Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 13/2021

09.06.2021

Magnetoelectric coupling enhancement in lead-free BCTZ–xNZFO composites

verfasst von: Pankhuri Bansal, Manoj Kumar, Rajat Syal, Arun Kumar Singh, Sanjeev Kumar

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 13/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, (1 − x)Ba0.85Ca0.15Zr0.1Ti0.9O(BCZT)–xNi0.8Zn0.2Fe2O(NZFO), where x = 0.2, 0.3, and 0.4, particulate composites were prepared by conventional solid-state method. X-ray diffraction (XRD) data confirmed that the composites exist in mixed spinel-perovskite phase for all compositions. Field emission scanning electron microscopy (FESEM) was used to calculate the grain size distribution and surface morphology. The composites were investigated for the relative dielectric constant with variation in temperature and frequency. Polarization (P) vs. electric field (E) loops of the composites appear to be lossy with the increase in ferrite content. Magnetic hysteresis (MH) loops show the increase in saturation magnetization with an increase of ferrite content. Change in dielectric properties is studied under varying magnetic fields and observed maximum change in x = 0.4 composite. We observed maximum magnetoelectric coupling (ME) coefficient in x = 0.4 composite, i.e., 7.71 mV/cm Oe in unpoled and 9.45 mV/cm Oe in poled samples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N.A. Spaldin, S. Cheong, R. Ramesh, Multiferroics: past, present, and future. Phys. Today 63, 38 (2010)CrossRef N.A. Spaldin, S. Cheong, R. Ramesh, Multiferroics: past, present, and future. Phys. Today 63, 38 (2010)CrossRef
2.
Zurück zum Zitat M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D 38, 123–152 (2005)CrossRef M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D 38, 123–152 (2005)CrossRef
3.
Zurück zum Zitat A.S. Kumar, C.S.C. Lekha, S. Vivek, K. Nandakumar, M.R. Anantharaman, S.S. Nair, Effect of CoFe2O4 weight fraction on multiferroic and magnetoelectric properties of (1 − x)Ba0.85Ca0.15Zr0.1Ti0.9O3–xCoFe2O4 particulate composites. J. Mater. Sci. Mater. Electron. 30, 8239–8248 (2019)CrossRef A.S. Kumar, C.S.C. Lekha, S. Vivek, K. Nandakumar, M.R. Anantharaman, S.S. Nair, Effect of CoFe2O4 weight fraction on multiferroic and magnetoelectric properties of (1 − x)Ba0.85Ca0.15Zr0.1Ti0.9O3–xCoFe2O4 particulate composites. J. Mater. Sci. Mater. Electron. 30, 8239–8248 (2019)CrossRef
4.
Zurück zum Zitat J. Ryu, S. Priya, K. Uchino, H. Kim, Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J. Electroceram. 8, 107–119 (2002)CrossRef J. Ryu, S. Priya, K. Uchino, H. Kim, Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J. Electroceram. 8, 107–119 (2002)CrossRef
5.
Zurück zum Zitat R. Grössinger, G.V. Duong, R. Sato-Turtelli, The physics of magnetoelectric composites. J. Magn. Magn. Mater. 320, 1972–1977 (2008)CrossRef R. Grössinger, G.V. Duong, R. Sato-Turtelli, The physics of magnetoelectric composites. J. Magn. Magn. Mater. 320, 1972–1977 (2008)CrossRef
6.
Zurück zum Zitat D.I. Khomskii, Multiferroics: different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1–8 (2006)CrossRef D.I. Khomskii, Multiferroics: different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1–8 (2006)CrossRef
7.
Zurück zum Zitat W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)CrossRef W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)CrossRef
8.
Zurück zum Zitat N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)CrossRef N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)CrossRef
9.
Zurück zum Zitat C. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2012)CrossRef C. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2012)CrossRef
10.
Zurück zum Zitat C.W. Nan, Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082–6088 (1994)CrossRef C.W. Nan, Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082–6088 (1994)CrossRef
11.
Zurück zum Zitat S. Dash, R.N.P. Choudhary, M.N. Goswami, Enhanced dielectric and ferroelectric properties of PVDF–BiFeO3 composites in 0–3 connectivity. J. Alloys Compd. 715, 29–36 (2017)CrossRef S. Dash, R.N.P. Choudhary, M.N. Goswami, Enhanced dielectric and ferroelectric properties of PVDF–BiFeO3 composites in 0–3 connectivity. J. Alloys Compd. 715, 29–36 (2017)CrossRef
12.
Zurück zum Zitat G. Srinivasan, Magnetoelectric composites. Annu. Rev. Mater. Res. 40, 153–178 (2010)CrossRef G. Srinivasan, Magnetoelectric composites. Annu. Rev. Mater. Res. 40, 153–178 (2010)CrossRef
13.
Zurück zum Zitat S. Srikari, Composites and applications. In: Graphene Science Handbook (2016), pp. 505–506 S. Srikari, Composites and applications. In: Graphene Science Handbook (2016), pp. 505–506
14.
Zurück zum Zitat V. Gorige, R. Kati, D.H. Yoon, P.S. Anil Kumar, Strain mediated magnetoelectric coupling in a NiFe2O4–BaTiO3 multiferroic composite. J. Phys. D 49, 405001 (2016)CrossRef V. Gorige, R. Kati, D.H. Yoon, P.S. Anil Kumar, Strain mediated magnetoelectric coupling in a NiFe2O4–BaTiO3 multiferroic composite. J. Phys. D 49, 405001 (2016)CrossRef
15.
Zurück zum Zitat L.W. Martin, S.P. Crane, Y.H. Chu, M.B. Holcomb, M. Gajek, M. Huijben, C.H. Yang, N. Balke, R. Ramesh, Multiferroics and magnetoelectrics: thin films and nanostructures. J. Phys. Condens. Matter 20, 1–13 (2008)CrossRef L.W. Martin, S.P. Crane, Y.H. Chu, M.B. Holcomb, M. Gajek, M. Huijben, C.H. Yang, N. Balke, R. Ramesh, Multiferroics and magnetoelectrics: thin films and nanostructures. J. Phys. Condens. Matter 20, 1–13 (2008)CrossRef
16.
Zurück zum Zitat D.A. Sanchez, N. Ortega, A. Kumar, R. Roque-Malherbe, R. Polanco, J.F. Scott, R.S. Katiyar, Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: lead iron tantalate–lead zirconate titanate (PFT/PZT). AIP Adv. 1, 0421690 (2011)CrossRef D.A. Sanchez, N. Ortega, A. Kumar, R. Roque-Malherbe, R. Polanco, J.F. Scott, R.S. Katiyar, Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: lead iron tantalate–lead zirconate titanate (PFT/PZT). AIP Adv. 1, 0421690 (2011)CrossRef
17.
Zurück zum Zitat R. Gupta, M. Tomar, A. Kumar, V. Gupta, Performance of magnetoelectric PZT/Ni multiferroic system for energy harvesting application. Smart Mater. Struct. 26, 035002 (2017)CrossRef R. Gupta, M. Tomar, A. Kumar, V. Gupta, Performance of magnetoelectric PZT/Ni multiferroic system for energy harvesting application. Smart Mater. Struct. 26, 035002 (2017)CrossRef
18.
Zurück zum Zitat J.D.S. Guerra, R.J. Portugal, A.C. Silva, R. Guo, A.S. Bhalla, Investigation of the conduction processes in PZT-based multiferroics: analysis from Jonscher’s formalism. Phys. Status Solidi Basic Res. 251, 1020–1027 (2014)CrossRef J.D.S. Guerra, R.J. Portugal, A.C. Silva, R. Guo, A.S. Bhalla, Investigation of the conduction processes in PZT-based multiferroics: analysis from Jonscher’s formalism. Phys. Status Solidi Basic Res. 251, 1020–1027 (2014)CrossRef
19.
Zurück zum Zitat J.A. Bartkowska, The magnetoelectric coupling effect in multiferroic composites based on PZT-ferrite. J. Magn. Magn. Mater. 374, 703–706 (2015)CrossRef J.A. Bartkowska, The magnetoelectric coupling effect in multiferroic composites based on PZT-ferrite. J. Magn. Magn. Mater. 374, 703–706 (2015)CrossRef
20.
Zurück zum Zitat N. Ortega, A. Kumar, R.S. Katiyar, C. Rinaldi, Dynamic magneto-electric multiferroics PZT/CFO multilayered nanostructure. J. Mater. Sci. 44, 5127–5142 (2009)CrossRef N. Ortega, A. Kumar, R.S. Katiyar, C. Rinaldi, Dynamic magneto-electric multiferroics PZT/CFO multilayered nanostructure. J. Mater. Sci. 44, 5127–5142 (2009)CrossRef
21.
Zurück zum Zitat M. Zeng, J.G. Wan, Y. Wang, H. Yu, J.M. Liu, X.P. Jiang, C.W. Nan, Resonance magnetoelectric effect in bulk composites of lead zirconate titanate and nickel ferrite. J. Appl. Phys. 95, 8069–8073 (2004)CrossRef M. Zeng, J.G. Wan, Y. Wang, H. Yu, J.M. Liu, X.P. Jiang, C.W. Nan, Resonance magnetoelectric effect in bulk composites of lead zirconate titanate and nickel ferrite. J. Appl. Phys. 95, 8069–8073 (2004)CrossRef
22.
Zurück zum Zitat S. Mokhtari, H. Ahmadvand, M.J. Fesharaki, H. Papi, P. Kameli, H. Salamati, Complex magnetoelectric effect in multiferroic composites: the case of PFN-PT/(Co, Ni)Fe2O4. J. Phys. D 52, 5050015 (2019)CrossRef S. Mokhtari, H. Ahmadvand, M.J. Fesharaki, H. Papi, P. Kameli, H. Salamati, Complex magnetoelectric effect in multiferroic composites: the case of PFN-PT/(Co, Ni)Fe2O4. J. Phys. D 52, 5050015 (2019)CrossRef
23.
Zurück zum Zitat M. Naveed-Ul-Haq, V.V. Shvartsman, S. Salamon, H. Wende, H. Trivedi, A. Mumtaz, D.C. Lupascu, A new (Ba, Ca) (Ti, Zr)O3 based multiferroic composite with large magnetoelectric effect. Sci. Rep. 6, 1–10 (2016)CrossRef M. Naveed-Ul-Haq, V.V. Shvartsman, S. Salamon, H. Wende, H. Trivedi, A. Mumtaz, D.C. Lupascu, A new (Ba, Ca) (Ti, Zr)O3 based multiferroic composite with large magnetoelectric effect. Sci. Rep. 6, 1–10 (2016)CrossRef
24.
Zurück zum Zitat G. Herrera-Pérez, D. Morales, F. Paraguay-Delgado, R. Borja-Urby, A. Reyes-Rojas, L.E. Fuentes-Cobas, Structural analysis, optical and dielectric function of [Ba0.9Ca0.1](Ti0.9Zr0.1)O3 nanocrystals. J. Appl. Phys. 120, 1–7 (2016)CrossRef G. Herrera-Pérez, D. Morales, F. Paraguay-Delgado, R. Borja-Urby, A. Reyes-Rojas, L.E. Fuentes-Cobas, Structural analysis, optical and dielectric function of [Ba0.9Ca0.1](Ti0.9Zr0.1)O3 nanocrystals. J. Appl. Phys. 120, 1–7 (2016)CrossRef
25.
Zurück zum Zitat W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 1–4 (2009)CrossRef W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 1–4 (2009)CrossRef
26.
Zurück zum Zitat R. Syal, M. Kumar, A.K. Singh, A. De, O.P. Thakur, S. Kumar, Enhancement in the piezoelectric properties in lead-free BZT–xBCT dense ceramics. J. Mater. Sci. Mater. Electron. 31, 21651–21660 (2020)CrossRef R. Syal, M. Kumar, A.K. Singh, A. De, O.P. Thakur, S. Kumar, Enhancement in the piezoelectric properties in lead-free BZT–xBCT dense ceramics. J. Mater. Sci. Mater. Electron. 31, 21651–21660 (2020)CrossRef
27.
Zurück zum Zitat J.P. Praveen, M.V. Reddy, J. Kolte, S.D. Kumar, V. Subramanian, D. Das, Synthesis, characterization and magneto-electric properties of (1 − x)BCZT–xCFO ceramic particulate composites. Appl. Ceram. Technol. 14, 200–210 (2017)CrossRef J.P. Praveen, M.V. Reddy, J. Kolte, S.D. Kumar, V. Subramanian, D. Das, Synthesis, characterization and magneto-electric properties of (1 x)BCZT–xCFO ceramic particulate composites. Appl. Ceram. Technol. 14, 200–210 (2017)CrossRef
28.
Zurück zum Zitat N. Shara Sowmya, A. Srinivas, K. Venu Goapl, J.P. Praveen, D. Das, S.D. Kumar, V. Subramanian, S.V. Kamat, Magnetoelectric coupling studies on (x) (0.5BZT–0.5BCT)–(100 − x) NiFe2O4 [x = 90–70 wt%] particulate composite. Ceram. Int. 43, 2523–2528 (2017)CrossRef N. Shara Sowmya, A. Srinivas, K. Venu Goapl, J.P. Praveen, D. Das, S.D. Kumar, V. Subramanian, S.V. Kamat, Magnetoelectric coupling studies on (x) (0.5BZT–0.5BCT)–(100 − x) NiFe2O4 [x = 90–70 wt%] particulate composite. Ceram. Int. 43, 2523–2528 (2017)CrossRef
29.
Zurück zum Zitat J. Rani, V.K. Kushwaha, J. Kolte, C.V. Tomy, Structural, dielectric, magnetoelectric studies of (1 − x)[0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3]–xNi0.8Zn0.2Fe2O4 multiferroic composites. J. Alloys Compd. 696, 266–275 (2017)CrossRef J. Rani, V.K. Kushwaha, J. Kolte, C.V. Tomy, Structural, dielectric, magnetoelectric studies of (1 − x)[0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3]–xNi0.8Zn0.2Fe2O4 multiferroic composites. J. Alloys Compd. 696, 266–275 (2017)CrossRef
30.
Zurück zum Zitat S. Zahi, A.R. Daud, M. Hashim, A comparative study of nickel–zinc ferrites by sol–gel route and solid-state reaction. Mater. Chem. Phys. 106, 452–456 (2007)CrossRef S. Zahi, A.R. Daud, M. Hashim, A comparative study of nickel–zinc ferrites by sol–gel route and solid-state reaction. Mater. Chem. Phys. 106, 452–456 (2007)CrossRef
31.
Zurück zum Zitat C.A. Palacio Gómez, J.J. McCoy, M.H. Weber, K.G. Lynn, Effect of Zn for Ni substitution on the properties of Nickel–Zinc ferrites as studied by low-energy implanted positrons. J. Magn. Magn. Mater. 481, 93–99 (2019)CrossRef C.A. Palacio Gómez, J.J. McCoy, M.H. Weber, K.G. Lynn, Effect of Zn for Ni substitution on the properties of Nickel–Zinc ferrites as studied by low-energy implanted positrons. J. Magn. Magn. Mater. 481, 93–99 (2019)CrossRef
32.
Zurück zum Zitat Y. Wang, Y. Pu, Y. Tian, X. Li, Z. Wang, Y. Shi, J. Zhang, G. Zhang, Enhanced magnetoelectric properties of the laminated Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4 composites. J. Alloys Compd. 696, 1307–1313 (2017)CrossRef Y. Wang, Y. Pu, Y. Tian, X. Li, Z. Wang, Y. Shi, J. Zhang, G. Zhang, Enhanced magnetoelectric properties of the laminated Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4 composites. J. Alloys Compd. 696, 1307–1313 (2017)CrossRef
33.
Zurück zum Zitat Z. Hanani, D. Mezzane, M. Amjoud, S. Fourcade, A.G. Razumnaya, D. Mezzane, M. Amjoud, S. Fourcade, A.G. Razumnaya, Enhancement of dielectric properties of lead-free BCTZ ferroelectric ceramics by grain size engineering. Superlattice Microstruct. 127, 109–117 (2018)CrossRef Z. Hanani, D. Mezzane, M. Amjoud, S. Fourcade, A.G. Razumnaya, D. Mezzane, M. Amjoud, S. Fourcade, A.G. Razumnaya, Enhancement of dielectric properties of lead-free BCTZ ferroelectric ceramics by grain size engineering. Superlattice Microstruct. 127, 109–117 (2018)CrossRef
34.
Zurück zum Zitat C. Andrés, P. Gómez, C. Augusto, B. Meneses, A. Matute, Structural parameters and cation distributions in solid state synthesized Ni–Zn ferrites. Mater. Sci. Eng. B 236–237, 48–55 (2018) C. Andrés, P. Gómez, C. Augusto, B. Meneses, A. Matute, Structural parameters and cation distributions in solid state synthesized Ni–Zn ferrites. Mater. Sci. Eng. B 236–237, 48–55 (2018)
35.
Zurück zum Zitat P. Bongurala, V. Gorige, Structural, magnetic and electric properties of multiferroic NiFe2O4–BaTiO3 composites. J. Magn. Magn. Mater. 477, 350–355 (2019)CrossRef P. Bongurala, V. Gorige, Structural, magnetic and electric properties of multiferroic NiFe2O4–BaTiO3 composites. J. Magn. Magn. Mater. 477, 350–355 (2019)CrossRef
36.
Zurück zum Zitat N. Shara Sowmya, A. Srinivas, P. Saravanan, K. Venu Gopal Reddy, S.V. Kamat, J. Paul Praveen, D. Das, G. Murugesan, S. Dinesh Kumar, V. Subramanian, Studies on magnetoelectric coupling in lead-free [(0.5) BCT–(0.5) BZT]–NiFe2O4 laminated composites at low and EMR frequencies. J. Alloys Compd. 743, 240–248 (2018)CrossRef N. Shara Sowmya, A. Srinivas, P. Saravanan, K. Venu Gopal Reddy, S.V. Kamat, J. Paul Praveen, D. Das, G. Murugesan, S. Dinesh Kumar, V. Subramanian, Studies on magnetoelectric coupling in lead-free [(0.5) BCT–(0.5) BZT]–NiFe2O4 laminated composites at low and EMR frequencies. J. Alloys Compd. 743, 240–248 (2018)CrossRef
37.
Zurück zum Zitat N. Adhlakha, K.L. Yadav, Study of structural, dielectric and magnetic behaviour of Ni0.75Zn0.25Fe2O4–Ba(Ti0.85Zr0.15)O3, Smart Mater. Struct. 21(11), 115021 (2012) N. Adhlakha, K.L. Yadav, Study of structural, dielectric and magnetic behaviour of Ni0.75Zn0.25Fe2O4–Ba(Ti0.85Zr0.15)O3, Smart Mater. Struct. 21(11), 115021 (2012)
38.
Zurück zum Zitat R. Grigalaitis, M.M. Vijatović Petrović, J.D. Bobić, A. Dzunuzovic, R. Sobiestianskas, A. Brilingas, B.D. Stojanović, J. Banys, Dielectric and magnetic properties of BaTiO3–NiFe2O4 multiferroic composites. Ceram. Int. 40(4), 6165–6170 (2014)CrossRef R. Grigalaitis, M.M. Vijatović Petrović, J.D. Bobić, A. Dzunuzovic, R. Sobiestianskas, A. Brilingas, B.D. Stojanović, J. Banys, Dielectric and magnetic properties of BaTiO3–NiFe2O4 multiferroic composites. Ceram. Int. 40(4), 6165–6170 (2014)CrossRef
39.
Zurück zum Zitat M. Maraj, W. Wei, B. Peng, W. Sun, Dielectric and energy storage properties of Ba(1 − x)CaxZryTi(1 − y)O3 (BCZT): a review. Materials 12(21), 3641 (2019)CrossRef M. Maraj, W. Wei, B. Peng, W. Sun, Dielectric and energy storage properties of Ba(1 − x)CaxZryTi(1 − y)O3 (BCZT): a review. Materials 12(21), 3641 (2019)CrossRef
40.
Zurück zum Zitat M. Shen, S. Ge, W. Cao, Dielectric enhancement and Maxwell–Wagner effects in polycrystalline ferroelectric multilayered thin films. J. Phys. D 34, 2935–2938 (2001)CrossRef M. Shen, S. Ge, W. Cao, Dielectric enhancement and Maxwell–Wagner effects in polycrystalline ferroelectric multilayered thin films. J. Phys. D 34, 2935–2938 (2001)CrossRef
41.
Zurück zum Zitat A.V. Nair, S. Vishnunarayanan, K.S. Vaishnavi, P. Suresh, P.S. Anil Kumar, Multiferroic properties of lead-free 0.2(Ni0.8 Zn0.2Fe2O4)–0.8(Ba0.85Ca0.15Zr0.1Ti0.9O3) magnetoelectric composite. IOP Conf. Ser. Mater. Sci. Eng. 577, 0–5 (2019)CrossRef A.V. Nair, S. Vishnunarayanan, K.S. Vaishnavi, P. Suresh, P.S. Anil Kumar, Multiferroic properties of lead-free 0.2(Ni0.8 Zn0.2Fe2O4)–0.8(Ba0.85Ca0.15Zr0.1Ti0.9O3) magnetoelectric composite. IOP Conf. Ser. Mater. Sci. Eng. 577, 0–5 (2019)CrossRef
42.
Zurück zum Zitat R. Sharma, P. Pahuja, R.P. Tandon, Structural, dielectric, ferromagnetic, ferroelectric and AC conductivity studies of the BaTiO3–CoFe1.8Zn0.2O4 multiferroic particulate composites. Ceram. Int. 40(7), 9027–9036 (2014)CrossRef R. Sharma, P. Pahuja, R.P. Tandon, Structural, dielectric, ferromagnetic, ferroelectric and AC conductivity studies of the BaTiO3–CoFe1.8Zn0.2O4 multiferroic particulate composites. Ceram. Int. 40(7), 9027–9036 (2014)CrossRef
43.
Zurück zum Zitat J.P. Praveen, T. Karthik, A.R. James, E. Chandrakala, S. Asthana, D. Das, Effect of poling process on piezoelectric properties of sol–gel derived BZT–BCT ceramics. J. Eur. Ceram. Soc. 35(6), 1785–1798 (2015)CrossRef J.P. Praveen, T. Karthik, A.R. James, E. Chandrakala, S. Asthana, D. Das, Effect of poling process on piezoelectric properties of sol–gel derived BZT–BCT ceramics. J. Eur. Ceram. Soc. 35(6), 1785–1798 (2015)CrossRef
44.
Zurück zum Zitat M. Singh, J. Singh, M. Kumar, S. Kumar, Investigations on multiferroic properties of lead free (1 − x)BCZT–xCZFMO based particulate ceramic composites. Solid State Sci. 108, 106380 (2020)CrossRef M. Singh, J. Singh, M. Kumar, S. Kumar, Investigations on multiferroic properties of lead free (1 − x)BCZT–xCZFMO based particulate ceramic composites. Solid State Sci. 108, 106380 (2020)CrossRef
45.
Zurück zum Zitat G. Catalan, Magnetocapacitance without magnetoelectric coupling. Appl. Phys. Lett. 88, 1–4 (2006)CrossRef G. Catalan, Magnetocapacitance without magnetoelectric coupling. Appl. Phys. Lett. 88, 1–4 (2006)CrossRef
46.
Zurück zum Zitat K.P. Jayachandran, J.M. Guedes, H.C. Rodrigues, Homogenization method for microscopic characterization of the composite magnetoelectric multiferroics. Sci. Rep. 10, 1–13 (2020)CrossRef K.P. Jayachandran, J.M. Guedes, H.C. Rodrigues, Homogenization method for microscopic characterization of the composite magnetoelectric multiferroics. Sci. Rep. 10, 1–13 (2020)CrossRef
47.
Zurück zum Zitat Y. Zhang, J.P. Zhou, Q. Liu, S. Zhang, C.Y. Deng, Dielectric, magnetic and magnetoelectric properties of Ni0.5Zn0.5Fe2O4 + Pb(Zr0.48Ti0.52)O3 composite ceramics. Ceram. Int. 40, 5853–5860 (2014)CrossRef Y. Zhang, J.P. Zhou, Q. Liu, S. Zhang, C.Y. Deng, Dielectric, magnetic and magnetoelectric properties of Ni0.5Zn0.5Fe2O+ Pb(Zr0.48Ti0.52)O3 composite ceramics. Ceram. Int. 40, 5853–5860 (2014)CrossRef
48.
Zurück zum Zitat A. Ahlawat, S. Satapathy, P. Deshmukh, M.M. Shirolkar, A.K. Sinha, A.K. Karnal, Electric field poling induced self-biased converse magnetoelectric response in PMN-PT/NiFe2O4 nanocomposites. Appl. Phys. Lett. 111, 0–5 (2017)CrossRef A. Ahlawat, S. Satapathy, P. Deshmukh, M.M. Shirolkar, A.K. Sinha, A.K. Karnal, Electric field poling induced self-biased converse magnetoelectric response in PMN-PT/NiFe2O4 nanocomposites. Appl. Phys. Lett. 111, 0–5 (2017)CrossRef
49.
Zurück zum Zitat A.S. Kumar, C.S.C. Lekha, S. Vivek, V. Saravanan, K. Nandakumar, S.S. Nair, Multiferroic and magnetoelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3–CoFe2O4 core–shell nanocomposite. J. Magn. Magn. Mater. 418, 294–299 (2016)CrossRef A.S. Kumar, C.S.C. Lekha, S. Vivek, V. Saravanan, K. Nandakumar, S.S. Nair, Multiferroic and magnetoelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3–CoFe2O4 core–shell nanocomposite. J. Magn. Magn. Mater. 418, 294–299 (2016)CrossRef
50.
Zurück zum Zitat C. Nan, N. Cai, Z. Shi, J. Zhai, G. Liu, Y. Lin, Large magnetoelectric response in multiferroic polymer-based composites, 014102 (2005) 3–7 C. Nan, N. Cai, Z. Shi, J. Zhai, G. Liu, Y. Lin, Large magnetoelectric response in multiferroic polymer-based composites, 014102 (2005) 3–7
51.
Zurück zum Zitat H. Greve, E. Woltermann, H.J. Quenzer, B. Wagner, E. Quandt, Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites. Appl. Phys. Lett. 96, 182501 (2010) H. Greve, E. Woltermann, H.J. Quenzer, B. Wagner, E. Quandt, Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites. Appl. Phys. Lett. 96, 182501 (2010)
52.
Zurück zum Zitat A. Ahlawat, A.A. Khan, P. Desmukh, M.M. Shirolkar, J. Li, H. Wang, S. Satapathy, A.K. Karnal, Investigation of magneto-electric effects in (PMN-PT) @ NiFe2O4 core shell nanostructures and nanocomposites for non volatile memory applications. Mater. Lett. 261, 127082 (2020)CrossRef A. Ahlawat, A.A. Khan, P. Desmukh, M.M. Shirolkar, J. Li, H. Wang, S. Satapathy, A.K. Karnal, Investigation of magneto-electric effects in (PMN-PT) @ NiFe2O4 core shell nanostructures and nanocomposites for non volatile memory applications. Mater. Lett. 261, 127082 (2020)CrossRef
Metadaten
Titel
Magnetoelectric coupling enhancement in lead-free BCTZ–xNZFO composites
verfasst von
Pankhuri Bansal
Manoj Kumar
Rajat Syal
Arun Kumar Singh
Sanjeev Kumar
Publikationsdatum
09.06.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 13/2021
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-06284-9

Weitere Artikel der Ausgabe 13/2021

Journal of Materials Science: Materials in Electronics 13/2021 Zur Ausgabe