Skip to main content

2017 | OriginalPaper | Buchkapitel

3. Lower-Mantle Mineral Associations

verfasst von : Felix V. Kaminsky

Erschienen in: The Earth's Lower Mantle

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There are three major sources of information about the composition of the lower mantle: high PT experiments, theoretical calculations, and geological observations. Experimental data, based on the use of diamond-anvil cell technique (DAC), and theoretical calculations demonstrate that silicates, occurring in the upper mantle and the transition zone, are replaced by predominantly perovskitic assemblage in the lower mantle. Depending on the starting substrate composition, two mineral associations should occur at pressures corresponding to the lower-mantle conditions: ultramafic (bridgmanite + CaSi-perovskite + ferropericlase) and mafic (bridgmanite + CaSi-perovskite + ferropericlase + silica + Al-phase). Both iron-containing lower-mantle minerals, bridgmanite and ferropericlase, should be magnesium-rich. In recent decades, lower-mantle minerals were found as inclusions in diamonds from Brazil, Guinea, Canada, Australia and South Africa. They confirm the presence of ultramafic, mafic and carbonatitic mineral associations. Geological samples differ notably from the lower mantle compositions suggested on the basis of experimental and theoretical data for the pyrolitic composition. First, ferropericlase is the most common in the lower-mantle ultramafic association (averaging 55.6%), while bridgmanite comprises only 7.5%, about ten times lower than has been suggested (c. 70–74%) in the lower mantle. Second, silica inclusions were identified in all sets of lower-mantle minerals observed in diamond from all regions and areas. Third, wide variations in ferropericlase compositions, reaching an iron index of up to fe = 0.64 were observed. Minerals from the ultramafic association overwhelmingly predominate in the lower mantle samples; only two samples of mafic mineral phases, phase Egg and δ−AlOOH are found to date.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akaogi, M. (2007). Phase transitions of minerals in the transition zone and upper part of the lower mantle. In: E. Ohtani (Ed.), Advances in high-pressure mineralogy (Vol. 421, pp. 1–13). Geological Society of America. doi:10.1130/2007_2421(01) Akaogi, M. (2007). Phase transitions of minerals in the transition zone and upper part of the lower mantle. In: E. Ohtani (Ed.), Advances in high-pressure mineralogy (Vol. 421, pp. 1–13). Geological Society of America. doi:10.​1130/​2007_​2421(01)
Zurück zum Zitat Bassett, W. A. (2001). The birth and development of laser heating in DACs. Review of Scientific Instruments, 72, 1270–1272.CrossRef Bassett, W. A. (2001). The birth and development of laser heating in DACs. Review of Scientific Instruments, 72, 1270–1272.CrossRef
Zurück zum Zitat Bassett, W. A. (2009). Diamond anvil cell, 50th birthday. High Pressure Research, 29(2), 163–186.CrossRef Bassett, W. A. (2009). Diamond anvil cell, 50th birthday. High Pressure Research, 29(2), 163–186.CrossRef
Zurück zum Zitat Borges, M.P.A.C., Moura, M.A., Lenharo, S.L.R., Smith, C.B., & Araujo, D.P. (2016). Mineralogical characterization of diamonds from Roosevelt Indigenous Reserve, Brazil, using non-destructive methods. Lithos, 265, 182–198. doi:10.1016/j.lithos.2016.08.003. Borges, M.P.A.C., Moura, M.A., Lenharo, S.L.R., Smith, C.B., & Araujo, D.P. (2016). Mineralogical characterization of diamonds from Roosevelt Indigenous Reserve, Brazil, using non-destructive methods. Lithos, 265, 182–198. doi:10.​1016/​j.​lithos.​2016.​08.​003.
Zurück zum Zitat Bulanova, G. P., Smith, C. B., Kohn, S. C., et al. (2008). Machado river, Brazil—a newly recognised ultra deep diamond occurrence. In 9th International kimberlite Conference Extended Abstract No. 9IKC-A-00233. Bulanova, G. P., Smith, C. B., Kohn, S. C., et al. (2008). Machado river, Brazil—a newly recognised ultra deep diamond occurrence. In 9th International kimberlite Conference Extended Abstract No. 9IKC-A-00233.
Zurück zum Zitat Bulanova, G. P., Walter, M. J., Smith, C. B., et al. (2010). Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contributions to Mineralogy and Petrology, 159(4), 489–510.CrossRef Bulanova, G. P., Walter, M. J., Smith, C. B., et al. (2010). Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contributions to Mineralogy and Petrology, 159(4), 489–510.CrossRef
Zurück zum Zitat Burnham, A. D., Bulanova, G. P., Smith, C. B., et al. (2016). Diamonds from the Machado river alluvial deposit, Rondônia, Brazil, derived from both lithospheric and sublithospheric mantle. Lithos, 265, 199–213. doi:10.1016/j.lithos.2016.05.022 CrossRef Burnham, A. D., Bulanova, G. P., Smith, C. B., et al. (2016). Diamonds from the Machado river alluvial deposit, Rondônia, Brazil, derived from both lithospheric and sublithospheric mantle. Lithos, 265, 199–213. doi:10.​1016/​j.​lithos.​2016.​05.​022 CrossRef
Zurück zum Zitat Chinn, J. L., Milledge, H. J., & Gurney, J. J. (1998). Diamonds and inclusions from the Jagersfontein kimberlite. In: Seventh international kimberlite conference extended abstracts, Cape Town (pp. 156–157). Chinn, J. L., Milledge, H. J., & Gurney, J. J. (1998). Diamonds and inclusions from the Jagersfontein kimberlite. In: Seventh international kimberlite conference extended abstracts, Cape Town (pp. 156–157).
Zurück zum Zitat Collerson, K. D., Hapugoda, S., Kamber, B. S., et al. (2000). Rocks from the mantle transition zone: Majorite-bearing xenoliths from Malaita, Southwest Pacific. Science, 288(5469), 1215–1223.CrossRef Collerson, K. D., Hapugoda, S., Kamber, B. S., et al. (2000). Rocks from the mantle transition zone: Majorite-bearing xenoliths from Malaita, Southwest Pacific. Science, 288(5469), 1215–1223.CrossRef
Zurück zum Zitat Davies, R. M., Griffin, W. L., O’Reilly, S. Y., et al. (2004). Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada. Lithos, 77(1–4), 39–55.CrossRef Davies, R. M., Griffin, W. L., O’Reilly, S. Y., et al. (2004). Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada. Lithos, 77(1–4), 39–55.CrossRef
Zurück zum Zitat Dobrzhinetskaya, L., Green, H. W., II, & Wang, S. (1996). Alpe Arami: A peridotite massif from depths of more than 300 kilometers. Science, 271(5257), 1841–1845.CrossRef Dobrzhinetskaya, L., Green, H. W., II, & Wang, S. (1996). Alpe Arami: A peridotite massif from depths of more than 300 kilometers. Science, 271(5257), 1841–1845.CrossRef
Zurück zum Zitat Dobrzhinetskaya, L. F., Wirth, R., Yang, J., et al. (2009). High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proceedings of the National Academy of Sciences, 106(46), 19233–19238.CrossRef Dobrzhinetskaya, L. F., Wirth, R., Yang, J., et al. (2009). High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proceedings of the National Academy of Sciences, 106(46), 19233–19238.CrossRef
Zurück zum Zitat Donnelly, C. L., Stachel, T., Creighton, S., et al. (2007). Diamonds and their mineral inclusions from the A154 South pipe, Diavik Diamond Mine, Northwest Territories, Canada. Lithos, 98(1–4), 160–176.CrossRef Donnelly, C. L., Stachel, T., Creighton, S., et al. (2007). Diamonds and their mineral inclusions from the A154 South pipe, Diavik Diamond Mine, Northwest Territories, Canada. Lithos, 98(1–4), 160–176.CrossRef
Zurück zum Zitat Dorfman, S. M. (2016). Phase diagrams and thermodynamics of lower mantle materials. In: H. Terasaki & R. A. Fischer (Eds.), Deep Earth; Physics and Chemistry of the Lower Mantle and Core (Vol. 217, pp. 241–252). Wiley: Geophysical Monograph. Dorfman, S. M. (2016). Phase diagrams and thermodynamics of lower mantle materials. In: H. Terasaki & R. A. Fischer (Eds.), Deep Earth; Physics and Chemistry of the Lower Mantle and Core (Vol. 217, pp. 241–252). Wiley: Geophysical Monograph.
Zurück zum Zitat Dubrovinskaia, N., & Dubrovinsky, L. (2003). Whole-cell heater for the diamond anvil cell. Review of Scientific Instruments, 74(7), 3433–3437.CrossRef Dubrovinskaia, N., & Dubrovinsky, L. (2003). Whole-cell heater for the diamond anvil cell. Review of Scientific Instruments, 74(7), 3433–3437.CrossRef
Zurück zum Zitat Fei, Y., Wang, Y., & Finger, L.W. (1996). Maximum solubility of FeO in (Mg,Fe)SiO3 perovskite as a function of temperature at 26 GPa: Implication for FeO content in the lower mantle. Journal of Geophysical Research, 101(B5), 11525-11530. Fei, Y., Wang, Y., & Finger, L.W. (1996). Maximum solubility of FeO in (Mg,Fe)SiO3 perovskite as a function of temperature at 26 GPa: Implication for FeO content in the lower mantle. Journal of Geophysical Research, 101(B5), 11525-11530.
Zurück zum Zitat Fukao, Y., & Obayashi, M. (2013). Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. Journal of Geophysical Research, B118, 5920–5938. doi:10.1002/2013JB010466 Fukao, Y., & Obayashi, M. (2013). Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. Journal of Geophysical Research, B118, 5920–5938. doi:10.​1002/​2013JB010466
Zurück zum Zitat Harte, B., & Harris, J. W. (1994). Lower mantle mineral association preserved in diamonds. Mineralogical Magazine, 58A, 384–385.CrossRef Harte, B., & Harris, J. W. (1994). Lower mantle mineral association preserved in diamonds. Mineralogical Magazine, 58A, 384–385.CrossRef
Zurück zum Zitat Harte, B., Harris, J. W., Hutchison, M. T. et al. (1999). Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. In: Y. Fei et al. (Eds.), Mantle petrology: Field observations and high pressure experimentation: A tribute to Francis R. (Joe) Boyd (Vol. 6, pp. 125– 153). Geochemical Society Special Publication. Harte, B., Harris, J. W., Hutchison, M. T. et al. (1999). Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. In: Y. Fei et al. (Eds.), Mantle petrology: Field observations and high pressure experimentation: A tribute to Francis R. (Joe) Boyd (Vol. 6, pp. 125– 153). Geochemical Society Special Publication.
Zurück zum Zitat Harris, J. W., Hutchison, M. T., Hursthouse, M., et al. (1997). A new tetragonal silicate mineral occurring as inclusions in lower mantle diamonds. Nature, 387(6632), 486–488.CrossRef Harris, J. W., Hutchison, M. T., Hursthouse, M., et al. (1997). A new tetragonal silicate mineral occurring as inclusions in lower mantle diamonds. Nature, 387(6632), 486–488.CrossRef
Zurück zum Zitat Hayman, P. C., Kopylova, M. G., & Kaminsky, F. V. (2005). Lower mantle diamonds from Rio Soriso (Juina, Brazil). Contributions to Mineralogy and Petrology, 149(4), 430–445.CrossRef Hayman, P. C., Kopylova, M. G., & Kaminsky, F. V. (2005). Lower mantle diamonds from Rio Soriso (Juina, Brazil). Contributions to Mineralogy and Petrology, 149(4), 430–445.CrossRef
Zurück zum Zitat Helffrich, G. R., & Wood, B. J. (2001). The Earth’s mantle. Nature, 412(6846), 501–507.CrossRef Helffrich, G. R., & Wood, B. J. (2001). The Earth’s mantle. Nature, 412(6846), 501–507.CrossRef
Zurück zum Zitat Hirschmann, M. M., & Stolper, E. M. (1996). A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contributions to Mineralogy and Petrology, 124, 185–208.CrossRef Hirschmann, M. M., & Stolper, E. M. (1996). A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contributions to Mineralogy and Petrology, 124, 185–208.CrossRef
Zurück zum Zitat Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review B, 136, 864–871.CrossRef Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review B, 136, 864–871.CrossRef
Zurück zum Zitat Hutchison, M. T., Hurtshouse, M. B., & Light, M. E. (2001). Mineral inclusions in diamonds: associations and chemical distinctions around the 670-km discontinuity. Contributions to Mineralogy and Petrology, 142(2), 119–126.CrossRef Hutchison, M. T., Hurtshouse, M. B., & Light, M. E. (2001). Mineral inclusions in diamonds: associations and chemical distinctions around the 670-km discontinuity. Contributions to Mineralogy and Petrology, 142(2), 119–126.CrossRef
Zurück zum Zitat Irifune, T., & Tsuchiya, T. (2007). Mineralogy of the earth—phase transitions and mineralogy of the lower mantle. In G. D. Price (Ed.), Treatise on Geophysics (Vol. 2, pp. 33–62). Elsevier, Amsterdam: Mineral Physics.CrossRef Irifune, T., & Tsuchiya, T. (2007). Mineralogy of the earth—phase transitions and mineralogy of the lower mantle. In G. D. Price (Ed.), Treatise on Geophysics (Vol. 2, pp. 33–62). Elsevier, Amsterdam: Mineral Physics.CrossRef
Zurück zum Zitat Ito, E. (2009). Theory and practice—multianvil cells and high-pressure experimental methods. In: G. D. Price & G. Schubert (Eds.), Mineral physics: Treatise on geophysics, (Vol. 2, pp. 197–230). Ito, E. (2009). Theory and practice—multianvil cells and high-pressure experimental methods. In: G. D. Price & G. Schubert (Eds.), Mineral physics: Treatise on geophysics, (Vol. 2, pp. 197–230).
Zurück zum Zitat Kaminsky, F. V. (2012). Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond. Earth-Science Reviews, 110(1–4), 127–147.CrossRef Kaminsky, F. V. (2012). Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond. Earth-Science Reviews, 110(1–4), 127–147.CrossRef
Zurück zum Zitat Kaminsky, F. V., Zakharchenko, O. D., Griffin, W. L., et al. (2000). Diamond from the Guaniamo area, Venezuela. Canadian Mineralogist, 38(6), 1347–1370.CrossRef Kaminsky, F. V., Zakharchenko, O. D., Griffin, W. L., et al. (2000). Diamond from the Guaniamo area, Venezuela. Canadian Mineralogist, 38(6), 1347–1370.CrossRef
Zurück zum Zitat Kaminsky, F. V., Zakharchenko, O. D., Davies, R., et al. (2001). Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contributions to Mineralogy and Petrology, 140(6), 734–753.CrossRef Kaminsky, F. V., Zakharchenko, O. D., Davies, R., et al. (2001). Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contributions to Mineralogy and Petrology, 140(6), 734–753.CrossRef
Zurück zum Zitat Kaminsky, F. V., Khachatryan, G. K., Andreazza, P., et al. (2009a). Super-deep diamonds from kimberlites in the Juina area, Mato Grosso State, Brazil. Lithos, 112S(2), 833–842.CrossRef Kaminsky, F. V., Khachatryan, G. K., Andreazza, P., et al. (2009a). Super-deep diamonds from kimberlites in the Juina area, Mato Grosso State, Brazil. Lithos, 112S(2), 833–842.CrossRef
Zurück zum Zitat Kaminsky, F., Wirth, R., Matsyuk, S., et al. (2009b). Nyerereite and nahcolite inclusions in diamond: Evidence for lower-mantle carbonatitic magmas. Mineralogical Magazine, 73(5), 797–816.CrossRef Kaminsky, F., Wirth, R., Matsyuk, S., et al. (2009b). Nyerereite and nahcolite inclusions in diamond: Evidence for lower-mantle carbonatitic magmas. Mineralogical Magazine, 73(5), 797–816.CrossRef
Zurück zum Zitat Kaminsky, F. V., Sablukov, S. M., Belousova, E. A., et al. (2010). Kimberlitic sources of super-deep diamonds in the Juina area, Mato Grosso State, Brazil. Lithos, 114(1–2), 16–29.CrossRef Kaminsky, F. V., Sablukov, S. M., Belousova, E. A., et al. (2010). Kimberlitic sources of super-deep diamonds in the Juina area, Mato Grosso State, Brazil. Lithos, 114(1–2), 16–29.CrossRef
Zurück zum Zitat Kaminsky, F. V., Wirth, R., & Schreiber, A. (2013). Carbonatitic inclusions in Deep Mantle diamond from Juina, Brazil: New minerals in the carbonate-halide association. Canadian Mineralogist, 51(5), 669–688.CrossRef Kaminsky, F. V., Wirth, R., & Schreiber, A. (2013). Carbonatitic inclusions in Deep Mantle diamond from Juina, Brazil: New minerals in the carbonate-halide association. Canadian Mineralogist, 51(5), 669–688.CrossRef
Zurück zum Zitat Kaminsky, F. V., Wirth, R., & Schreiber, A. (2015). A microinclusion of lower-mantle rock and some other lower-mantle inclusions in diamond. Canadian Mineralogist, 53(1), 83–104. doi:10.3749/canmin.1400070 CrossRef Kaminsky, F. V., Wirth, R., & Schreiber, A. (2015). A microinclusion of lower-mantle rock and some other lower-mantle inclusions in diamond. Canadian Mineralogist, 53(1), 83–104. doi:10.​3749/​canmin.​1400070 CrossRef
Zurück zum Zitat Karki, B. B., & Stixrude, L. (1999). Seismic velocities of major silicate and oxide phases of the lower mantle. Journal of Geophysical Research, 104, 13025–13033.CrossRef Karki, B. B., & Stixrude, L. (1999). Seismic velocities of major silicate and oxide phases of the lower mantle. Journal of Geophysical Research, 104, 13025–13033.CrossRef
Zurück zum Zitat Kerschhofer, L., Scharer, U., & Deutsch, A. (2000). Evidence for crystals from the lower mantle: baddeleyite megacrysts of the Mbuji Mayi kimberlite. Earth and Planetary Science Letters, 179(2), 219–225.CrossRef Kerschhofer, L., Scharer, U., & Deutsch, A. (2000). Evidence for crystals from the lower mantle: baddeleyite megacrysts of the Mbuji Mayi kimberlite. Earth and Planetary Science Letters, 179(2), 219–225.CrossRef
Zurück zum Zitat King, S. D., Frost, D. J., & Rubie, D. C. (2015). Why cold slabs stagnate in the transition zone. Geology, 43, 231–234.CrossRef King, S. D., Frost, D. J., & Rubie, D. C. (2015). Why cold slabs stagnate in the transition zone. Geology, 43, 231–234.CrossRef
Zurück zum Zitat Kohn, W., & Sham, L. J. (1965). Self-consistent equations, including exchange and correlation effects. Physical Review A, 140, 1133–1140.CrossRef Kohn, W., & Sham, L. J. (1965). Self-consistent equations, including exchange and correlation effects. Physical Review A, 140, 1133–1140.CrossRef
Zurück zum Zitat Kopylova, M. G., Gurney, J. J., & Daniels, L. D. (1997). Mineral inclusions in diamonds from the River Ranch kimberlite, Zimbabwe. Contributions to Mineralogy and Petrology, 129(4), 366–384.CrossRef Kopylova, M. G., Gurney, J. J., & Daniels, L. D. (1997). Mineral inclusions in diamonds from the River Ranch kimberlite, Zimbabwe. Contributions to Mineralogy and Petrology, 129(4), 366–384.CrossRef
Zurück zum Zitat Lee, K. K. M., O’Neill, B., Panero, W. R., et al. (2004). Equations of state of the high-pressure phases of a natural peridotite and implications for the Earth’s lower mantle. Earth and Planetary Science Letters, 223, 381–393.CrossRef Lee, K. K. M., O’Neill, B., Panero, W. R., et al. (2004). Equations of state of the high-pressure phases of a natural peridotite and implications for the Earth’s lower mantle. Earth and Planetary Science Letters, 223, 381–393.CrossRef
Zurück zum Zitat Litasov, K., Ohtani, E., Suzuki, A., et al. (2004). Absence of density crossover between basalt and peridotite in the cold slabs passing through 660 km discontinuity. Geophysical Research Letters, 31, L24607. doi:10.1029/2004GL021306 CrossRef Litasov, K., Ohtani, E., Suzuki, A., et al. (2004). Absence of density crossover between basalt and peridotite in the cold slabs passing through 660 km discontinuity. Geophysical Research Letters, 31, L24607. doi:10.​1029/​2004GL021306 CrossRef
Zurück zum Zitat Liu, L.-G., & Ringwood, A. E. (1975). Synthesis of a perovskite-type polymorph of CaSiO3. Earth and Planetary Science Letters, 28, 209–211.CrossRef Liu, L.-G., & Ringwood, A. E. (1975). Synthesis of a perovskite-type polymorph of CaSiO3. Earth and Planetary Science Letters, 28, 209–211.CrossRef
Zurück zum Zitat Mao, H. K., & Bell, P. M. (1976). The 1-megabar mark on the ruby R 1 static pressure scale. Science, 191(4229), 851–852.CrossRef Mao, H. K., & Bell, P. M. (1976). The 1-megabar mark on the ruby R 1 static pressure scale. Science, 191(4229), 851–852.CrossRef
Zurück zum Zitat Mao, H. K., & Bell, P. M. (1978). Design and varieties of the megabar cells. Carnegie Institution of Washington Yearbook, 77, 904–908. Mao, H. K., & Bell, P. M. (1978). Design and varieties of the megabar cells. Carnegie Institution of Washington Yearbook, 77, 904–908.
Zurück zum Zitat Mao, H.-K., & Mao, W. L. (2009). Theory and practice—diamond-anvil cells and probes for high P-T mineral physics studies. In: G. D. Price & G. Schubert (Eds.), Mineral physics: Treatise on geophysics (Vol. 2, pp. 231–267). Mao, H.-K., & Mao, W. L. (2009). Theory and practice—diamond-anvil cells and probes for high P-T mineral physics studies. In: G. D. Price & G. Schubert (Eds.), Mineral physics: Treatise on geophysics (Vol. 2, pp. 231–267).
Zurück zum Zitat Marquardt, H., & Miyagi, L. (2015). Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity. Nature Geoscience, 8, 311–314. doi:10.1038/ngeo2393 CrossRef Marquardt, H., & Miyagi, L. (2015). Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity. Nature Geoscience, 8, 311–314. doi:10.​1038/​ngeo2393 CrossRef
Zurück zum Zitat McDade, P., & Harris, J. W. (1999). Syngenetic inclusion bearing diamonds from Letseng-la-Terai, Lesotho. Proceedings of the VIIth International Kimberlite Conference (Vol. 2, pp. 557–565). Cape Town: Red Roof Design. McDade, P., & Harris, J. W. (1999). Syngenetic inclusion bearing diamonds from Letseng-la-Terai, Lesotho. Proceedings of the VIIth International Kimberlite Conference (Vol. 2, pp. 557–565). Cape Town: Red Roof Design.
Zurück zum Zitat Mitra, S. (2004). High-pressure geochemistry in mineral physics (Vol. 9, 1233 pp). Elsevier: Developments in Geochemistry. Mitra, S. (2004). High-pressure geochemistry in mineral physics (Vol. 9, 1233 pp). Elsevier: Developments in Geochemistry.
Zurück zum Zitat Moore, R. O., & Gurney, J. J. (1985). Pyroxene solid solution in garnets included in diamonds. Nature, 318(6046), 553–555.CrossRef Moore, R. O., & Gurney, J. J. (1985). Pyroxene solid solution in garnets included in diamonds. Nature, 318(6046), 553–555.CrossRef
Zurück zum Zitat Moore, R. O., Otter, M. L., Rickard, R. S. et al. (1986). The occurrence of moissanite and ferro-periclase as inclusions in diamond. In 4 th International Kimberlite Conference Extended Abstracts, Perth (Vol. 16, pp. 409–411). Geological Society of Australia Abstracts. Moore, R. O., Otter, M. L., Rickard, R. S. et al. (1986). The occurrence of moissanite and ferro-periclase as inclusions in diamond. In 4 th International Kimberlite Conference Extended Abstracts, Perth (Vol. 16, pp. 409–411). Geological Society of Australia Abstracts.
Zurück zum Zitat Murakami, M., Hirose, K., Kawamura, K., et al. (2004). Post-perovskite phase transition in MgSiO3. Science, 304, 855–858.CrossRef Murakami, M., Hirose, K., Kawamura, K., et al. (2004). Post-perovskite phase transition in MgSiO3. Science, 304, 855–858.CrossRef
Zurück zum Zitat Neal, C. R., Haggerty, S. E., Sautter, V. (2001). “Majorite” and “silicate perovskite” mineral compositions in xenoliths from Malaita. Science 292(5519), 1015a. Neal, C. R., Haggerty, S. E., Sautter, V. (2001). “Majorite” and “silicate perovskite” mineral compositions in xenoliths from Malaita. Science 292(5519), 1015a.
Zurück zum Zitat Newton, M. G., Melton, C. E., & Giardini, A. A. (1977). Mineral inclusions in the Arkansas diamond. American Mineralogist, 62(5–6), 583–586. Newton, M. G., Melton, C. E., & Giardini, A. A. (1977). Mineral inclusions in the Arkansas diamond. American Mineralogist, 62(5–6), 583–586.
Zurück zum Zitat Oganov, A. R., & Ono, S. (2004). Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature, 430, 445–448.CrossRef Oganov, A. R., & Ono, S. (2004). Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature, 430, 445–448.CrossRef
Zurück zum Zitat Oganov, A. R., Hemley, R. J., Hazen, R. M., et al. (2013). Structure, bonding, and mineralogy of carbon at extreme conditions. Reviews in Mineralogy and Geochemistry, 75, 47–77. doi:10.2138/rmg.2013.75.3 CrossRef Oganov, A. R., Hemley, R. J., Hazen, R. M., et al. (2013). Structure, bonding, and mineralogy of carbon at extreme conditions. Reviews in Mineralogy and Geochemistry, 75, 47–77. doi:10.​2138/​rmg.​2013.​75.​3 CrossRef
Zurück zum Zitat Ohta, K., Hirose, K., Lay, T., et al. (2008). Phase transitions in pyrolite and MORB at lowermost mantle conditions: Implications for a MORB-rich pile above the core–mantle boundary. Earth and Planetary Science Letters, 267, 107–117.CrossRef Ohta, K., Hirose, K., Lay, T., et al. (2008). Phase transitions in pyrolite and MORB at lowermost mantle conditions: Implications for a MORB-rich pile above the core–mantle boundary. Earth and Planetary Science Letters, 267, 107–117.CrossRef
Zurück zum Zitat Ohtani, E., Kagawa, N., Shimomura, O., et al. (1989). High-pressure generation by a multiple anvil system with sintered diamond anvils. Review of Scientific Instruments, 60(5), 922. doi:10.1063/1.1140344 CrossRef Ohtani, E., Kagawa, N., Shimomura, O., et al. (1989). High-pressure generation by a multiple anvil system with sintered diamond anvils. Review of Scientific Instruments, 60(5), 922. doi:10.​1063/​1.​1140344 CrossRef
Zurück zum Zitat Otter, M. L., & Gurney, J. J. (1989). Mineral inclusions in diamond from the Sloan diatremes, Colorado-Wyoming State Line kimberlite district, North America. In J. Ross et al. (Eds.), Kimberlites and related rocks (Vol. 2, pp. 1042–1053)., Proceedings of the Fourth International Kimberlite Conference, Perth 1986 Carlton: Blackwell. Otter, M. L., & Gurney, J. J. (1989). Mineral inclusions in diamond from the Sloan diatremes, Colorado-Wyoming State Line kimberlite district, North America. In J. Ross et al. (Eds.), Kimberlites and related rocks (Vol. 2, pp. 1042–1053)., Proceedings of the Fourth International Kimberlite Conference, Perth 1986 Carlton: Blackwell.
Zurück zum Zitat Payne, M. C., Teter, M. P., Allen, D. C., et al. (1992). Interactive minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradient. Reviews of Modern Physics, 64, 1045–1097.CrossRef Payne, M. C., Teter, M. P., Allen, D. C., et al. (1992). Interactive minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradient. Reviews of Modern Physics, 64, 1045–1097.CrossRef
Zurück zum Zitat Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3856–4868.CrossRef Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3856–4868.CrossRef
Zurück zum Zitat Ricolleau, A., Perrillat, J.-P., Fiquet, G., et al. (2010). Phase relations and equation of state of a natural MORB: Implications for the density profile of subducted oceanic crust in the Earth’s lower mantle. Journal of Geophysical Research, 115, B08202. doi:10.1029/2009JB006709 CrossRef Ricolleau, A., Perrillat, J.-P., Fiquet, G., et al. (2010). Phase relations and equation of state of a natural MORB: Implications for the density profile of subducted oceanic crust in the Earth’s lower mantle. Journal of Geophysical Research, 115, B08202. doi:10.​1029/​2009JB006709 CrossRef
Zurück zum Zitat Ringwood, A. E. (1967). The pyroxene-garnet transformation in the earth’s mantle. Earth and Planetary Science Letters, 2(3), 255–263.CrossRef Ringwood, A. E. (1967). The pyroxene-garnet transformation in the earth’s mantle. Earth and Planetary Science Letters, 2(3), 255–263.CrossRef
Zurück zum Zitat Ringwood, A. E. (1975). Composition and petrology of the Earth’s mantle. New York: McGraw-Hill. Ringwood, A. E. (1975). Composition and petrology of the Earth’s mantle. New York: McGraw-Hill.
Zurück zum Zitat Ringwood, A. E., & Major, A. (1971). Synthesis of majorite and other high pressure garnets and perovskites. Earth and Planetary Science Letters, 12, 411–418.CrossRef Ringwood, A. E., & Major, A. (1971). Synthesis of majorite and other high pressure garnets and perovskites. Earth and Planetary Science Letters, 12, 411–418.CrossRef
Zurück zum Zitat Scott Smith, B. H., Danchin, R. V., Harris, J. W., et al. (1984). Kimberlites near Orroroo, South Australia. In J. Kornprobst (Ed.), Kimberlites I: Kimberlites and Related Rocks (pp. 121–142). Amsterdam: Elsevier.CrossRef Scott Smith, B. H., Danchin, R. V., Harris, J. W., et al. (1984). Kimberlites near Orroroo, South Australia. In J. Kornprobst (Ed.), Kimberlites I: Kimberlites and Related Rocks (pp. 121–142). Amsterdam: Elsevier.CrossRef
Zurück zum Zitat Schärer, U., Berndt, J., & Deutsch, A. (2011). The genesis of deep-mantle xenocrystic zircon and baddeleyite megacrysts (Mbuji-Mayi kimberlite): Trace-element patterns. European Journal of Mineralogy, 23, 241–255.CrossRef Schärer, U., Berndt, J., & Deutsch, A. (2011). The genesis of deep-mantle xenocrystic zircon and baddeleyite megacrysts (Mbuji-Mayi kimberlite): Trace-element patterns. European Journal of Mineralogy, 23, 241–255.CrossRef
Zurück zum Zitat Sobolev, N. V., Yefimova, E. S., & Koptil, V. I. (1999). Mineral inclusions in diamonds in the Northeast of the Yakutian diamondiferous province. Proceedings of the VIIth International Kimberlite Conference (Vol. 2, pp. 816–822). Cape Town: Red Roof Design. Sobolev, N. V., Yefimova, E. S., & Koptil, V. I. (1999). Mineral inclusions in diamonds in the Northeast of the Yakutian diamondiferous province. Proceedings of the VIIth International Kimberlite Conference (Vol. 2, pp. 816–822). Cape Town: Red Roof Design.
Zurück zum Zitat Stachel, T., Harris, J. W., & Brey, G. P. (1999). REE patterns of peridotitic and eclogitic inclusions in diamonds from Mwadui (Tanzania). Proceedings of the VIIth International Kimberlite Conference (Vol. 2, pp. 829–835). Cape Town: Red Roof Design. Stachel, T., Harris, J. W., & Brey, G. P. (1999). REE patterns of peridotitic and eclogitic inclusions in diamonds from Mwadui (Tanzania). Proceedings of the VIIth International Kimberlite Conference (Vol. 2, pp. 829–835). Cape Town: Red Roof Design.
Zurück zum Zitat Stachel, T., Harris, J. W., Brey, G. P., et al. (2000). Kankan diamonds (Guinea) II: Lower mantle inclusion parageneses. Contributions to Mineralogy and Petrology, 140(1), 16–27.CrossRef Stachel, T., Harris, J. W., Brey, G. P., et al. (2000). Kankan diamonds (Guinea) II: Lower mantle inclusion parageneses. Contributions to Mineralogy and Petrology, 140(1), 16–27.CrossRef
Zurück zum Zitat Stixrude, L., & Lithgow-Bertelloni, С. (2007). Influence of phase transformations on lateral heterogeneity and dynamics in Earth’s mantle. Earth and Planetary Science Letters, 263(1–2), 45–55.CrossRef Stixrude, L., & Lithgow-Bertelloni, С. (2007). Influence of phase transformations on lateral heterogeneity and dynamics in Earth’s mantle. Earth and Planetary Science Letters, 263(1–2), 45–55.CrossRef
Zurück zum Zitat Stixrude, L., & Lithgow-Bertelloni, С. (2012). Geophysics of chemical heterogeneity in the mantle. Annual Review of Earth and Planetary Sciences, 40, 569–595.CrossRef Stixrude, L., & Lithgow-Bertelloni, С. (2012). Geophysics of chemical heterogeneity in the mantle. Annual Review of Earth and Planetary Sciences, 40, 569–595.CrossRef
Zurück zum Zitat Stixrude, L., Lithgow-Bertelloni, C., Kiefer, B., et al. (2007). Phase stability and shear softening in CaSiO3 perovskite at high pressure. Physical Review B, 75, 024108.CrossRef Stixrude, L., Lithgow-Bertelloni, C., Kiefer, B., et al. (2007). Phase stability and shear softening in CaSiO3 perovskite at high pressure. Physical Review B, 75, 024108.CrossRef
Zurück zum Zitat Tappert, R., Stachel, T., Harris, J. W., et al. (2005a). Mineral inclusions in diamonds from the Slave Province, Canada. European Journal of Mineralogy, 17(3), 423–440.CrossRef Tappert, R., Stachel, T., Harris, J. W., et al. (2005a). Mineral inclusions in diamonds from the Slave Province, Canada. European Journal of Mineralogy, 17(3), 423–440.CrossRef
Zurück zum Zitat Tappert, R., Stachel, T., Harris, J. W., et al. (2005b). Diamonds from Jagersfontein (South Africa): Messengers from the sublithospheric mantle. Contributions to Mineralogy and Petrology, 150(5), 505–522.CrossRef Tappert, R., Stachel, T., Harris, J. W., et al. (2005b). Diamonds from Jagersfontein (South Africa): Messengers from the sublithospheric mantle. Contributions to Mineralogy and Petrology, 150(5), 505–522.CrossRef
Zurück zum Zitat Tappert, R., Foden, J., Stachel, T., et al. (2009). The diamonds of South Australia. Lithos, 112S, 806–821.CrossRef Tappert, R., Foden, J., Stachel, T., et al. (2009). The diamonds of South Australia. Lithos, 112S, 806–821.CrossRef
Zurück zum Zitat Tsuchiya, T., & Kawai, K. (2013). Ab initio mineralogical model of the Earth’s lower mantle. In: Karato S.-I. (Ed.), Physics and chemistry of the deep earth (pp. 213–243). Wiley. Tsuchiya, T., & Kawai, K. (2013). Ab initio mineralogical model of the Earth’s lower mantle. In: Karato S.-I. (Ed.), Physics and chemistry of the deep earth (pp. 213–243). Wiley.
Zurück zum Zitat Van Rythoven, A. D., & Schulze, D. J. (2009). In-situ analysis of diamonds and their inclusions from the Diavik Mine, Northwest Territories, Canada: Mapping diamond growth. Lithos, 112S, 870–879.CrossRef Van Rythoven, A. D., & Schulze, D. J. (2009). In-situ analysis of diamonds and their inclusions from the Diavik Mine, Northwest Territories, Canada: Mapping diamond growth. Lithos, 112S, 870–879.CrossRef
Zurück zum Zitat Van Thienen, P., van Summeren, J., van der Hilst, R. D. et al. (2005). Numerical study of the origin and stability of chemically distinct reservoirs deep in Earth’s mantle. In: R. D. van der Hilst et al. (Eds.), Earth’s deep mantle: Structure, composition, and evolution (pp. 117–136). Washington, D.C: Geophysical Monograph 160, American Geophysical Union. Van Thienen, P., van Summeren, J., van der Hilst, R. D. et al. (2005). Numerical study of the origin and stability of chemically distinct reservoirs deep in Earth’s mantle. In: R. D. van der Hilst et al. (Eds.), Earth’s deep mantle: Structure, composition, and evolution (pp. 117–136). Washington, D.C: Geophysical Monograph 160, American Geophysical Union.
Zurück zum Zitat Wilding, M. C., Harte, B., & Harris, J.W. (1991). Evidence for a deep origin for the Sao Luiz diamonds. In Fifth International Kimberlite Conference Extended Abstracts, Araxa (pp. 456–458). Wilding, M. C., Harte, B., & Harris, J.W. (1991). Evidence for a deep origin for the Sao Luiz diamonds. In Fifth International Kimberlite Conference Extended Abstracts, Araxa (pp. 456–458).
Zurück zum Zitat Wirth, R., Vollmer, C., Brenker, F., Matsyuk, S., et al. (2007). Nanocrystalline hydrous aluminum silicate in superdeep diamonds from Juina (Mato Grosso State, Brazil). Earth and Planetary Science Letters, 259(3–4), 384–399.CrossRef Wirth, R., Vollmer, C., Brenker, F., Matsyuk, S., et al. (2007). Nanocrystalline hydrous aluminum silicate in superdeep diamonds from Juina (Mato Grosso State, Brazil). Earth and Planetary Science Letters, 259(3–4), 384–399.CrossRef
Zurück zum Zitat Wirth, R., Kaminsky, F., Matsyuk, S., et al. (2009). Unusual micro- and nano-inclusions in diamonds from the Juina Area, Brazil. Earth and Planetary Science Letters, 286(1–2), 292–303.CrossRef Wirth, R., Kaminsky, F., Matsyuk, S., et al. (2009). Unusual micro- and nano-inclusions in diamonds from the Juina Area, Brazil. Earth and Planetary Science Letters, 286(1–2), 292–303.CrossRef
Zurück zum Zitat Wood, B. J. (2000). Phase transformations and partitioning relations in peridotite under lower mantle conditions. Earth and Planetary Science Letters, 174, 341–354.CrossRef Wood, B. J. (2000). Phase transformations and partitioning relations in peridotite under lower mantle conditions. Earth and Planetary Science Letters, 174, 341–354.CrossRef
Zurück zum Zitat Yamazaki, D., Ito, E., Yoshino, T., Tsujino, N., Yoneda, A., Guo, X., et al. (2014). Over 1 Mbar generation in the Kawai-type multianvil apparatus and its application to compression of (Mg 0.92 Fe 0.08)SiO3 perovskite and stishovite. Physics of the Earth and Planetary Interiors, 228, 262–267. doi:10.1016/j.pepi.2014.01.013 CrossRef Yamazaki, D., Ito, E., Yoshino, T., Tsujino, N., Yoneda, A., Guo, X., et al. (2014). Over 1 Mbar generation in the Kawai-type multianvil apparatus and its application to compression of (Mg 0.92 Fe 0.08)SiO3 perovskite and stishovite. Physics of the Earth and Planetary Interiors, 228, 262–267. doi:10.​1016/​j.​pepi.​2014.​01.​013 CrossRef
Zurück zum Zitat Zedgenizov, D. A., Logviniva, A. M., Shatsky, V. S., et al. (1998). Inclusions in microdiamonds from some Yakutian kimberlite diatremes. Dokladi Akademii Nauk, 359(2), 204–208. Zedgenizov, D. A., Logviniva, A. M., Shatsky, V. S., et al. (1998). Inclusions in microdiamonds from some Yakutian kimberlite diatremes. Dokladi Akademii Nauk, 359(2), 204–208.
Zurück zum Zitat Zedgenizov, D. A., Yefimova, E. S., Logvinova, A. M., et al. (2001). Ferropericlase inclusions in a diamond microcrystal from the Udachnaya kimberlite pipe, Yakutia. Doklady Akademii Nauk, 377(3), 319–321. Zedgenizov, D. A., Yefimova, E. S., Logvinova, A. M., et al. (2001). Ferropericlase inclusions in a diamond microcrystal from the Udachnaya kimberlite pipe, Yakutia. Doklady Akademii Nauk, 377(3), 319–321.
Zurück zum Zitat Zha, C. S., & Bassett, W. A. (2003). Internal resistive heating in diamond anvil cell for in situ X-ray diffraction and Raman scattering. Review of Scientific Instruments, 74, 1255–1262.CrossRef Zha, C. S., & Bassett, W. A. (2003). Internal resistive heating in diamond anvil cell for in situ X-ray diffraction and Raman scattering. Review of Scientific Instruments, 74, 1255–1262.CrossRef
Zurück zum Zitat Zhai, S., & Ito, E. (2010). Recent advances of high-pressure generation in a multianvil apparatus using sintered diamond anvils. Geoscience Frontiers, 2(1), 101–106.CrossRef Zhai, S., & Ito, E. (2010). Recent advances of high-pressure generation in a multianvil apparatus using sintered diamond anvils. Geoscience Frontiers, 2(1), 101–106.CrossRef
Zurück zum Zitat Zhang, R. Y., Yang, J.-S., Ernst, W. G., et al. (2016). Discovery of in situ super-reducing, ultrahigh-pressure phases in the Luobusa ophiolitic chromitites, Tibet: New insights into the deep upper mantle and mantle transition zone. American Mineralogist, 101(6), 1285–1294. doi:10.2138/am-2016-5436 CrossRef Zhang, R. Y., Yang, J.-S., Ernst, W. G., et al. (2016). Discovery of in situ super-reducing, ultrahigh-pressure phases in the Luobusa ophiolitic chromitites, Tibet: New insights into the deep upper mantle and mantle transition zone. American Mineralogist, 101(6), 1285–1294. doi:10.​2138/​am-2016-5436 CrossRef
Metadaten
Titel
Lower-Mantle Mineral Associations
verfasst von
Felix V. Kaminsky
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-55684-0_3