Skip to main content
Erschienen in: Journal of Elasticity 1/2023

03.01.2023

Lung Mechanics: A Review of Solid Mechanical Elasticity in Lung Parenchyma

verfasst von: R. H. Bhana, A. B. Magan

Erschienen in: Journal of Elasticity | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The lung is the main organ of the respiratory system. Its purpose is to facilitate gas exchange (breathing). Mechanically, breathing may be described as the cyclic application of stresses acting upon the lung surface. These forces are offset by prominent stress-bearing components of lung tissue. These components result from the mechanical elastic properties of lung parenchyma. Various studies have been dedicated to understanding the macroscopic behaviour of parenchyma. This has been achieved through pressure-volume analysis, numerical methods, the development of constitutive equations or strain-energy functions, finite element methods, image processing and elastography. Constitutive equations can describe the elastic behaviour exhibited by lung parenchyma through the relationship between the macroscopic stress and strain. The research conducted within lung mechanics around the elastic and resistive properties of the lung has allowed scientists to develop new methods and equipment for evaluating and treating pulmonary pathogens. This paper establishes a review of mathematical studies conducted within lung mechanics, centering on the development and implementation of solid mechanics to the understanding of the mechanical properties of the lung. Under the classical theory of elasticity, the lung is said to behave as an isotropic elastic continuum undergoing small deformations. However, the lung has also been known to display heterogeneous anisotropic behaviour associated with large deformations. Therefore, focus is placed on the assumptions and development of the various models, their mechanical influence on lung physiology, and the development of constitutive equations through the classical and non-classical theory of elasticity. Lastly, we also look at lung blast mechanics. No explicit emphasis is placed on lung pathology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bates, J.: Lung Mechanics: An Inverse Modeling Approach, pp. 1–220 (2009) Bates, J.: Lung Mechanics: An Inverse Modeling Approach, pp. 1–220 (2009)
2.
Zurück zum Zitat Bates, J.: Mechanical properties of the lung. In: Comparative Biology of the Normal Lung, 2nd edn., pp. 289–304 (2015) CrossRef Bates, J.: Mechanical properties of the lung. In: Comparative Biology of the Normal Lung, 2nd edn., pp. 289–304 (2015) CrossRef
3.
Zurück zum Zitat Vawter, D., Fung, Y., West, J.: Elasticity of excised dog lung parenchyma. J. Appl. Physiol. 45, 261–269 (1978) CrossRef Vawter, D., Fung, Y., West, J.: Elasticity of excised dog lung parenchyma. J. Appl. Physiol. 45, 261–269 (1978) CrossRef
4.
Zurück zum Zitat Mead, J., Martin, H.: Principles of respiratory mechanics. Phys. Ther. 48, 478–494 (1968) CrossRef Mead, J., Martin, H.: Principles of respiratory mechanics. Phys. Ther. 48, 478–494 (1968) CrossRef
5.
Zurück zum Zitat Hutchinson, J.: Thorax. In: The Encyclopedia of Anatomy and Physiology, pp. 1016–1017 (1852) Hutchinson, J.: Thorax. In: The Encyclopedia of Anatomy and Physiology, pp. 1016–1017 (1852)
6.
Zurück zum Zitat Cloetta, M.: Untersuchungen über die elastizität der lunge und deren bedutung für die zirkulation. In: Archives gesamte Physiology, pp. 152–339 (1913) Cloetta, M.: Untersuchungen über die elastizität der lunge und deren bedutung für die zirkulation. In: Archives gesamte Physiology, pp. 152–339 (1913)
7.
Zurück zum Zitat Mitzner, W.: Mechanics of the lung in the 20th century. Comp. Physiol. 1, 1–42 (2011) Mitzner, W.: Mechanics of the lung in the 20th century. Comp. Physiol. 1, 1–42 (2011)
8.
Zurück zum Zitat Freed, A., Einstein, D.: An implicit elastic theory for lung parenchyma. Int. J. Eng. Sci. 62, 31–47 (2013) MATHCrossRef Freed, A., Einstein, D.: An implicit elastic theory for lung parenchyma. Int. J. Eng. Sci. 62, 31–47 (2013) MATHCrossRef
9.
Zurück zum Zitat Svantesson, C., Drefeldt, B., Sigurdsson, S., Larsson, A., Brochard, L., Jonson, B.: A single computer-controlled mechanical insufflation allows determination of the pressure-volume relationship of the respiratory system. J. Clin. Monit. Comput. 15, 9–16 (1999) CrossRef Svantesson, C., Drefeldt, B., Sigurdsson, S., Larsson, A., Brochard, L., Jonson, B.: A single computer-controlled mechanical insufflation allows determination of the pressure-volume relationship of the respiratory system. J. Clin. Monit. Comput. 15, 9–16 (1999) CrossRef
10.
Zurück zum Zitat Stamenovic, D., Wilson, T.: Parenchymal stability. J. Appl. Physiol. 73, 596–602 (1992) CrossRef Stamenovic, D., Wilson, T.: Parenchymal stability. J. Appl. Physiol. 73, 596–602 (1992) CrossRef
11.
Zurück zum Zitat Saibene, F., Mead, J.: Frequency dependence of pulmonary quasi-static hysteresis. J. Appl. Physiol. 26, 732–737 (1969) CrossRef Saibene, F., Mead, J.: Frequency dependence of pulmonary quasi-static hysteresis. J. Appl. Physiol. 26, 732–737 (1969) CrossRef
12.
Zurück zum Zitat Anderson, J., Goplen, C., Murray, L., Seashore, K., Soundarrajan, M., Lokuta, A., Strang, K., Chesler, N.: Human respiratory mechanics demonstration model. Adv. Physiol. Educ. 33, 53–59 (2008) CrossRef Anderson, J., Goplen, C., Murray, L., Seashore, K., Soundarrajan, M., Lokuta, A., Strang, K., Chesler, N.: Human respiratory mechanics demonstration model. Adv. Physiol. Educ. 33, 53–59 (2008) CrossRef
13.
Zurück zum Zitat Neergaard, K.: New interpretations of basic concepts of respiratory mechanics. correlation of pulmonary recoil force with surface tension in the alveoli. Z. Gesamte Exp. Med. 66, 373–394 (1929) CrossRef Neergaard, K.: New interpretations of basic concepts of respiratory mechanics. correlation of pulmonary recoil force with surface tension in the alveoli. Z. Gesamte Exp. Med. 66, 373–394 (1929) CrossRef
14.
Zurück zum Zitat Reifenrath, R.: The significance of alveolar geometry and surface tension in the respiratory mechanics of the lung. Respir. Physiol. 24, 115–137 (1975) CrossRef Reifenrath, R.: The significance of alveolar geometry and surface tension in the respiratory mechanics of the lung. Respir. Physiol. 24, 115–137 (1975) CrossRef
15.
Zurück zum Zitat Brown, E.: Lung area from surface tension. Proc. Soc. Exp. Biol. Med. 95, 168–170 (1957) CrossRef Brown, E.: Lung area from surface tension. Proc. Soc. Exp. Biol. Med. 95, 168–170 (1957) CrossRef
16.
Zurück zum Zitat Clements, J.: Surface tension of lung extracts. Proc. Soc. Exp. Biol. Med. 95, 170–172 (1957) CrossRef Clements, J.: Surface tension of lung extracts. Proc. Soc. Exp. Biol. Med. 95, 170–172 (1957) CrossRef
17.
Zurück zum Zitat Radford, E.: Recent studies of mechanical properties of mammalian lungs. In: Tissue Elasticity, pp. 177–190 (1957) Radford, E.: Recent studies of mechanical properties of mammalian lungs. In: Tissue Elasticity, pp. 177–190 (1957)
18.
Zurück zum Zitat Radford, E.: Method for estimating respiratory surface area of mammalian lungs from their physical characteristics. Proc. Soc. Exp. Biol. Med. 87, 58–61 (1954) CrossRef Radford, E.: Method for estimating respiratory surface area of mammalian lungs from their physical characteristics. Proc. Soc. Exp. Biol. Med. 87, 58–61 (1954) CrossRef
19.
Zurück zum Zitat Mead, J., Whittenberger, J., Radford, E.: Surface tension as a factor in pulmonary volume-pressure hysteresis. J. Appl. Physiol. 10, 191–196 (1957) CrossRef Mead, J., Whittenberger, J., Radford, E.: Surface tension as a factor in pulmonary volume-pressure hysteresis. J. Appl. Physiol. 10, 191–196 (1957) CrossRef
20.
Zurück zum Zitat Brown, E., Johnson, R., Clements, J.: Pulmonary surface tension. J. Appl. Physiol. 14, 717–720 (1959) CrossRef Brown, E., Johnson, R., Clements, J.: Pulmonary surface tension. J. Appl. Physiol. 14, 717–720 (1959) CrossRef
21.
Zurück zum Zitat Pattle, R.: Properties, function and origin of the alveolar lining layer. Nature 175, 1125–1126 (1958) CrossRef Pattle, R.: Properties, function and origin of the alveolar lining layer. Nature 175, 1125–1126 (1958) CrossRef
22.
Zurück zum Zitat Macklin, C.: The pulmonary alveolar mucoid film and the pneumonocytes. Lancet 266, 1099–1104 (1954) CrossRef Macklin, C.: The pulmonary alveolar mucoid film and the pneumonocytes. Lancet 266, 1099–1104 (1954) CrossRef
23.
Zurück zum Zitat Avery, M., Mead, J.: Surface properties in relation to atelectasis and hyaline membrane disease. A.M.A. J. Dis. Child. 97, 517–523 (1959) Avery, M., Mead, J.: Surface properties in relation to atelectasis and hyaline membrane disease. A.M.A. J. Dis. Child. 97, 517–523 (1959)
24.
Zurück zum Zitat Clements, J.: Surface phenomena in lung function. J. Natl. Med. Assoc. 55, 556–557 (1963) Clements, J.: Surface phenomena in lung function. J. Natl. Med. Assoc. 55, 556–557 (1963)
25.
Zurück zum Zitat Bondurant, S., Miller, D.: A method for producing surface active extracts of mammalian lungs. J. Appl. Physiol. 17, 167–168 (1962) CrossRef Bondurant, S., Miller, D.: A method for producing surface active extracts of mammalian lungs. J. Appl. Physiol. 17, 167–168 (1962) CrossRef
26.
Zurück zum Zitat Buckingham, S., Avery, M.: Time of appearance of lung surfactant in the foetal mouse. Nature 193, 688–689 (1962) CrossRef Buckingham, S., Avery, M.: Time of appearance of lung surfactant in the foetal mouse. Nature 193, 688–689 (1962) CrossRef
27.
Zurück zum Zitat Klaus, M., Clements, J., Havel, R.: Composition of surface-active material isolated from beef lung. Proc. Natl. Acad. Sci. USA 47, 1858–1859 (1961) CrossRef Klaus, M., Clements, J., Havel, R.: Composition of surface-active material isolated from beef lung. Proc. Natl. Acad. Sci. USA 47, 1858–1859 (1961) CrossRef
28.
Zurück zum Zitat Bayliss, L., Robertson, G.: The visco-elastic properties of the lungs. Exp. Physiol. 29, 27–47 (1939) CrossRef Bayliss, L., Robertson, G.: The visco-elastic properties of the lungs. Exp. Physiol. 29, 27–47 (1939) CrossRef
29.
Zurück zum Zitat Hills, B.: Geometric irreversibility and compliance hysteresis in the lung. Respir. Physiol. 13, 50–61 (1971) CrossRef Hills, B.: Geometric irreversibility and compliance hysteresis in the lung. Respir. Physiol. 13, 50–61 (1971) CrossRef
30.
Zurück zum Zitat Pierce, J., Hocott, J., Hefley, B.: Elastic properties and the geometry of the lungs. J. Clin. Invest. 40, 1515–1524 (1961) CrossRef Pierce, J., Hocott, J., Hefley, B.: Elastic properties and the geometry of the lungs. J. Clin. Invest. 40, 1515–1524 (1961) CrossRef
31.
Zurück zum Zitat Mead, J., Takishima, T., Leith, D.: Stress distribution in lungs: a model of pulmonary elasticity. J. Appl. Physiol. 28, 596–608 (1970) CrossRef Mead, J., Takishima, T., Leith, D.: Stress distribution in lungs: a model of pulmonary elasticity. J. Appl. Physiol. 28, 596–608 (1970) CrossRef
32.
Zurück zum Zitat Ardila, R., Horie, T., Hildebrandt, J.: Macroscopic isotropy of lung expansion. Respir. Physiol. 20, 105–115 (1974) CrossRef Ardila, R., Horie, T., Hildebrandt, J.: Macroscopic isotropy of lung expansion. Respir. Physiol. 20, 105–115 (1974) CrossRef
33.
Zurück zum Zitat Lai-Fook, S.: Elastic properties of lung parenchyma: the effect of pressure-volume hysteresis on the behaviour of large blood vessels. J. Biomech. 12, 757–764 (1979) CrossRef Lai-Fook, S.: Elastic properties of lung parenchyma: the effect of pressure-volume hysteresis on the behaviour of large blood vessels. J. Biomech. 12, 757–764 (1979) CrossRef
34.
Zurück zum Zitat Clements, J., Hustead, R., Johnson, R., Gribetz, I.: Pulmonary surface tension and alveolar stability. J. Appl. Physiol. 16, 444–450 (1961) CrossRef Clements, J., Hustead, R., Johnson, R., Gribetz, I.: Pulmonary surface tension and alveolar stability. J. Appl. Physiol. 16, 444–450 (1961) CrossRef
35.
Zurück zum Zitat Clements, J., Brown, E., Johnson, R.: Pulmonary surface tension and the mucus lining of the lungs: some theoretical considerations. J. Appl. Physiol. 12, 262–268 (1958) CrossRef Clements, J., Brown, E., Johnson, R.: Pulmonary surface tension and the mucus lining of the lungs: some theoretical considerations. J. Appl. Physiol. 12, 262–268 (1958) CrossRef
36.
Zurück zum Zitat Bachofen, H., Hildebrandt, J., Bachofen, M.: Pressure-volume curves of air- and liquid-filled excised lungs-surface tension in situ. J. Appl. Physiol. 29, 422–431 (1970) CrossRef Bachofen, H., Hildebrandt, J., Bachofen, M.: Pressure-volume curves of air- and liquid-filled excised lungs-surface tension in situ. J. Appl. Physiol. 29, 422–431 (1970) CrossRef
37.
Zurück zum Zitat Flicker, E., Lee, J.: Equilibrium of force of subpleural alveoli: implications to lung mechanics. J. Appl. Physiol. 36, 366–374 (1974) CrossRef Flicker, E., Lee, J.: Equilibrium of force of subpleural alveoli: implications to lung mechanics. J. Appl. Physiol. 36, 366–374 (1974) CrossRef
38.
Zurück zum Zitat Slama, H., Schoedel, W., Hansen, E.: Lung surfactant: film kinetics at the surface of an air bubble during prolonged oscillation of its volume. Respir. Physiol. 19, 233–243 (1973) CrossRef Slama, H., Schoedel, W., Hansen, E.: Lung surfactant: film kinetics at the surface of an air bubble during prolonged oscillation of its volume. Respir. Physiol. 19, 233–243 (1973) CrossRef
39.
Zurück zum Zitat Reifenrath, R., Zimmermann, I.: Surface tension properties of lung alveolar surfactant obtained by alveolar micropuncture. Respir. Physiol. 19, 369–393 (1973) CrossRef Reifenrath, R., Zimmermann, I.: Surface tension properties of lung alveolar surfactant obtained by alveolar micropuncture. Respir. Physiol. 19, 369–393 (1973) CrossRef
40.
Zurück zum Zitat Fung, Y.: Stress, deformation, and atelectasis of the lung. Circ. Res. 37, 481–496 (1975) CrossRef Fung, Y.: Stress, deformation, and atelectasis of the lung. Circ. Res. 37, 481–496 (1975) CrossRef
41.
Zurück zum Zitat Vawter, D., Fung, Y., West, J.: Constitutive equation of lung tissue elasticity. J. Biomech. Eng. 101, 38–45 (1979) CrossRef Vawter, D., Fung, Y., West, J.: Constitutive equation of lung tissue elasticity. J. Biomech. Eng. 101, 38–45 (1979) CrossRef
42.
Zurück zum Zitat Wilson, T.: Relations among recoil pressure, surface area, and surface tension in the lung. J. Appl. Physiol. 50, 921–930 (1981) CrossRef Wilson, T.: Relations among recoil pressure, surface area, and surface tension in the lung. J. Appl. Physiol. 50, 921–930 (1981) CrossRef
43.
Zurück zum Zitat Wilson, T.: Surface tension-surface area curves calculated from pressure-volume loops. J. Appl. Physiol. 53, 1512–1520 (1982) CrossRef Wilson, T.: Surface tension-surface area curves calculated from pressure-volume loops. J. Appl. Physiol. 53, 1512–1520 (1982) CrossRef
44.
Zurück zum Zitat Wilson, T., Bachofen, H.: A model for mechanical structure of the alveolar duct. J. Appl. Physiol. 52, 1064–1070 (1982) CrossRef Wilson, T., Bachofen, H.: A model for mechanical structure of the alveolar duct. J. Appl. Physiol. 52, 1064–1070 (1982) CrossRef
45.
Zurück zum Zitat Stamenovic, D.: The mixture of phases and elastic stability of lungs with constant surface forces. Math. Model. 7, 1071–1082 (1986) MATHCrossRef Stamenovic, D.: The mixture of phases and elastic stability of lungs with constant surface forces. Math. Model. 7, 1071–1082 (1986) MATHCrossRef
46.
Zurück zum Zitat Fung, Y.: A theory of elasticity of the lung. J. Appl. Mech. 41, 8–14 (1974) CrossRef Fung, Y.: A theory of elasticity of the lung. J. Appl. Mech. 41, 8–14 (1974) CrossRef
47.
Zurück zum Zitat Dale, P., Matthews, F., Schroter, R.: Finite element analysis of lung alveolus. J. Biomech. 13, 865–873 (1980) CrossRef Dale, P., Matthews, F., Schroter, R.: Finite element analysis of lung alveolus. J. Biomech. 13, 865–873 (1980) CrossRef
48.
Zurück zum Zitat Lai-Fook, S.: Elasticity analysis of lung deformation problems. Ann. Biomed. Eng. 9, 451–462 (1981) CrossRef Lai-Fook, S.: Elasticity analysis of lung deformation problems. Ann. Biomed. Eng. 9, 451–462 (1981) CrossRef
49.
Zurück zum Zitat Carton, R.W., Clark, J.W., Dainauskas, J., Barron, A.: Estimation of tissue elasticity of the lung. J. Appl. Physiol. 19, 236–242 (1964) CrossRef Carton, R.W., Clark, J.W., Dainauskas, J., Barron, A.: Estimation of tissue elasticity of the lung. J. Appl. Physiol. 19, 236–242 (1964) CrossRef
50.
Zurück zum Zitat Mead, J.: Mechanical properties of lungs. Physiol. Rev. 41, 281–330 (1961) CrossRef Mead, J.: Mechanical properties of lungs. Physiol. Rev. 41, 281–330 (1961) CrossRef
51.
Zurück zum Zitat Suki, B., Ito, S., Stamenovic, D., Lutchen, K., Ingenito, E.: Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. J. Appl. Physiol. 5, 1892–1899 (2005) CrossRef Suki, B., Ito, S., Stamenovic, D., Lutchen, K., Ingenito, E.: Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. J. Appl. Physiol. 5, 1892–1899 (2005) CrossRef
52.
Zurück zum Zitat Dayman, H.: Mechanics of airflow in health and in emphysema. J. Clin. Invest. 30, 1175–1190 (1951) CrossRef Dayman, H.: Mechanics of airflow in health and in emphysema. J. Clin. Invest. 30, 1175–1190 (1951) CrossRef
53.
Zurück zum Zitat Wilson, T.: A continuum analysis of a two-dimensional mechanical model of the lung parenchyma. J. Appl. Physiol. 33, 472–478 (1972) CrossRef Wilson, T.: A continuum analysis of a two-dimensional mechanical model of the lung parenchyma. J. Appl. Physiol. 33, 472–478 (1972) CrossRef
54.
Zurück zum Zitat Fung, Y.: Elasticity of soft tissues in simple elongation. Am. J. Physiol. 213, 1532–1544 (1967) CrossRef Fung, Y.: Elasticity of soft tissues in simple elongation. Am. J. Physiol. 213, 1532–1544 (1967) CrossRef
55.
Zurück zum Zitat Fung, Y.: Structure and stress-strain relationship of soft tissues. Am. Zool. 24, 13–22 (1984) CrossRef Fung, Y.: Structure and stress-strain relationship of soft tissues. Am. Zool. 24, 13–22 (1984) CrossRef
56.
Zurück zum Zitat Holzapfel, G.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, New York (2000) MATH Holzapfel, G.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, New York (2000) MATH
57.
Zurück zum Zitat Bates, J.: A recruitment model of quasi-linear power-law stress adaptation in lung tissue. Ann. Biomed. Eng. 35, 1165–1174 (2007) CrossRef Bates, J.: A recruitment model of quasi-linear power-law stress adaptation in lung tissue. Ann. Biomed. Eng. 35, 1165–1174 (2007) CrossRef
58.
Zurück zum Zitat Suki, B., Bates, J.: Lung tissue mechanics as an emergent phenomenon. J. Appl. Physiol. 110, 1111–1118 (2011) CrossRef Suki, B., Bates, J.: Lung tissue mechanics as an emergent phenomenon. J. Appl. Physiol. 110, 1111–1118 (2011) CrossRef
59.
Zurück zum Zitat Frankus, A., Lee, G.: A theory for distortion studies of lung parenchyma based on alveolar membrane properties. J. Biomech. 7, 101–107 (1974) CrossRef Frankus, A., Lee, G.: A theory for distortion studies of lung parenchyma based on alveolar membrane properties. J. Biomech. 7, 101–107 (1974) CrossRef
60.
Zurück zum Zitat Hoppin, F., Lee, G., Dawson, S.: Properties of lung parenchyma in distortion. J. Appl. Physiol. 39, 742–751 (1975) CrossRef Hoppin, F., Lee, G., Dawson, S.: Properties of lung parenchyma in distortion. J. Appl. Physiol. 39, 742–751 (1975) CrossRef
61.
Zurück zum Zitat West, J.: Distribution of mechanical stress in the lung, a possible factor in localisation of pulmonary disease. Lancet 1, 839–841 (1971) CrossRef West, J.: Distribution of mechanical stress in the lung, a possible factor in localisation of pulmonary disease. Lancet 1, 839–841 (1971) CrossRef
62.
Zurück zum Zitat West, J., Matthews, F.: Stresses, strains, and surface pressures in the lung caused by its weight. J. Appl. Physiol. 32, 332–345 (1972) CrossRef West, J., Matthews, F.: Stresses, strains, and surface pressures in the lung caused by its weight. J. Appl. Physiol. 32, 332–345 (1972) CrossRef
63.
Zurück zum Zitat Lambert, R., Wilson, T.: A model for the elastic properties of the lung and their effect of expiratory flow. J. Appl. Physiol. 34, 34–48 (1973) CrossRef Lambert, R., Wilson, T.: A model for the elastic properties of the lung and their effect of expiratory flow. J. Appl. Physiol. 34, 34–48 (1973) CrossRef
64.
Zurück zum Zitat Denny, E., Schroter, R.: A model of nonuniform lung parenchyma distortion. J. Biomech. 39, 652–663 (2006) CrossRef Denny, E., Schroter, R.: A model of nonuniform lung parenchyma distortion. J. Biomech. 39, 652–663 (2006) CrossRef
65.
Zurück zum Zitat Lee, G., Frankus, A.: Elasticity properties of lung parenchyma derived from experimental distortion data. Biophys. J. 15, 481–493 (1975) CrossRef Lee, G., Frankus, A.: Elasticity properties of lung parenchyma derived from experimental distortion data. Biophys. J. 15, 481–493 (1975) CrossRef
66.
Zurück zum Zitat Lee, G., Frankus, A., Chen, P.: Small distortion properties of lung parenchyma as a compressible continuum. J. Biomech. 9, 641–648 (1976) CrossRef Lee, G., Frankus, A., Chen, P.: Small distortion properties of lung parenchyma as a compressible continuum. J. Biomech. 9, 641–648 (1976) CrossRef
67.
Zurück zum Zitat Lai-Fook, S., Wilson, T., Hyatt, R., Rodarte, J.: Elastic constants of inflated lobes of dog lungs. J. Appl. Physiol. 40, 508–513 (1976) CrossRef Lai-Fook, S., Wilson, T., Hyatt, R., Rodarte, J.: Elastic constants of inflated lobes of dog lungs. J. Appl. Physiol. 40, 508–513 (1976) CrossRef
68.
Zurück zum Zitat Hurtado, D., Villarroel, N., Andrade, C., Retamal, J., Bugedo, G., Bruhn, A.: Spatial patterns and frequency distributions of regional deformation in the healthy human lung. Biomech. Model. Mechanobiol. 16, 1413–1423 (2017) CrossRef Hurtado, D., Villarroel, N., Andrade, C., Retamal, J., Bugedo, G., Bruhn, A.: Spatial patterns and frequency distributions of regional deformation in the healthy human lung. Biomech. Model. Mechanobiol. 16, 1413–1423 (2017) CrossRef
69.
Zurück zum Zitat Arora, H., Mitchell, R., Johnston, R., Manolesos, M., Howells, D., Sherwood, J., Bodey, A., Wanelik, K.: Correlating local volumetric tissue strains with global lung mechanics measurements. Materials 14, 439 (2021) CrossRef Arora, H., Mitchell, R., Johnston, R., Manolesos, M., Howells, D., Sherwood, J., Bodey, A., Wanelik, K.: Correlating local volumetric tissue strains with global lung mechanics measurements. Materials 14, 439 (2021) CrossRef
70.
Zurück zum Zitat Tai, R., Lee, G.: Isotropy and homogeneity of lung tissue deformation. J. Biomech. 14, 243–252 (1981) CrossRef Tai, R., Lee, G.: Isotropy and homogeneity of lung tissue deformation. J. Biomech. 14, 243–252 (1981) CrossRef
71.
Zurück zum Zitat Zeng, Y., Yager, D., Fung, Y.: Measurement of the mechanical properties of the human lung tissue. J. Biomech. Eng. 109, 169–174 (1987) CrossRef Zeng, Y., Yager, D., Fung, Y.: Measurement of the mechanical properties of the human lung tissue. J. Biomech. Eng. 109, 169–174 (1987) CrossRef
72.
Zurück zum Zitat Debes, J., Fung, Y.: Effect of temperature on the biaxial mechanics of excised lung parenchyma of the dog. J. Appl. Physiol. 73, 1171–1180 (1992) CrossRef Debes, J., Fung, Y.: Effect of temperature on the biaxial mechanics of excised lung parenchyma of the dog. J. Appl. Physiol. 73, 1171–1180 (1992) CrossRef
73.
Zurück zum Zitat Brewer, K., Sakai, H., Alencar, A., Majumdar, A., Arold, S., Lutchen, K., Ingenito, E., Suki, B.: Lung and alveolar wall elastic and hysteretic behavior in rats: effects of in vivo elastase treatment. J. Appl. Physiol. 95, 1926–1936 (2003) CrossRef Brewer, K., Sakai, H., Alencar, A., Majumdar, A., Arold, S., Lutchen, K., Ingenito, E., Suki, B.: Lung and alveolar wall elastic and hysteretic behavior in rats: effects of in vivo elastase treatment. J. Appl. Physiol. 95, 1926–1936 (2003) CrossRef
74.
Zurück zum Zitat Karlinsky, J., Bowers, J., Fredette, J., Evans, J.: Thermoelastic properties of uniaxially deformed lung strips. J. Appl. Physiol. 58, 459–467 (1985) CrossRef Karlinsky, J., Bowers, J., Fredette, J., Evans, J.: Thermoelastic properties of uniaxially deformed lung strips. J. Appl. Physiol. 58, 459–467 (1985) CrossRef
75.
Zurück zum Zitat Maksym, G., Fredburg, J., Bates, J.: Force heterogeneity in a two-dimensional network model of lung tissue elasticity. J. Appl. Physiol. 85, 1223–1229 (1998) CrossRef Maksym, G., Fredburg, J., Bates, J.: Force heterogeneity in a two-dimensional network model of lung tissue elasticity. J. Appl. Physiol. 85, 1223–1229 (1998) CrossRef
76.
Zurück zum Zitat Fredburg, J., Stamenovic, D.: On the imperfect elasticity of lung tissue. J. Appl. Physiol. 67, 2408–2419 (1989) CrossRef Fredburg, J., Stamenovic, D.: On the imperfect elasticity of lung tissue. J. Appl. Physiol. 67, 2408–2419 (1989) CrossRef
77.
78.
Zurück zum Zitat Freed, A., Einstein, D.: Hypo-elastic model for lung parenchyma. Biomech. Model. Mechanobiol. 11, 557–573 (2012) CrossRef Freed, A., Einstein, D.: Hypo-elastic model for lung parenchyma. Biomech. Model. Mechanobiol. 11, 557–573 (2012) CrossRef
79.
Zurück zum Zitat Eom, J., Xu, X., De, S., Shi, C.: Predictive modeling of lung motion over the entire respiratory cycle using measured pressure-volume data, 4DCT images, and finite-element analysis. Med. Phys. 37, 4389–4400 (2010) CrossRef Eom, J., Xu, X., De, S., Shi, C.: Predictive modeling of lung motion over the entire respiratory cycle using measured pressure-volume data, 4DCT images, and finite-element analysis. Med. Phys. 37, 4389–4400 (2010) CrossRef
80.
Zurück zum Zitat Protti, A., Andreis, D., Monti, M., Santini, A., Sparacino, C., Langer, T., Votta, E., Gatti, S., Lombardi, L., Leopardi, O., Masson, S., Cressoni, M., Gattinoni, L.: Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit. Care Med. 41, 1046–1055 (2013) CrossRef Protti, A., Andreis, D., Monti, M., Santini, A., Sparacino, C., Langer, T., Votta, E., Gatti, S., Lombardi, L., Leopardi, O., Masson, S., Cressoni, M., Gattinoni, L.: Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit. Care Med. 41, 1046–1055 (2013) CrossRef
81.
Zurück zum Zitat Perlman, C., Bhattacharya, J.: Alveolar expansion imaged by optical sectioning microscopy. J. Appl. Physiol. 103, 1037–1044 (2007) CrossRef Perlman, C., Bhattacharya, J.: Alveolar expansion imaged by optical sectioning microscopy. J. Appl. Physiol. 103, 1037–1044 (2007) CrossRef
82.
Zurück zum Zitat Miki, H., Butler, J., Rogers, R., Lehr, J.: Geometric hysteresis in pulmonary surface-to-volume ratio during tidal breathing. J. Appl. Physiol. 75, 1630–1636 (1993) CrossRef Miki, H., Butler, J., Rogers, R., Lehr, J.: Geometric hysteresis in pulmonary surface-to-volume ratio during tidal breathing. J. Appl. Physiol. 75, 1630–1636 (1993) CrossRef
83.
Zurück zum Zitat Oldmixon, E., Hoppin, F.: Alveolar septal folding and lung inflation history. J. Appl. Physiol. 71, 2369–2379 (1991) CrossRef Oldmixon, E., Hoppin, F.: Alveolar septal folding and lung inflation history. J. Appl. Physiol. 71, 2369–2379 (1991) CrossRef
84.
Zurück zum Zitat Gil, J., Bachofen, H., Gehr, P., Weibel, E.: Alveolar volume-surface area relation in air- and saline-filled lungs fixed by vascular perfusion. J. Appl. Physiol.: Respir., Environ. Exercise Physiol. 47, 990–1001 (1979) CrossRef Gil, J., Bachofen, H., Gehr, P., Weibel, E.: Alveolar volume-surface area relation in air- and saline-filled lungs fixed by vascular perfusion. J. Appl. Physiol.: Respir., Environ. Exercise Physiol. 47, 990–1001 (1979) CrossRef
85.
Zurück zum Zitat West, B., Shlesinger, M.: On the ubiquity of 1/f noise. Int. J. Mod. Phys. B 3, 795–819 (1989) CrossRef West, B., Shlesinger, M.: On the ubiquity of 1/f noise. Int. J. Mod. Phys. B 3, 795–819 (1989) CrossRef
86.
Zurück zum Zitat Al-Mayah, A., Moseley, J., Velec, M., Hunter, S., Brock, K.: Deformable image registration of heterogeneous human lung incorporating the bronchial tree. Med. Phys. 37, 4560–4571 (2010) CrossRef Al-Mayah, A., Moseley, J., Velec, M., Hunter, S., Brock, K.: Deformable image registration of heterogeneous human lung incorporating the bronchial tree. Med. Phys. 37, 4560–4571 (2010) CrossRef
87.
Zurück zum Zitat Werner, R., Ehrhardt, J., Schmidt, R., Handels, H.: Patient-specific finite element modeling of respiratory lung motion using 4D CT image data. Med. Phys. 36, 1500–1511 (2009) CrossRef Werner, R., Ehrhardt, J., Schmidt, R., Handels, H.: Patient-specific finite element modeling of respiratory lung motion using 4D CT image data. Med. Phys. 36, 1500–1511 (2009) CrossRef
88.
Zurück zum Zitat Mead, J.: Respiration: pulmonary mechanics. Annu. Rev. Physiol. 35, 162–192 (1973) CrossRef Mead, J.: Respiration: pulmonary mechanics. Annu. Rev. Physiol. 35, 162–192 (1973) CrossRef
89.
Zurück zum Zitat Amelon, R., Cao, K., Ding, K., Christensen, G., Reinhardt, J., Raghavan, M.: Three-dimensional characterization of regional lung deformation. J. Biomech. 44, 2489–2495 (2011) CrossRef Amelon, R., Cao, K., Ding, K., Christensen, G., Reinhardt, J., Raghavan, M.: Three-dimensional characterization of regional lung deformation. J. Biomech. 44, 2489–2495 (2011) CrossRef
90.
Zurück zum Zitat Roan, E., Waters, C.: What do we know about mechanical strain in lung alveoli? Am. J. Physiol., Lung Cell. Mol. Physiol. 301, L625–L635 (2011) CrossRef Roan, E., Waters, C.: What do we know about mechanical strain in lung alveoli? Am. J. Physiol., Lung Cell. Mol. Physiol. 301, L625–L635 (2011) CrossRef
91.
Zurück zum Zitat Suki, B., Barabási, A., Hantos, Z., Peták, F., Stanley, H.: Avalanches and power-law behaviour in lung inflation. Nature 368, 615–618 (1994) CrossRef Suki, B., Barabási, A., Hantos, Z., Peták, F., Stanley, H.: Avalanches and power-law behaviour in lung inflation. Nature 368, 615–618 (1994) CrossRef
92.
Zurück zum Zitat Li, M., Castillo, E., Zheng, X., Luo, H., Castillo, R., Wu, Y., Guerrero, T.: Modeling lung deformation: a combined deformable image registration method with spatially varying Young’s modulus estimates. Med. Phys. 40, 081902 (2013) CrossRef Li, M., Castillo, E., Zheng, X., Luo, H., Castillo, R., Wu, Y., Guerrero, T.: Modeling lung deformation: a combined deformable image registration method with spatially varying Young’s modulus estimates. Med. Phys. 40, 081902 (2013) CrossRef
93.
Zurück zum Zitat Dai, Z., Peng, Y., Mansy, H., Sandler, R., Royston, T.: A model of lung parenchyma stress relaxation using fractional viscoelasticity. Med. Eng. Phys. 37, 752–758 (2015) CrossRef Dai, Z., Peng, Y., Mansy, H., Sandler, R., Royston, T.: A model of lung parenchyma stress relaxation using fractional viscoelasticity. Med. Eng. Phys. 37, 752–758 (2015) CrossRef
94.
Zurück zum Zitat Fung, Y.: Biomechanics: Mechanical Properties of Living Tissues pp. XVIII–568 (1993) CrossRef Fung, Y.: Biomechanics: Mechanical Properties of Living Tissues pp. XVIII–568 (1993) CrossRef
95.
Zurück zum Zitat Weed, B., Patnaik, S., Rougeau-Browning, M., Brazile, B., Liao, J., Prabhu, R., Williams, L.: Experimental evidence of mechanical isotropy in porcine lung parenchyma. Materials 8, 2454–2466 (2015) CrossRef Weed, B., Patnaik, S., Rougeau-Browning, M., Brazile, B., Liao, J., Prabhu, R., Williams, L.: Experimental evidence of mechanical isotropy in porcine lung parenchyma. Materials 8, 2454–2466 (2015) CrossRef
96.
Zurück zum Zitat Andrikakou, P., Vickraman, K., Arora, H.: On the behaviour of lung tissue under tension and compression. Sci. Rep. 6, 1–10 (2016) CrossRef Andrikakou, P., Vickraman, K., Arora, H.: On the behaviour of lung tissue under tension and compression. Sci. Rep. 6, 1–10 (2016) CrossRef
97.
Zurück zum Zitat Goh, S., Charalambides, M., Williams, J.: Determination of the constitutive constants of non-linear viscoelastic materials. Mech. Time-Depend. Mater. 8, 255–268 (2004) CrossRef Goh, S., Charalambides, M., Williams, J.: Determination of the constitutive constants of non-linear viscoelastic materials. Mech. Time-Depend. Mater. 8, 255–268 (2004) CrossRef
98.
Zurück zum Zitat Williams, J.: Stress Analysis of Polymers (1980) Williams, J.: Stress Analysis of Polymers (1980)
99.
Zurück zum Zitat Al-Mayah, A., Moseley, J., Velec, M., Brock, K.: Toward efficient biomechanical-based deformable image registration of lungs for image-guided radiotherapy. Phys. Med. Biol. 56, 4701–4713 (2011) CrossRef Al-Mayah, A., Moseley, J., Velec, M., Brock, K.: Toward efficient biomechanical-based deformable image registration of lungs for image-guided radiotherapy. Phys. Med. Biol. 56, 4701–4713 (2011) CrossRef
100.
Zurück zum Zitat Tawhai, M., Burrowes, K., Hoffman, E.: Computational models of structure-function relationships in the pulmonary circulation and their validation. Exp. Physiol. 91, 285–293 (2006) CrossRef Tawhai, M., Burrowes, K., Hoffman, E.: Computational models of structure-function relationships in the pulmonary circulation and their validation. Exp. Physiol. 91, 285–293 (2006) CrossRef
101.
Zurück zum Zitat Seyfi, B., Santhanam, A., Ilegbusi, O.: A biomechanical model of human lung deformation utilizing patient-specific elastic property. J. Cancer Ther. 7, 402–415 (2016) CrossRef Seyfi, B., Santhanam, A., Ilegbusi, O.: A biomechanical model of human lung deformation utilizing patient-specific elastic property. J. Cancer Ther. 7, 402–415 (2016) CrossRef
102.
Zurück zum Zitat Hurtado, D., Villarroel, N., Retamal, J., Bugedo, G., Bruhn, A.: Improving the accuracy of registration-based biomechanical analysis: a finite-element approach to lung regional strain quantification. IEEE Trans. Med. Imaging 35, 580–588 (2016) CrossRef Hurtado, D., Villarroel, N., Retamal, J., Bugedo, G., Bruhn, A.: Improving the accuracy of registration-based biomechanical analysis: a finite-element approach to lung regional strain quantification. IEEE Trans. Med. Imaging 35, 580–588 (2016) CrossRef
103.
Zurück zum Zitat Eskandari, M., Arvayo, A., Levenston, M.: Mechanical properties of the airway tree: heterogeneous and anisotropic pseudoelastic and viscoelastic tissue response. J. Appl. Physiol. 125, 878–888 (2018) CrossRef Eskandari, M., Arvayo, A., Levenston, M.: Mechanical properties of the airway tree: heterogeneous and anisotropic pseudoelastic and viscoelastic tissue response. J. Appl. Physiol. 125, 878–888 (2018) CrossRef
104.
Zurück zum Zitat Polio, S., Kundu, A., Dougan, C., Birch, N., Aurian-Blajeni, D.E., Schiffman, J.: Cross-platform mechanical characterization of lung tissue. PLoS ONE 13, 1–17 (2018) CrossRef Polio, S., Kundu, A., Dougan, C., Birch, N., Aurian-Blajeni, D.E., Schiffman, J.: Cross-platform mechanical characterization of lung tissue. PLoS ONE 13, 1–17 (2018) CrossRef
105.
Zurück zum Zitat Stamenovic, D.: Micromechanical foundations of pulmonary elasticity. Physiol. Rev. 70, 1117–1134 (1990) CrossRef Stamenovic, D.: Micromechanical foundations of pulmonary elasticity. Physiol. Rev. 70, 1117–1134 (1990) CrossRef
106.
Zurück zum Zitat Lai-Fook, S., Hyatt, R.: Effects of age on elastic moduli of human lungs. J. Appl. Physiol. 89, 163–168 (2000) CrossRef Lai-Fook, S., Hyatt, R.: Effects of age on elastic moduli of human lungs. J. Appl. Physiol. 89, 163–168 (2000) CrossRef
107.
Zurück zum Zitat Birzle, A., Martin, C., Yoshihara, L., Uhlig, S., Wall, W.: Experimental characterization and model identification of the nonlinear compressible material behavior of lung parenchyma. J. Mech. Behav. Biomed. Mater. 77, 754–763 (2017) CrossRef Birzle, A., Martin, C., Yoshihara, L., Uhlig, S., Wall, W.: Experimental characterization and model identification of the nonlinear compressible material behavior of lung parenchyma. J. Mech. Behav. Biomed. Mater. 77, 754–763 (2017) CrossRef
108.
Zurück zum Zitat Holzapfel, G.: Nonlinear solid mechanics – a continuum approach for engineering Holzapfel, G.: Nonlinear solid mechanics – a continuum approach for engineering
109.
Zurück zum Zitat Birzle, A., Martin, C., Uhlig, S., Wall, W.: A coupled approach for identification of nonlinear and compressible material models for soft tissue based on different experimental set-ups – exemplified and detailed for lung parenchyma. J. Mech. Behav. Biomed. Mater. 94, 126–143 (2019) CrossRef Birzle, A., Martin, C., Uhlig, S., Wall, W.: A coupled approach for identification of nonlinear and compressible material models for soft tissue based on different experimental set-ups – exemplified and detailed for lung parenchyma. J. Mech. Behav. Biomed. Mater. 94, 126–143 (2019) CrossRef
110.
Zurück zum Zitat Birzle, A., Wall, W.: A viscoelastic nonlinear compressible material model of lung parenchyma – experiments and numerical identification. J. Mech. Behav. Biomed. Mater. 94, 164–175 (2019) CrossRef Birzle, A., Wall, W.: A viscoelastic nonlinear compressible material model of lung parenchyma – experiments and numerical identification. J. Mech. Behav. Biomed. Mater. 94, 164–175 (2019) CrossRef
111.
Zurück zum Zitat Birzle, A., Hobrack, S., Martin, C., Uhlig, S., Wall, W.: Constituent-specific material behavior of soft biological tissue: experimental quantification and numerical identification for lung parenchyma. Biomech. Model. Mechanobiol. 18, 1383–1400 (2019) CrossRef Birzle, A., Hobrack, S., Martin, C., Uhlig, S., Wall, W.: Constituent-specific material behavior of soft biological tissue: experimental quantification and numerical identification for lung parenchyma. Biomech. Model. Mechanobiol. 18, 1383–1400 (2019) CrossRef
112.
Zurück zum Zitat Hildebrandt, J.: Pressure-volume data of cat lung interpreted by a plastoelastic, linear viscoelastic model. J. Appl. Physiol. 28, 365–372 (1970) CrossRef Hildebrandt, J.: Pressure-volume data of cat lung interpreted by a plastoelastic, linear viscoelastic model. J. Appl. Physiol. 28, 365–372 (1970) CrossRef
113.
Zurück zum Zitat Eskandari, M., Nordgren, T., O’Connell, G.: Mechanics of pulmonary airways: linking structure to function through constitutive modeling, biochemistry, and histology. Acta Biomater. 97, 513–523 (2019) CrossRef Eskandari, M., Nordgren, T., O’Connell, G.: Mechanics of pulmonary airways: linking structure to function through constitutive modeling, biochemistry, and histology. Acta Biomater. 97, 513–523 (2019) CrossRef
114.
Zurück zum Zitat Mariano, C., Sattari, S., Maghsoudi-Ganjeh, M., Tartibi, M., Lo, D., Eskandari, M.: Novel mechanical strain characterization of ventilated ex vivo porcine and murine lung using digital image correlation. Front. Physiol. 11, 1–12 (2020) CrossRef Mariano, C., Sattari, S., Maghsoudi-Ganjeh, M., Tartibi, M., Lo, D., Eskandari, M.: Novel mechanical strain characterization of ventilated ex vivo porcine and murine lung using digital image correlation. Front. Physiol. 11, 1–12 (2020) CrossRef
115.
Zurück zum Zitat Suki, B., Stamenovic, D., Hubmayr, R.: Lung parenchymal mechanics. Comp. Physiol. 1, 1317–1351 (2011) CrossRef Suki, B., Stamenovic, D., Hubmayr, R.: Lung parenchymal mechanics. Comp. Physiol. 1, 1317–1351 (2011) CrossRef
116.
Zurück zum Zitat Arora, H., Nila, A., Vitharana, K., Sherwood, J., Nguyen, T.-T.N., Karunaratne, A., Mohammed, I., Bodey, A., Hellyer, P., Overby, D., Schroter, R., Hollis, D.: Microstructural consequences of blast lung injury characterized with digital volume correlation. Front. Mater. 4, 1–12 (2017) CrossRef Arora, H., Nila, A., Vitharana, K., Sherwood, J., Nguyen, T.-T.N., Karunaratne, A., Mohammed, I., Bodey, A., Hellyer, P., Overby, D., Schroter, R., Hollis, D.: Microstructural consequences of blast lung injury characterized with digital volume correlation. Front. Mater. 4, 1–12 (2017) CrossRef
117.
Zurück zum Zitat Maghsoudi-Ganjeh, M., Mariano, C., Sattari, S., Arora, H., Eskandari, M.: Developing a lung model in the age of covid-19: a digital image correlation and inverse finite element analysis framework. Front. Bioeng. Biotechnol. 9, 1–14 (2021) CrossRef Maghsoudi-Ganjeh, M., Mariano, C., Sattari, S., Arora, H., Eskandari, M.: Developing a lung model in the age of covid-19: a digital image correlation and inverse finite element analysis framework. Front. Bioeng. Biotechnol. 9, 1–14 (2021) CrossRef
118.
Zurück zum Zitat Mooney, M.: A theory of large elastic deformation. J. Appl. Physiol. 11, 582–592 (1940) MATHCrossRef Mooney, M.: A theory of large elastic deformation. J. Appl. Physiol. 11, 582–592 (1940) MATHCrossRef
119.
Zurück zum Zitat Eskandari, M., Kuhl, E.: Systems biology and mechanics of growth. Wiley Interdiscip. Rev., Syst. Biol. Med. 7, 401–412 (2015) CrossRef Eskandari, M., Kuhl, E.: Systems biology and mechanics of growth. Wiley Interdiscip. Rev., Syst. Biol. Med. 7, 401–412 (2015) CrossRef
120.
Zurück zum Zitat Fung, Y.: A model of the lung structure and its validation. J. Appl. Physiol. 64, 2132–2141 (1988) CrossRef Fung, Y.: A model of the lung structure and its validation. J. Appl. Physiol. 64, 2132–2141 (1988) CrossRef
121.
Zurück zum Zitat Mariano, C., Sattari, S., Quiros, K., Nelson, T., Eskandari, M.: Examining lung mechanical strains as influenced by breathing volumes and rates using experimental digital image correlation. Respir. Res. 23, 1–13 (2022) Mariano, C., Sattari, S., Quiros, K., Nelson, T., Eskandari, M.: Examining lung mechanical strains as influenced by breathing volumes and rates using experimental digital image correlation. Respir. Res. 23, 1–13 (2022)
122.
Zurück zum Zitat Codd, S., Lambert, R., Alley, M., Pack, R.: Tensile stiffness of ovine tracheal wall. J. Appl. Physiol. 76, 2627–2635 (1994) CrossRef Codd, S., Lambert, R., Alley, M., Pack, R.: Tensile stiffness of ovine tracheal wall. J. Appl. Physiol. 76, 2627–2635 (1994) CrossRef
123.
Zurück zum Zitat Yen, R., Fung, Y., Ho, H., Butterman, G.: Speed of stress wave propagation in lung. J. Appl. Physiol. 61, 701–705 (1986) CrossRef Yen, R., Fung, Y., Ho, H., Butterman, G.: Speed of stress wave propagation in lung. J. Appl. Physiol. 61, 701–705 (1986) CrossRef
124.
Zurück zum Zitat Fung, Y., Yen, R., Tao, Z., Liu, S.: A hypothesis on the mechanism of trauma of lung tissue subjected to impact load. J. Biomech. Eng. 110, 50–56 (1988) CrossRef Fung, Y., Yen, R., Tao, Z., Liu, S.: A hypothesis on the mechanism of trauma of lung tissue subjected to impact load. J. Biomech. Eng. 110, 50–56 (1988) CrossRef
126.
Zurück zum Zitat Eftaxiopoulou, T., Barnett-Vanes, A., Arora, H., Macdonald, W., Nguyen, T., Itadani, M., Sharrock, A., Britzman, D., Proud, W., Bull, A., Rankin, S.: Prolonged but not short-duration blast waves elicit acute inflammation in a rodent model of primary blast limb trauma. Injury 47, 625–632 (2016) CrossRef Eftaxiopoulou, T., Barnett-Vanes, A., Arora, H., Macdonald, W., Nguyen, T., Itadani, M., Sharrock, A., Britzman, D., Proud, W., Bull, A., Rankin, S.: Prolonged but not short-duration blast waves elicit acute inflammation in a rodent model of primary blast limb trauma. Injury 47, 625–632 (2016) CrossRef
127.
Zurück zum Zitat Scott, T., Kirkman, E., Haque, M., Gibb, I., Mahoney, P., Hardman, J.: Primary blast lung injury – a review. Br. J. Anaesth. 118, 311–316 (2017) CrossRef Scott, T., Kirkman, E., Haque, M., Gibb, I., Mahoney, P., Hardman, J.: Primary blast lung injury – a review. Br. J. Anaesth. 118, 311–316 (2017) CrossRef
128.
Zurück zum Zitat Nguyen, T.-T.N., Wilgeroth, J.M., Proud, W.G.: Controlling blast wave generation in a shock tube for biological applications. J. Phys. Conf. Ser. 500, 1–6 (2014) CrossRef Nguyen, T.-T.N., Wilgeroth, J.M., Proud, W.G.: Controlling blast wave generation in a shock tube for biological applications. J. Phys. Conf. Ser. 500, 1–6 (2014) CrossRef
129.
Zurück zum Zitat Wall, W., Wiechert, L., Comerford, A., Rausch, S.: Towards a comprehensive computational model for the respiratory system. Int. J. Numer. Methods Biomed. Eng. 26, 807–827 (2010) MATH Wall, W., Wiechert, L., Comerford, A., Rausch, S.: Towards a comprehensive computational model for the respiratory system. Int. J. Numer. Methods Biomed. Eng. 26, 807–827 (2010) MATH
130.
Zurück zum Zitat Roth, C., Yoshihara, L., Ismail, M., Wall, W.: Computational modelling of the respiratory system: discussion of coupled modelling approaches and two recent extensions. Comput. Methods Appl. Mech. Eng. 314, 473–493 (2017) MATHCrossRef Roth, C., Yoshihara, L., Ismail, M., Wall, W.: Computational modelling of the respiratory system: discussion of coupled modelling approaches and two recent extensions. Comput. Methods Appl. Mech. Eng. 314, 473–493 (2017) MATHCrossRef
Metadaten
Titel
Lung Mechanics: A Review of Solid Mechanical Elasticity in Lung Parenchyma
verfasst von
R. H. Bhana
A. B. Magan
Publikationsdatum
03.01.2023
Verlag
Springer Netherlands
Erschienen in
Journal of Elasticity / Ausgabe 1/2023
Print ISSN: 0374-3535
Elektronische ISSN: 1573-2681
DOI
https://doi.org/10.1007/s10659-022-09973-6

Weitere Artikel der Ausgabe 1/2023

Journal of Elasticity 1/2023 Zur Ausgabe

EditorialNotes

Editorial

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.