Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 6/2021

20.02.2020 | Original Article

Magnetically assisted commercially attractive chemo-enzymatic route for the production of 5-hydroxymethylfurfural from inulin

verfasst von: Kongkona Saikia, Abiram Karanam Rathankumar, Betsy Ann Varghese, Shravani Kalita, Sivanesan Subramanian, Swarnalatha Somasundaram, Vaidyanathan Vinoth Kumar

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biomass has recently been extensively exploited as an attractive alternative to the scarce fossil fuels and has been widely used for the production of fine chemicals. The present work defines an integrated approach for high yield of 5-hydroxymethylfurfural (HMF) from inulin via a two-step process. Initially, insolubilization of inulinase from Aspergillus niger on chitosan-coated magnetic nanoparticles (cMNP) was achieved, and under optimal conditions, hydrolysis of 5% inulin by immobilized inulinase (2.5 U/mg) led to fructose release of 35.8 g/L at pH 6.0 and temperature 60 °C in 3 h. Subsequently, the fructose was dehydrated to HMF in the presence of TiO2-magnetic silica spheres (TiO2-MSS). Upon optimizing the process parameters, HMF yield of 96.58% was achieved with 15% fructose in 15 min at 140 °C with a TiO2-MSS load of 10% (w/w). Concerning the operational stability of the immobilized biocatalyst/catalyst, the immobilized inulinase was recycled up to 10 cycles of inulin hydrolysis with 9.2 g/L of fructose released at the 10th cycle. TiO2-MSS also showed high operational stability and were recycled up to 10 cycles of HMF production with 5.4 g/L of HMF produced at 10th cycle. The mass balance for inulin to HMF was performed which showed the efficiency of the process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Van Putten R-J, Van Der Waal JC, De Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113(3):1499–1597 Van Putten R-J, Van Der Waal JC, De Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113(3):1499–1597
2.
Zurück zum Zitat Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539–554 Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539–554
3.
Zurück zum Zitat Li X, Xu R, Yang J, Nie S, Liu D, Liu Y, Si C (2019) Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Ind Crop Prod 130:184–197 Li X, Xu R, Yang J, Nie S, Liu D, Liu Y, Si C (2019) Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation. Ind Crop Prod 130:184–197
4.
Zurück zum Zitat Steinbach D, Kruse A, Sauer J (2017) Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production-a review. Biomass Convers Biorefin 7(2):247–274 Steinbach D, Kruse A, Sauer J (2017) Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production-a review. Biomass Convers Biorefin 7(2):247–274
5.
Zurück zum Zitat Menegazzo F, Ghedini E, Signoretto M (2018) 5-hydroxymethylfurfural (HMF) production from real biomasses. Molecules 23(9):2201 Menegazzo F, Ghedini E, Signoretto M (2018) 5-hydroxymethylfurfural (HMF) production from real biomasses. Molecules 23(9):2201
6.
Zurück zum Zitat Jiménez-Morales I, Teckchandani-Ortiz A, Santamaría-González J, Maireles-Torres P, Jiménez-López A (2014) Selective dehydration of glucose to 5-hydroxymethylfurfural on acidic mesoporous tantalum phosphate. Appl Catal B Environ 144:22–28 Jiménez-Morales I, Teckchandani-Ortiz A, Santamaría-González J, Maireles-Torres P, Jiménez-López A (2014) Selective dehydration of glucose to 5-hydroxymethylfurfural on acidic mesoporous tantalum phosphate. Appl Catal B Environ 144:22–28
7.
Zurück zum Zitat Jiménez-Morales I, Moreno-Recio M, Santamaría-González J, Maireles-Torres P, Jiménez-López A (2014) Mesoporous tantalum oxide as catalyst for dehydration of glucose to 5-hydroxymethylfurfural. Appl Catal B Environ 154:190–196 Jiménez-Morales I, Moreno-Recio M, Santamaría-González J, Maireles-Torres P, Jiménez-López A (2014) Mesoporous tantalum oxide as catalyst for dehydration of glucose to 5-hydroxymethylfurfural. Appl Catal B Environ 154:190–196
8.
Zurück zum Zitat Hu S, Zhang Z, Zhou Y, Song J, Fan H, Han B (2009) Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids. Green Chem 11(6):873–877 Hu S, Zhang Z, Zhou Y, Song J, Fan H, Han B (2009) Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids. Green Chem 11(6):873–877
9.
Zurück zum Zitat Qi X, Watanabe M, Aida TM, Smith RL Jr (2010) Efficient one-pot production of 5-hydroxymethylfurfural from inulin in ionic liquids. Green Chem 12(10):1855–1860 Qi X, Watanabe M, Aida TM, Smith RL Jr (2010) Efficient one-pot production of 5-hydroxymethylfurfural from inulin in ionic liquids. Green Chem 12(10):1855–1860
10.
Zurück zum Zitat Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P, Rivalier P, Ros P, Avignon G (1996) Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites. Appl Catal A: General 145(1–2):211–224 Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P, Rivalier P, Ros P, Avignon G (1996) Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites. Appl Catal A: General 145(1–2):211–224
11.
Zurück zum Zitat Kuster B (1990) 5-Hydroxymethylfurfural (HMF). A review focussing on its manufacture. Starch-Stärke 42(8):314–321 Kuster B (1990) 5-Hydroxymethylfurfural (HMF). A review focussing on its manufacture. Starch-Stärke 42(8):314–321
12.
Zurück zum Zitat Vigier KDO, Benguerba A, Barrault J, Jérôme F (2012) Conversion of fructose and inulin to 5-hydroxymethylfurfural in sustainable betaine hydrochloride-based media. Green Chem 14(2):285–289 Vigier KDO, Benguerba A, Barrault J, Jérôme F (2012) Conversion of fructose and inulin to 5-hydroxymethylfurfural in sustainable betaine hydrochloride-based media. Green Chem 14(2):285–289
13.
Zurück zum Zitat Kochhar A, Gupta AK, Kaur N (1999) Purification and immobilisation of inulinase from Aspergillus candidus for producing fructose. J Sci Food Agric 79(4):549–554 Kochhar A, Gupta AK, Kaur N (1999) Purification and immobilisation of inulinase from Aspergillus candidus for producing fructose. J Sci Food Agric 79(4):549–554
14.
Zurück zum Zitat Ricca E, Calabrò V, Curcio S, Iorio G (2007) The state of the art in the production of fructose from inulin enzymatic hydrolysis. Crit Rev Biotechnol 27(3):129–145 Ricca E, Calabrò V, Curcio S, Iorio G (2007) The state of the art in the production of fructose from inulin enzymatic hydrolysis. Crit Rev Biotechnol 27(3):129–145
15.
Zurück zum Zitat Pereira SPS, Varejão JOS, de Fátima Â, Fernandes SA (2019) p-Sulfonic acid calix [4] arene: a highly efficient organocatalyst for dehydration of fructose to 5-hydroxymethylfurfural. Ind Crop Prod 138:111492 Pereira SPS, Varejão JOS, de Fátima Â, Fernandes SA (2019) p-Sulfonic acid calix [4] arene: a highly efficient organocatalyst for dehydration of fructose to 5-hydroxymethylfurfural. Ind Crop Prod 138:111492
16.
Zurück zum Zitat Simeonov SP, Coelho JA, Afonso CA (2013) Integrated chemo-enzymatic production of 5-hydroxymethylfurfural from glucose. ChemSusChem 6(6):997–1000 Simeonov SP, Coelho JA, Afonso CA (2013) Integrated chemo-enzymatic production of 5-hydroxymethylfurfural from glucose. ChemSusChem 6(6):997–1000
17.
Zurück zum Zitat Nakamura T, Ogata Y, Shitara A, Nakamura A, Ohta K (1995) Continuous production of fructose syrups from inulin by immobilized inulinase from Aspergillus niger mutant 817. J Ferment Bioeng 80(2):164–169 Nakamura T, Ogata Y, Shitara A, Nakamura A, Ohta K (1995) Continuous production of fructose syrups from inulin by immobilized inulinase from Aspergillus niger mutant 817. J Ferment Bioeng 80(2):164–169
18.
Zurück zum Zitat Gill PK, Manhas RK, Singh P (2006) Hydrolysis of inulin by immobilized thermostable extracellular exoinulinase from Aspergillus fumigatus. J Food Eng 76(3):369–375 Gill PK, Manhas RK, Singh P (2006) Hydrolysis of inulin by immobilized thermostable extracellular exoinulinase from Aspergillus fumigatus. J Food Eng 76(3):369–375
19.
Zurück zum Zitat Pandey A, Soccol CR, Selvakumar P, Soccol VT, Krieger N, Fontana JD (1999) Recent developments in microbial inulinases. Appl Biochem Biotechnol 81(1):35–52 Pandey A, Soccol CR, Selvakumar P, Soccol VT, Krieger N, Fontana JD (1999) Recent developments in microbial inulinases. Appl Biochem Biotechnol 81(1):35–52
20.
Zurück zum Zitat Watanabe M, Aizawa Y, Iida T, Nishimura R, Inomata H (2005) Catalytic glucose and fructose conversions with TiO2 and ZrO2 in water at 473 K: relationship between reactivity and acid–base property determined by TPD measurement. Appl Catal A: General 295(2):150–156 Watanabe M, Aizawa Y, Iida T, Nishimura R, Inomata H (2005) Catalytic glucose and fructose conversions with TiO2 and ZrO2 in water at 473 K: relationship between reactivity and acid–base property determined by TPD measurement. Appl Catal A: General 295(2):150–156
21.
Zurück zum Zitat Carniti P, Gervasini A, Biella S, Auroux A (2006) Niobic acid and niobium phosphate as highly acidic viable catalysts in aqueous medium: fructose dehydration reaction. Catal Today 118(3–4):373–378 Carniti P, Gervasini A, Biella S, Auroux A (2006) Niobic acid and niobium phosphate as highly acidic viable catalysts in aqueous medium: fructose dehydration reaction. Catal Today 118(3–4):373–378
22.
Zurück zum Zitat Watanabe M, Aizawa Y, Iida T, Aida TM, Levy C, Sue K, Inomata H (2005) Glucose reactions with acid and base catalysts in hot compressed water at 473 K. Carbohydr Res 340(12):1925–1930 Watanabe M, Aizawa Y, Iida T, Aida TM, Levy C, Sue K, Inomata H (2005) Glucose reactions with acid and base catalysts in hot compressed water at 473 K. Carbohydr Res 340(12):1925–1930
23.
Zurück zum Zitat Vandana J, Aishvarya KRS, Novi V, Ramachandran S, Radhakrishnan H, Kumar VV (2017) Mesoporous titanium dioxide nanocatalyst: a recyclable approach for one-pot synthesis of 5-hydroxymethylfurfural. IET Nanobiotechnol 11(6):690–694 Vandana J, Aishvarya KRS, Novi V, Ramachandran S, Radhakrishnan H, Kumar VV (2017) Mesoporous titanium dioxide nanocatalyst: a recyclable approach for one-pot synthesis of 5-hydroxymethylfurfural. IET Nanobiotechnol 11(6):690–694
24.
Zurück zum Zitat de la Hoz A, Diaz-Ortiz A, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34(2):164–178 de la Hoz A, Diaz-Ortiz A, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34(2):164–178
25.
Zurück zum Zitat Nüchter M, Ondruschka B, Bonrath W, Gum A (2004) Microwave assisted synthesis–a critical technology overview. Green Chem 6(3):128–141 Nüchter M, Ondruschka B, Bonrath W, Gum A (2004) Microwave assisted synthesis–a critical technology overview. Green Chem 6(3):128–141
26.
Zurück zum Zitat Dallinger D, Kappe CO (2007) Microwave-assisted synthesis in water as solvent. Chem Rev 107(6):2563–2591 Dallinger D, Kappe CO (2007) Microwave-assisted synthesis in water as solvent. Chem Rev 107(6):2563–2591
27.
Zurück zum Zitat Sweygers N, Dewil R, Appels L 2016 Simultaneous conversion of C5 and C6 lignocellulosic polysaccharides to platform chemicals through microwave-assisted hydrolysis. In: Proceedings of the 12th International Conference on Renewable Resources and Biorefineries Sweygers N, Dewil R, Appels L 2016 Simultaneous conversion of C5 and C6 lignocellulosic polysaccharides to platform chemicals through microwave-assisted hydrolysis. In: Proceedings of the 12th International Conference on Renewable Resources and Biorefineries
28.
Zurück zum Zitat Kazi FK, Patel AD, Serrano-Ruiz JC, Dumesic JA, Anex RP (2011) Techno-economic analysis of dimethylfuran (DMF) and hydroxymethylfurfural (HMF) production from pure fructose in catalytic processes. Chem Eng J 169(1–3):329–338 Kazi FK, Patel AD, Serrano-Ruiz JC, Dumesic JA, Anex RP (2011) Techno-economic analysis of dimethylfuran (DMF) and hydroxymethylfurfural (HMF) production from pure fructose in catalytic processes. Chem Eng J 169(1–3):329–338
29.
Zurück zum Zitat Kumar VV, Sivanesan S, Cabana H (2014) Magnetic cross-linked laccase aggregates—bioremediation tool for decolorization of distinct classes of recalcitrant dyes. Sci Total Environ 487:830–839 Kumar VV, Sivanesan S, Cabana H (2014) Magnetic cross-linked laccase aggregates—bioremediation tool for decolorization of distinct classes of recalcitrant dyes. Sci Total Environ 487:830–839
30.
Zurück zum Zitat Vinoth Kumar V, Premkumar MP, Dineshkirupha S, Nandagopal J, Sivanesan S (2011) Aspergillus niger exo-inulinase purification by three phase partitioning. Eng Life Sci 11(6):607–614 Vinoth Kumar V, Premkumar MP, Dineshkirupha S, Nandagopal J, Sivanesan S (2011) Aspergillus niger exo-inulinase purification by three phase partitioning. Eng Life Sci 11(6):607–614
31.
Zurück zum Zitat Paripoorani KS, Ashwin G, Vengatapriya P, Ranjitha V, Rupasree S, Kumar VV, Kumar VV (2015) Insolubilization of inulinase on magnetite chitosan microparticles, an easily recoverable and reusable support. J Mol Catal B Enzym 113:47–55 Paripoorani KS, Ashwin G, Vengatapriya P, Ranjitha V, Rupasree S, Kumar VV, Kumar VV (2015) Insolubilization of inulinase on magnetite chitosan microparticles, an easily recoverable and reusable support. J Mol Catal B Enzym 113:47–55
32.
Zurück zum Zitat Arca-Ramos A, Kumar V, Eibes G, Moreira M, Cabana H (2016) Recyclable cross-linked laccase aggregates coupled to magnetic silica microbeads for elimination of pharmaceuticals from municipal wastewater. Environ Sci Pollut Res 23(9):8929–8939 Arca-Ramos A, Kumar V, Eibes G, Moreira M, Cabana H (2016) Recyclable cross-linked laccase aggregates coupled to magnetic silica microbeads for elimination of pharmaceuticals from municipal wastewater. Environ Sci Pollut Res 23(9):8929–8939
33.
Zurück zum Zitat Wang S, Zhang Z, Liu B, Li J (2013) Silica coated magnetic Fe 3 O 4 nanoparticles supported phosphotungstic acid: a novel environmentally friendly catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose. Catal Sci Tech 3(8):2104–2112 Wang S, Zhang Z, Liu B, Li J (2013) Silica coated magnetic Fe 3 O 4 nanoparticles supported phosphotungstic acid: a novel environmentally friendly catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose. Catal Sci Tech 3(8):2104–2112
34.
Zurück zum Zitat Roli N, Yussof H, Seman M, Saufi S, Mohammad AW (2016) Separating xylose from glucose using spiral wound nanofiltration membrane: effect of cross-flow parameters on sugar rejection. In: IOP conference series: materials science and engineering, vol 1. IOP Publishing Ltd., p 012035 Roli N, Yussof H, Seman M, Saufi S, Mohammad AW (2016) Separating xylose from glucose using spiral wound nanofiltration membrane: effect of cross-flow parameters on sugar rejection. In: IOP conference series: materials science and engineering, vol 1. IOP Publishing Ltd., p 012035
35.
Zurück zum Zitat Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275
36.
Zurück zum Zitat Miller G (1959) Modified DNS method for reducing sugars. Anal Chem 31(3):426–428 Miller G (1959) Modified DNS method for reducing sugars. Anal Chem 31(3):426–428
37.
Zurück zum Zitat Xu S, Yin C, Pan D, Hu F, Wu Y, Miao Y, Gao L, Xiao G (2019) Efficient conversion of glucose into 5-hydroxymethylfurfural using a bifunctional Fe 3+ modified Amberlyst-15 catalyst. Sustain Energ Fuels 3(2):390–395 Xu S, Yin C, Pan D, Hu F, Wu Y, Miao Y, Gao L, Xiao G (2019) Efficient conversion of glucose into 5-hydroxymethylfurfural using a bifunctional Fe 3+ modified Amberlyst-15 catalyst. Sustain Energ Fuels 3(2):390–395
38.
Zurück zum Zitat Lee TP, Sakai R, Manaf NA, Rodhi AM, Saad B (2014) High performance liquid chromatography method for the determination of patulin and 5-hydroxymethylfurfural in fruit juices marketed in Malaysia. Food Control 38:142–149 Lee TP, Sakai R, Manaf NA, Rodhi AM, Saad B (2014) High performance liquid chromatography method for the determination of patulin and 5-hydroxymethylfurfural in fruit juices marketed in Malaysia. Food Control 38:142–149
39.
Zurück zum Zitat Obeng A, Premjet D, Premjet S (2018) Fermentable sugar production from the peels of two durian (Durio zibethinus Murr.) cultivars by phosphoric acid pretreatment. Resourc. 7(4):60–69 Obeng A, Premjet D, Premjet S (2018) Fermentable sugar production from the peels of two durian (Durio zibethinus Murr.) cultivars by phosphoric acid pretreatment. Resourc. 7(4):60–69
40.
Zurück zum Zitat Xiao Q, Xiao C (2009) Preparation and characterization of silica-coated magnetic–fluorescent bifunctional microspheres. Nanoscale Res Lett 4(9):1078–1084 Xiao Q, Xiao C (2009) Preparation and characterization of silica-coated magnetic–fluorescent bifunctional microspheres. Nanoscale Res Lett 4(9):1078–1084
41.
Zurück zum Zitat Vishnu D, Neeraj G, Swaroopini R, Shobana R, Kumar VV, Cabana H (2017) Synergetic integration of laccase and versatile peroxidase with magnetic silica microspheres towards remediation of biorefinery wastewater. Environ Sci Pollut Res 24(22):17993–18009 Vishnu D, Neeraj G, Swaroopini R, Shobana R, Kumar VV, Cabana H (2017) Synergetic integration of laccase and versatile peroxidase with magnetic silica microspheres towards remediation of biorefinery wastewater. Environ Sci Pollut Res 24(22):17993–18009
42.
Zurück zum Zitat Kim MT (1997) Deposition behavior of hexamethydisiloxane films based on the FTIR analysis of Si–O–Si and Si–CH3 bonds. Thin Solid Films 311(1–2):157–163 Kim MT (1997) Deposition behavior of hexamethydisiloxane films based on the FTIR analysis of Si–O–Si and Si–CH3 bonds. Thin Solid Films 311(1–2):157–163
43.
Zurück zum Zitat Kumar PM, Badrinarayanan S, Sastry M (2000) Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films 358(1–2):122–130 Kumar PM, Badrinarayanan S, Sastry M (2000) Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films 358(1–2):122–130
44.
Zurück zum Zitat Singh RS, Chauhan K, Kennedy JF (2019) Fructose production from inulin using fungal inulinase immobilized on 3-aminopropyl-triethoxysilane functionalized multiwalled carbon nanotubes. Int J Biol Macromol 125:41–52 Singh RS, Chauhan K, Kennedy JF (2019) Fructose production from inulin using fungal inulinase immobilized on 3-aminopropyl-triethoxysilane functionalized multiwalled carbon nanotubes. Int J Biol Macromol 125:41–52
45.
Zurück zum Zitat Singh P, Gill PK (2006) Production of inulinases: recent advances. Food Technol Biotechnol 44(2):151–159MathSciNet Singh P, Gill PK (2006) Production of inulinases: recent advances. Food Technol Biotechnol 44(2):151–159MathSciNet
46.
Zurück zum Zitat Liu Y, Hua X (2014) Production of biodiesel using a nanoscaled immobilized lipase as the catalyst. Catal Lett 144(2):248–251 Liu Y, Hua X (2014) Production of biodiesel using a nanoscaled immobilized lipase as the catalyst. Catal Lett 144(2):248–251
47.
Zurück zum Zitat Torabizadeh H, Mahmoudi A (2018) Inulin hydrolysis by inulinase immobilized covalently on magnetic nanoparticles prepared with wheat gluten hydrolysates. Biotechnol Rep 17:97–103 Torabizadeh H, Mahmoudi A (2018) Inulin hydrolysis by inulinase immobilized covalently on magnetic nanoparticles prepared with wheat gluten hydrolysates. Biotechnol Rep 17:97–103
48.
Zurück zum Zitat Singh RS, Dhaliwal R, Puri M (2007) Production of high fructose syrup from Asparagus inulin using immobilized exoinulinase from Kluyveromyces marxianus YS-1. J Ind Microbiol Biotechnol 34(10):649–655 Singh RS, Dhaliwal R, Puri M (2007) Production of high fructose syrup from Asparagus inulin using immobilized exoinulinase from Kluyveromyces marxianus YS-1. J Ind Microbiol Biotechnol 34(10):649–655
49.
Zurück zum Zitat Garuba EO, Onilude A (2018) Immobilization of thermostable exo-inulinase from mutant thermophilic Aspergillus tamarii-U4 using kaolin clay and its application in inulin hydrolysis. J Genet Eng Biotechnol 16(2):341–346 Garuba EO, Onilude A (2018) Immobilization of thermostable exo-inulinase from mutant thermophilic Aspergillus tamarii-U4 using kaolin clay and its application in inulin hydrolysis. J Genet Eng Biotechnol 16(2):341–346
50.
Zurück zum Zitat Chen J, Li K, Chen L, Liu R, Huang X, Ye D (2014) Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal–organic frameworks. Green Chem 16(5):2490–2499 Chen J, Li K, Chen L, Liu R, Huang X, Ye D (2014) Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal–organic frameworks. Green Chem 16(5):2490–2499
51.
Zurück zum Zitat Jeong J, Antonyraj CA, Shin S, Kim S, Kim B, Lee K-Y, Cho JK (2013) Commercially attractive process for production of 5-hydroxymethyl-2-furfural from high fructose corn syrup. J J Ind Eng Chem 19(4):1106–1111 Jeong J, Antonyraj CA, Shin S, Kim S, Kim B, Lee K-Y, Cho JK (2013) Commercially attractive process for production of 5-hydroxymethyl-2-furfural from high fructose corn syrup. J J Ind Eng Chem 19(4):1106–1111
52.
Zurück zum Zitat Zhao Q, Sun Z, Wang S, Huang G, Wang X, Jiang Z (2014) Conversion of highly concentrated fructose into 5-hydroxymethylfurfural by acid–base bifunctional HPA nanocatalysts induced by choline chloride. RSC Adv 4(108):63055–63061 Zhao Q, Sun Z, Wang S, Huang G, Wang X, Jiang Z (2014) Conversion of highly concentrated fructose into 5-hydroxymethylfurfural by acid–base bifunctional HPA nanocatalysts induced by choline chloride. RSC Adv 4(108):63055–63061
53.
Zurück zum Zitat Liu R, Chen J, Huang X, Chen L, Ma L, Li X (2013) Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials. Green Chem 15(10):2895–2903 Liu R, Chen J, Huang X, Chen L, Ma L, Li X (2013) Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials. Green Chem 15(10):2895–2903
54.
Zurück zum Zitat Rathankumar AK, SaiLavanyaa S, Saikia K, Gururajan A, Sivanesan S, Gosselin M, Vaidyanathan VK, Cabana H (2019) Systemic concocting of cross-linked enzyme aggregates of Candida antarctica Lipase B (Novozyme 435) for the biomanufacturing of Rhamnolipids. J Surfactant Deterg 22:477–490 Rathankumar AK, SaiLavanyaa S, Saikia K, Gururajan A, Sivanesan S, Gosselin M, Vaidyanathan VK, Cabana H (2019) Systemic concocting of cross-linked enzyme aggregates of Candida antarctica Lipase B (Novozyme 435) for the biomanufacturing of Rhamnolipids. J Surfactant Deterg 22:477–490
Metadaten
Titel
Magnetically assisted commercially attractive chemo-enzymatic route for the production of 5-hydroxymethylfurfural from inulin
verfasst von
Kongkona Saikia
Abiram Karanam Rathankumar
Betsy Ann Varghese
Shravani Kalita
Sivanesan Subramanian
Swarnalatha Somasundaram
Vaidyanathan Vinoth Kumar
Publikationsdatum
20.02.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 6/2021
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-020-00622-3

Weitere Artikel der Ausgabe 6/2021

Biomass Conversion and Biorefinery 6/2021 Zur Ausgabe