Skip to main content
Erschienen in: Wireless Personal Communications 3/2016

25.07.2016

LPWS Algorithm for Wideband Spectrum Sensing

verfasst von: Fulai Liu, Ruiyan Du

Erschienen in: Wireless Personal Communications | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wideband or multi-band spectrum sensing is an essential functionality for cognitive radio (CR) networks. It enables a secondary user to identify spectral holes dynamically and transmit opportunistically so as not to interfere with cohabiting primary users over the same bands. This paper presents an effective wideband spectrum sensing method based on linear programming (named as LPWS algorithm) for a CR user equipped with a single receiving antenna. Firstly, the proposed method utilizes the temporal smoothing technique to form a virtual multi-antenna structure. Secondly, the wideband spectrum sensing problem is reformulated as a sparse reconstruction problem by exploiting a sparse representation of the virtual multi-antenna array covariance vector. Finally, making use of \(l_{\infty }\)-norm, the sparse reconstruction problem is modelled as a linear programming (LP) problem and hence can be solved efficiently. The presented method offers a number of advantages over other recently proposed methods. For examples, (1) it can reduce system overhead since single antenna is used instead of multiple antennas or sensing nodes. (2) The unknown noise variances can be eliminated effectively by a linear transformation. (3) It is computationally simpler since it is efficiently formulated in terms of the LP problem based on real-valued computation, etc. Simulation results are presented to verify the efficiency of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sun, H. J., & Chen, Y. F. (2013). Wideband spectrum sensing for cognitive radio networks: A survey. IEEE Wireless Communications, 20(2), 74–81.CrossRef Sun, H. J., & Chen, Y. F. (2013). Wideband spectrum sensing for cognitive radio networks: A survey. IEEE Wireless Communications, 20(2), 74–81.CrossRef
2.
Zurück zum Zitat Hattab, G., & Ibnkahla, M. (2014). Multiband spectrum access: Great promises for future cognitive radio networks. Proceedings of the IEEE, 102(3), 282–306.CrossRef Hattab, G., & Ibnkahla, M. (2014). Multiband spectrum access: Great promises for future cognitive radio networks. Proceedings of the IEEE, 102(3), 282–306.CrossRef
3.
Zurück zum Zitat Sun, Z. W., & Laneman, L. N. (2014). Performance metrices, sampling schemes, and detection algorithms for wideband spectrum sensing. IEEE Transactions on Signal Processing, 62(19), 5107–5118.MathSciNetCrossRef Sun, Z. W., & Laneman, L. N. (2014). Performance metrices, sampling schemes, and detection algorithms for wideband spectrum sensing. IEEE Transactions on Signal Processing, 62(19), 5107–5118.MathSciNetCrossRef
4.
Zurück zum Zitat Taherpour, A., Gazor, S., & Nasiri-Kenari, M. (2009). Invariant wideband spectrum sensing under unknown variances. IEEE Transactions on Wireless Communications, 8(5), 2182–2186.CrossRef Taherpour, A., Gazor, S., & Nasiri-Kenari, M. (2009). Invariant wideband spectrum sensing under unknown variances. IEEE Transactions on Wireless Communications, 8(5), 2182–2186.CrossRef
5.
Zurück zum Zitat Tian, Z., & Giannakis, G. B. (2006). A wavelet approach to wideband spectrum sensing for cognitive radios. In Proceedings of International Conference on Cognitive Radio Oriented Wireless Networks and Communications (pp. 68–72). Tian, Z., & Giannakis, G. B. (2006). A wavelet approach to wideband spectrum sensing for cognitive radios. In Proceedings of International Conference on Cognitive Radio Oriented Wireless Networks and Communications (pp. 68–72).
6.
Zurück zum Zitat Quan, Z., Cui, S., Sayed, A. H., & Poor, H. V. (2009). Optimal multiband joint detection for spectrumsensing in cognitive radio networks. IEEE Transactions on Signal Processing, 57(3), 1128–1140.MathSciNetCrossRef Quan, Z., Cui, S., Sayed, A. H., & Poor, H. V. (2009). Optimal multiband joint detection for spectrumsensing in cognitive radio networks. IEEE Transactions on Signal Processing, 57(3), 1128–1140.MathSciNetCrossRef
7.
Zurück zum Zitat Tian, Z., & Giannakis, G. (2007). Compressive sensing for wideband cognitive radios. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 1357–1360). Tian, Z., & Giannakis, G. (2007). Compressive sensing for wideband cognitive radios. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 1357–1360).
8.
Zurück zum Zitat Yu, Z. Z., Chen, X., Hoyos, S., Sadler, B. M., Gong, J. X., & Qian, C. L. (2010). Mixed-signal parallel compressive spectrum sensing for cognitive radios. International Journal of Digital Multimedia Broadcasting, 2010, 1–10.CrossRef Yu, Z. Z., Chen, X., Hoyos, S., Sadler, B. M., Gong, J. X., & Qian, C. L. (2010). Mixed-signal parallel compressive spectrum sensing for cognitive radios. International Journal of Digital Multimedia Broadcasting, 2010, 1–10.CrossRef
9.
Zurück zum Zitat Zeng, F. Z., Li, C., & Tian, Z. (2011). Distributed compressive spectrum sensing in cooperative multihop cognitive networks. IEEE Journal of Selected Topics in Signal Processing, 5(1), 37–48.CrossRef Zeng, F. Z., Li, C., & Tian, Z. (2011). Distributed compressive spectrum sensing in cooperative multihop cognitive networks. IEEE Journal of Selected Topics in Signal Processing, 5(1), 37–48.CrossRef
10.
Zurück zum Zitat Zhang, Z. H., Han, Z., Li, H. S., Yang, D. P., & Pei, C. X. (2011). Belief propagation based cooperative compressed spectrum sensing in wideband cognitive radio networks. IEEE Transactions on Wireless Communications, 10(9), 3020–3031.CrossRef Zhang, Z. H., Han, Z., Li, H. S., Yang, D. P., & Pei, C. X. (2011). Belief propagation based cooperative compressed spectrum sensing in wideband cognitive radio networks. IEEE Transactions on Wireless Communications, 10(9), 3020–3031.CrossRef
11.
Zurück zum Zitat Li, F., & Xu, Z. B. (2014). Sparse Bayesian hierarchical prior modeling based cooperative spectrum sensing in wideband cognitive radio networks. IEEE Signal Processing Letters, 21(5), 586–590.CrossRef Li, F., & Xu, Z. B. (2014). Sparse Bayesian hierarchical prior modeling based cooperative spectrum sensing in wideband cognitive radio networks. IEEE Signal Processing Letters, 21(5), 586–590.CrossRef
12.
Zurück zum Zitat Qing, H. B., Liu, Y. N., Xie, G., & Gao, J. H. (2015). Wideband spectrum sensing for cognitive radios: A multistage Wiener filter perspective. IEEE Signal Processing Letters, 22(3), 332–335.CrossRef Qing, H. B., Liu, Y. N., Xie, G., & Gao, J. H. (2015). Wideband spectrum sensing for cognitive radios: A multistage Wiener filter perspective. IEEE Signal Processing Letters, 22(3), 332–335.CrossRef
13.
Zurück zum Zitat Liu, F. L., Wang, J. K., & Du, R. Y. (2010). Unitary-JAFE algorithm for joint angle–frequency estimation based on Frame–Newton method. Signal Processing, 3(90), 809–820.CrossRefMATH Liu, F. L., Wang, J. K., & Du, R. Y. (2010). Unitary-JAFE algorithm for joint angle–frequency estimation based on Frame–Newton method. Signal Processing, 3(90), 809–820.CrossRefMATH
14.
Zurück zum Zitat Liu, F. L., Guo, S. M., & Sun, Y. X. (2013). Primary user signal detection based on virtual multiple antennas for cognitive radio networks. Progress in Electromagnetics Research C, 42, 213–227.CrossRef Liu, F. L., Guo, S. M., & Sun, Y. X. (2013). Primary user signal detection based on virtual multiple antennas for cognitive radio networks. Progress in Electromagnetics Research C, 42, 213–227.CrossRef
15.
Zurück zum Zitat Jiang, X., Zeng, W. J., Yasotharan, A., et al. (2014). Robust beamforming by linear programming. IEEE Transactions on Signal Processing, 62(7), 1834–1849.MathSciNetCrossRef Jiang, X., Zeng, W. J., Yasotharan, A., et al. (2014). Robust beamforming by linear programming. IEEE Transactions on Signal Processing, 62(7), 1834–1849.MathSciNetCrossRef
16.
Zurück zum Zitat Dantzig, G. B. (1998). Linear programming and extensions. Princeton, NJ: Princeton University Press.MATH Dantzig, G. B. (1998). Linear programming and extensions. Princeton, NJ: Princeton University Press.MATH
17.
Zurück zum Zitat Nesterov, Y., & Nemirovsky, A. (1994). Point polynomial algorithms in convex programming. Philadelphia, PA: SIAM Press.CrossRef Nesterov, Y., & Nemirovsky, A. (1994). Point polynomial algorithms in convex programming. Philadelphia, PA: SIAM Press.CrossRef
18.
Zurück zum Zitat Zeng, Y. H., & Liang, Y. C. (2007). Maximum–minimum eigenvalue detection for cognitive radio. In Proceedings of International Symposium on Personal, Indoor and Mobile Radio Communications, Athens, Greece (pp. 1165–1169). Zeng, Y. H., & Liang, Y. C. (2007). Maximum–minimum eigenvalue detection for cognitive radio. In Proceedings of International Symposium on Personal, Indoor and Mobile Radio Communications, Athens, Greece (pp. 1165–1169).
Metadaten
Titel
LPWS Algorithm for Wideband Spectrum Sensing
verfasst von
Fulai Liu
Ruiyan Du
Publikationsdatum
25.07.2016
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2016
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-016-3526-z

Weitere Artikel der Ausgabe 3/2016

Wireless Personal Communications 3/2016 Zur Ausgabe

Neuer Inhalt