Skip to main content

2022 | OriginalPaper | Buchkapitel

34. Magnetohydrodynamic (MHD) Power Generation Systems

verfasst von : Tushar Kanti Bera, Aashish Kumar Bohre, Irfan Ahmed, Aniruddha Bhattacharya, Partha Sarathee Bhowmik

Erschienen in: Planning of Hybrid Renewable Energy Systems, Electric Vehicles and Microgrid

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A magnetohydrodynamic (MHD) power generation system is an electrical power generating system which generates the electricity utilizing the MHD principle. MHD power generation technique generates the electric power directly from a moving stream of ionized fluid flowing through a magnetic field. Therefore, the MHD power generation systems are found as the non-conventional electric power generation modality which is considered as the green energy harvesting procedures. The MHD generators utilizes the electromagnetic interaction of an ionized fluid flow and a magnetic field. The ionized fluids in MHD generators work as the moving electrical conductor and hence the electromotive force (e.m.f.) could be generated across the ionized conductor due to the Faraday’s electromagnetic principle. An MHD system, therefore, can act as a fluid dynamo or MHD power converter. In MHD, as the flow (motion) of the conducting fluid (conductor) under a magnetic field causes an induced voltage across the fluid, the e.m.f. would be found at the perpendicular direction to both the magnetic field and the fluid flow according to Fleming's right-hand rule. The concept of MHD power generation technique was first introduced by Michael Faraday in 1832 during his lecture at the Royal Society, UK. Since then, the MHD systems have been developed and studied by several research groups. Different types of MHD generator geometries have been proposed with different channel geometries, different electrode configurations, different magnetic coil structures, and different working fluids or plasmas. Though a typical coal-fired MHD generator converts about 20% of the thermal input power to the output electricity but, using the combined MHD/steam cycle systems, an energy conversion efficiency up to 60% of the coal’s energy can be converted into the electrical energy. In recent time, the green energy harvesting processes are found extremely important to reduce the pollution and to save the fossil fuel in the world for its sustainable development. In this direction, the MHD power generation technique could be utilized for green energy generation without any environmental pollution. In this chapter, The MHD technology has been discussed in detail followed by a discussion on its components, system design issues, and crucial design aspects. A detail review on the historical developments and the associated research works conducted on the MHD power generation process has been presented highlighting the major developments. Along with the limitations and challenges of the MHD power generation method, the present scenario and the future trends are also discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abo-Khalil AG, Alghamdi AS (2021) MPPT of permanent magnet synchronous generator in tidal energy systems using support vector regression. Sustainability 13(4):2223CrossRef Abo-Khalil AG, Alghamdi AS (2021) MPPT of permanent magnet synchronous generator in tidal energy systems using support vector regression. Sustainability 13(4):2223CrossRef
Zurück zum Zitat Ayeleso AO, Kahn MT (2018) Modelling of a combustible ionised gas in thermal power plants using MHD conversion system in South Africa. J King Saud Univ-Sci 30(3):367–374CrossRef Ayeleso AO, Kahn MT (2018) Modelling of a combustible ionised gas in thermal power plants using MHD conversion system in South Africa. J King Saud Univ-Sci 30(3):367–374CrossRef
Zurück zum Zitat Bansal NK (2014) Non-conventional energy resources. Vikas Publ House Bansal NK (2014) Non-conventional energy resources. Vikas Publ House
Zurück zum Zitat Begamudre RD (2007) Electromechanical energy conversion with dynamics of machines. New Age International Begamudre RD (2007) Electromechanical energy conversion with dynamics of machines. New Age International
Zurück zum Zitat Bera TK (2020) A magnetohydrodynamic (MHD) power generating system: a technical review. In: IOP Conference Series: Materials Science and Engineering, vol 955, 1st edn. IOP Publishing, p 012075 Bera TK (2020) A magnetohydrodynamic (MHD) power generating system: a technical review. In: IOP Conference Series: Materials Science and Engineering, vol 955, 1st edn. IOP Publishing, p 012075
Zurück zum Zitat Bityurin VA, Bocharov AN, Lineberry JT (1999) In: 13th International conference on MHD power generation and high temperature technologies, vol 3. IEE CAS, Beijing, pp 12–15 Bityurin VA, Bocharov AN, Lineberry JT (1999) In: 13th International conference on MHD power generation and high temperature technologies, vol 3. IEE CAS, Beijing, pp 12–15
Zurück zum Zitat Branover H (1978) Magnetohydrodynamic flow in ducts. hp Branover H (1978) Magnetohydrodynamic flow in ducts. hp
Zurück zum Zitat Branover H, Lykoudis PS, Yakhot A (eds) (1983) Liquid-metal flows and magnetohydrodynamics. American Institute of Aeronautics and Astronautics Branover H, Lykoudis PS, Yakhot A (eds) (1983) Liquid-metal flows and magnetohydrodynamics. American Institute of Aeronautics and Astronautics
Zurück zum Zitat Brown MA, Semelka RC (2011) MRI: basic principles and applications. John Wiley & Sons Brown MA, Semelka RC (2011) MRI: basic principles and applications. John Wiley & Sons
Zurück zum Zitat Daybelge U, Kruger CH, Mitchner M (1968) Transport properties of MHD-generator plasmas. AIAA J 6(9):1712–1723CrossRef Daybelge U, Kruger CH, Mitchner M (1968) Transport properties of MHD-generator plasmas. AIAA J 6(9):1712–1723CrossRef
Zurück zum Zitat Dhareppagol VD, Saurav A (2013) Int J Adv Electl Electrn Engg 2:2278–8948 Dhareppagol VD, Saurav A (2013) Int J Adv Electl Electrn Engg 2:2278–8948
Zurück zum Zitat Drbal L, Westra K, Boston P (eds) (2012) Power plant engineering. Springer Science & Business Media Drbal L, Westra K, Boston P (eds) (2012) Power plant engineering. Springer Science & Business Media
Zurück zum Zitat Harada N, Yamasaki H, Oyake T, Watanabe M, Shimizu E, Osogai T, Shioda S (1984) In: Proc. 22nd Symp. on Eng. Asp. of MHD, vol 3, 1st edn Harada N, Yamasaki H, Oyake T, Watanabe M, Shimizu E, Osogai T, Shioda S (1984) In: Proc. 22nd Symp. on Eng. Asp. of MHD, vol 3, 1st edn
Zurück zum Zitat Harada N, Takahashi K, Sasaki T, Kikuchi T (2017) In: international conference on system science and engineering (ICSSE), IEEE pp 191–195 Harada N, Takahashi K, Sasaki T, Kikuchi T (2017) In: international conference on system science and engineering (ICSSE), IEEE pp 191–195
Zurück zum Zitat Hardianto T, Sakamoto N, Harada N (2008) IEEE Trans Ind Appl 44(4):1116–1123CrossRef Hardianto T, Sakamoto N, Harada N (2008) IEEE Trans Ind Appl 44(4):1116–1123CrossRef
Zurück zum Zitat Hruby V, Petty S, Kessler R (1986) Platinum-clad electrodes for magnetohydrodynamic generators. Platin Met Rev 30(1):2–11 Hruby V, Petty S, Kessler R (1986) Platinum-clad electrodes for magnetohydrodynamic generators. Platin Met Rev 30(1):2–11
Zurück zum Zitat Hruby V, Petty S, Kessler R (1986) Platinum-clad electrodes for magnetohydrodynamic generators. Platin Met Rev 30(1):2–11 Hruby V, Petty S, Kessler R (1986) Platinum-clad electrodes for magnetohydrodynamic generators. Platin Met Rev 30(1):2–11
Zurück zum Zitat Kantrowitz AR, Brogan TR, Rosa RJ, Louis JF (1962) IRE Trans Mil Electron 1:78–83CrossRef Kantrowitz AR, Brogan TR, Rosa RJ, Louis JF (1962) IRE Trans Mil Electron 1:78–83CrossRef
Zurück zum Zitat Karady GG, Holbert KE (2013) Electrical energy conversion and transport: an interactive computer-based approach, vol 64. John Wiley & Sons Karady GG, Holbert KE (2013) Electrical energy conversion and transport: an interactive computer-based approach, vol 64. John Wiley & Sons
Zurück zum Zitat Kayukawa N (2004) Open-cycle magnetohydrodynamic electrical power generation: a review and future perspectives. Prog Energy Combust Sci 30(1):33–60CrossRef Kayukawa N (2004) Open-cycle magnetohydrodynamic electrical power generation: a review and future perspectives. Prog Energy Combust Sci 30(1):33–60CrossRef
Zurück zum Zitat Khan BH (2006) Non-conventional energy resources. Tata McGraw-Hill Educ Khan BH (2006) Non-conventional energy resources. Tata McGraw-Hill Educ
Zurück zum Zitat Kirillin VA, Sheyndlin AY, Asinovskiy EI, Sychev VV, Zenkevich VB (1985) Foreign technology div wright-patterson afb oh Kirillin VA, Sheyndlin AY, Asinovskiy EI, Sychev VV, Zenkevich VB (1985) Foreign technology div wright-patterson afb oh
Zurück zum Zitat Maxwell JC (1888). An elementary treatise on electricity. At the Clarendon Press Maxwell JC (1888). An elementary treatise on electricity. At the Clarendon Press
Zurück zum Zitat Messerle HK, Messerle HK (1995) Magnetohydrodynamic electrical power generation. Wiley, Chichester, UK Messerle HK, Messerle HK (1995) Magnetohydrodynamic electrical power generation. Wiley, Chichester, UK
Zurück zum Zitat Mukherjee D, Chakrabarti S (2004) Fundamentals of renewable energy systems. New Age Int Mukherjee D, Chakrabarti S (2004) Fundamentals of renewable energy systems. New Age Int
Zurück zum Zitat Nag PK (2002). Power plant engineering. Tata McGraw-Hill Educ Nag PK (2002). Power plant engineering. Tata McGraw-Hill Educ
Zurück zum Zitat Onar OC (2017) Energy harvesting: solar, wind, and ocean energy conversion systems. CRC Press Onar OC (2017) Energy harvesting: solar, wind, and ocean energy conversion systems. CRC Press
Zurück zum Zitat Petrick M, Shumi͡at͡skiĭ BI, Shumi͡at͡skiĭ BI (1978) Open-cycle magnetohydrodynamic electrical power generation. Argonne Natl Lab Petrick M, Shumi͡at͡skiĭ BI, Shumi͡at͡skiĭ BI (1978) Open-cycle magnetohydrodynamic electrical power generation. Argonne Natl Lab
Zurück zum Zitat Pratt DT, Smoot L, Pratt D (1979) Pulverized coal combustion and gasification. Springer, Berlin Pratt DT, Smoot L, Pratt D (1979) Pulverized coal combustion and gasification. Springer, Berlin
Zurück zum Zitat Rosa RJ, Krueger CH, Shioda S (1991a) Plasmas in MHD power generation. IEEE Trans Plasma Sci 19(6):1180–1190CrossRef Rosa RJ, Krueger CH, Shioda S (1991a) Plasmas in MHD power generation. IEEE Trans Plasma Sci 19(6):1180–1190CrossRef
Zurück zum Zitat Rosa RJ, Krueger CH, Shioda S (1991b) IEEE Trans Plasma Sci 19(6):1180–1190CrossRef Rosa RJ, Krueger CH, Shioda S (1991b) IEEE Trans Plasma Sci 19(6):1180–1190CrossRef
Zurück zum Zitat Rosa RJ (1976) Voltage consolidation and control circuits for multiple-electrode MHD generators. eamh, VII-5 Rosa RJ (1976) Voltage consolidation and control circuits for multiple-electrode MHD generators. eamh, VII-5
Zurück zum Zitat Sarkar D (2016) Thermal power plant: pre-operational activities. Elsevier Sarkar D (2016) Thermal power plant: pre-operational activities. Elsevier
Zurück zum Zitat Say MG (1976) Alternating current machines. Pitman Say MG (1976) Alternating current machines. Pitman
Zurück zum Zitat Scannell EP (1980) US Patent 4,185,213. US Patent and Trademark Office, Washington, DC Scannell EP (1980) US Patent 4,185,213. US Patent and Trademark Office, Washington, DC
Zurück zum Zitat Schmidt VV, Schmidt VV, Müller P, Ustinov AV (1997) The physics of superconductors: introduction to fundamentals and applications. Springer Sci & Bus Media Schmidt VV, Schmidt VV, Müller P, Ustinov AV (1997) The physics of superconductors: introduction to fundamentals and applications. Springer Sci & Bus Media
Zurück zum Zitat Sheindlin AE, Jackson WD, Brzozowski WS, Rietjens LT (1979) In: Natural Resources Forum, vol 3, 2nd edn. Blackwell Publishing Ltd., Oxford, UK, pp 133–145 Sheindlin AE, Jackson WD, Brzozowski WS, Rietjens LT (1979) In: Natural Resources Forum, vol 3, 2nd edn. Blackwell Publishing Ltd., Oxford, UK, pp 133–145
Zurück zum Zitat Soltani M, Kashkooli FM, Souri M, Rafiei B, Jabarifar M, Gharali K, Nathwani JS (2021) Environmental, economic, and social impacts of geothermal energy systems. Renew Sustain Energy Rev 140:110750 Soltani M, Kashkooli FM, Souri M, Rafiei B, Jabarifar M, Gharali K, Nathwani JS (2021) Environmental, economic, and social impacts of geothermal energy systems. Renew Sustain Energy Rev 140:110750
Zurück zum Zitat Steg L, Sutton GW. (1960) Astronautics 5 Steg L, Sutton GW. (1960) Astronautics 5
Zurück zum Zitat Stewart W (1966) U.S. Patent 3,275,860. U.S. Patent and Trademark Office, Washington, DC Stewart W (1966) U.S. Patent 3,275,860. U.S. Patent and Trademark Office, Washington, DC
Zurück zum Zitat Stewart W (1966) US Patent 3, pp 275–860. U.S. Patent and Trademark Office, Washington, DC Stewart W (1966) US Patent 3, pp 275–860. U.S. Patent and Trademark Office, Washington, DC
Zurück zum Zitat Stiglich JJ, Addington LA (1978) Hot pressed composite ceramic MHD electrode development. In: Process Cryst Ceram. Springer, Boston, MA, pp 493–503 Stiglich JJ, Addington LA (1978) Hot pressed composite ceramic MHD electrode development. In: Process Cryst Ceram. Springer, Boston, MA, pp 493–503
Zurück zum Zitat Sukhatme SP, Nayak JK (2017) Solar energy. McGraw-Hill Educ Sukhatme SP, Nayak JK (2017) Solar energy. McGraw-Hill Educ
Zurück zum Zitat Tanuma T (2017). Introduction to steam turbines for power plants. In: Advances in steam turbines for modern power plants. Woodhead publishing, pp 3–9 Tanuma T (2017). Introduction to steam turbines for power plants. In: Advances in steam turbines for modern power plants. Woodhead publishing, pp 3–9
Zurück zum Zitat Teno J, Brogan TR, DiNanno LR (1966) Hall configuration MHD generator studies. In: Electricity from MHD, vol III. Proceedings of a Symposium on Magnetohydrodynamic Electrical Power Generation Teno J, Brogan TR, DiNanno LR (1966) Hall configuration MHD generator studies. In: Electricity from MHD, vol III. Proceedings of a Symposium on Magnetohydrodynamic Electrical Power Generation
Zurück zum Zitat Witalis EA (1965) J Nucl Energy Part C, Plasma Phys, Accel, Thermonucl Res 7(3):235CrossRef Witalis EA (1965) J Nucl Energy Part C, Plasma Phys, Accel, Thermonucl Res 7(3):235CrossRef
Zurück zum Zitat Zengyu X, Chuanjie P, Xiujie Z, Li Z, Xuru D, Yong L (2009) Plasma Sci Technol 11(4): 499 Zengyu X, Chuanjie P, Xiujie Z, Li Z, Xuru D, Yong L (2009) Plasma Sci Technol 11(4): 499
Metadaten
Titel
Magnetohydrodynamic (MHD) Power Generation Systems
verfasst von
Tushar Kanti Bera
Aashish Kumar Bohre
Irfan Ahmed
Aniruddha Bhattacharya
Partha Sarathee Bhowmik
Copyright-Jahr
2022
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-0979-5_34