder G (2010) Lithium diffusion in graphitic carbon. J Phys Chem Lett 1(8):1176–1180CrossRef Persson K, Sethuraman VA, Hardwick LJ, Hinuma Y, Meng YS, van der Ven A, Srinivasan V, Kostecki R, Ceder G (2010) Lithium diffusion in graphitic carbon. J Phys Chem Lett 1(8):1176–1180CrossRef
146.
Zurück zum Zitat Gerald RE, Klingler RJ, Sandi G, Johnson CS, Scanlon LG, Rathke JW (2000) Li-7 NMR study of intercalated lithium in curved carbon lattices. J Power Sources 89(2):237–243CrossRef Gerald RE, Klingler RJ, Sandi G, Johnson CS, Scanlon LG, Rathke JW (2000) Li-7 NMR study of intercalated lithium in curved carbon lattices. J Power Sources 89(2):237–243CrossRef
147.
Zurück zum Zitat Chevallier F, Letellier M, Morcrette M, Tarascon JM, Frackowiak E, Rouzaud JN, Beguin F (2003) In situ Li-7-nuclear magnetic resonance observation of reversible lithium insertion into disordered carbons. Electrochem Solid State Lett 6(11):A225–A228CrossRef Chevallier F, Letellier M, Morcrette M, Tarascon JM, Frackowiak E, Rouzaud JN, Beguin F (2003) In situ Li-7-nuclear magnetic resonance observation of reversible lithium insertion into disordered carbons. Electrochem Solid State Lett 6(11):A225–A228CrossRef
148.
Zurück zum Zitat Letellier M, Chevallier F, Clinard C, Frackowiak E, Rouzaud JN, Beguin F, Morcrette M, Tarascon JM (2003) The first in situ Li-7 nuclear magnetic resonance study of lithium insertion in hard-carbon anode materials for Li-ion batteries. J Chem Phys 118(13):6038–6045CrossRef Letellier M, Chevallier F, Clinard C, Frackowiak E, Rouzaud JN, Beguin F, Morcrette M, Tarascon JM (2003) The first in situ Li-7 nuclear magnetic resonance study of lithium insertion in hard-carbon anode materials for Li-ion batteries. J Chem Phys 118(13):6038–6045CrossRef
149.
Zurück zum Zitat Key B, Bhattacharyya R, Morcrette M, Seznec V, Tarascon JM, Grey CP (2009) Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J Am Chem Soc 131(26):9239–9249CrossRef Key B, Bhattacharyya R, Morcrette M, Seznec V, Tarascon JM, Grey CP (2009) Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J Am Chem Soc 131(26):9239–9249CrossRef
150.
Zurück zum Zitat Nesper R (1990) Structure and chemical bonding in zintl-phases containing Lithium. Prog Solid State Chem 20(1):1–45CrossRef Nesper R (1990) Structure and chemical bonding in zintl-phases containing Lithium. Prog Solid State Chem 20(1):1–45CrossRef
Zurück zum Zitat Balbuena PB, Wang Y (2004) Lithium-ion batteries: solid electrolyte interphase. Imperial College Press, LondonCrossRef Balbuena PB, Wang Y (2004) Lithium-ion batteries: solid electrolyte interphase. Imperial College Press, LondonCrossRef
Zurück zum Zitat Linden D, Reddy TB (2002) Handbook of batteries, 3rd edn. McGraw-Hill, New York Linden D, Reddy TB (2002) Handbook of batteries, 3rd edn. McGraw-Hill, New York
Metadaten
Titel
Lithium Ion Batteries, Electrochemical Reactions in
verfasst von
Paul J. Sideris
Steve G. Greenbaum
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-5791-6_8