Skip to main content

2022 | OriginalPaper | Buchkapitel

35. Recent Advancement in Battery Energy Storage System for Launch Vehicle

verfasst von : Kiran H. Raut, Asha Shendge, Jagdish Chaudhari

Erschienen in: Planning of Hybrid Renewable Energy Systems, Electric Vehicles and Microgrid

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

NASA is exploring a host of exciting planetary science exploration ideas for the next decade. The energy storage systems are required for the outer planet, inner planet, Mars, and small body missions. In space missions on energy storage systems place various essential performance conditions. It must be made to specifications and reviewed to maintain trust and to fulfill a wide variety of needs. The energy storage systems used in planetary science missions include main batteries (Non-rechargeable), secondary batteries (rechargeable), and condensers. Fuel cells have been used in human space missions but not in planetary science missions. Therefore, due to this limitation of the fuel cell, it is necessary to develop strong rechargeable batteries to increase the life of the launch vehicle. This chapter offers an overview of energy storage systems that are widely used in the launch vehicle. Storage technologies differ in terms of cost, cycle life, energy density, performance, power output, and discharge time. The benefits and drawbacks of various commercially developed battery chemistries are investigated. The chapter concludes with a discussion on lithium-ion battery recovery and reuse best practices. Advanced technologies are described in this study as those that have not yet been used in space missions and are still in progress. Main batteries, rechargeable batteries, fuel cells, capacitors, and flywheels are among the advanced technologies discussed in this chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Tixador P (2008) Superconducting magnetic energy storage: status and perspective. IEEE/CSC & ESAS European Superconductivity News Forum Tixador P (2008) Superconducting magnetic energy storage: status and perspective. IEEE/CSC & ESAS European Superconductivity News Forum
Zurück zum Zitat IRENA (2020), Electricity storage valuation framework: assessing system value and ensuring project viability. Int Renew Energy Agency, Abu Dhabi.www.irena.com IRENA (2020), Electricity storage valuation framework: assessing system value and ensuring project viability. Int Renew Energy Agency, Abu Dhabi.www.​irena.​com
Zurück zum Zitat Schledde D, Dabrowski T et al (2018) Support to R&D strategy for battery based energy storage technical analysis of ongoing projects. European Commission Directorate General Energy, 15 August Project number: POWNL16059 Schledde D, Dabrowski T et al (2018) Support to R&D strategy for battery based energy storage technical analysis of ongoing projects. European Commission Directorate General Energy, 15 August Project number: POWNL16059
Zurück zum Zitat Posielek T (2018) An energy management approach for satellites. In: 69th international astronautical congress, Bremen, Germany, pp 1–5 Posielek T (2018) An energy management approach for satellites. In: 69th international astronautical congress, Bremen, Germany, pp 1–5
Zurück zum Zitat Kalair A, Abas N (2021) Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage J Wiley Online Publ 3(1). https://doi.org/10.1002/est2.135. http:// batteryuniversity.com/learn/article/lead_based_batteries Kalair A, Abas N (2021) Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage J Wiley Online Publ 3(1). https://​doi.​org/​10.​1002/​est2.​135. http:// batteryuniversity.com/learn/article/lead_based_batteries
Zurück zum Zitat Rose MF, Merryman SA, Owens WT (1995) Chemical double layer capacitor technology for space applications, In: 33rd Aerosp Sci Meet Exhib, Reno, USA Rose MF, Merryman SA, Owens WT (1995) Chemical double layer capacitor technology for space applications, In: 33rd Aerosp Sci Meet Exhib, Reno, USA
Zurück zum Zitat Merryman SA, Hall DK (1996) Chemical double-layer capacitor power source for electromechanical thrust vector control actuator. J Propul Power 12(1):89–94CrossRef Merryman SA, Hall DK (1996) Chemical double-layer capacitor power source for electromechanical thrust vector control actuator. J Propul Power 12(1):89–94CrossRef
Zurück zum Zitat Luo X, Wang J, Ma Z (2014) Overview of energy storage technologies and their application prospects in Smart Grid. Smart Grid 2:7–12 Luo X, Wang J, Ma Z (2014) Overview of energy storage technologies and their application prospects in Smart Grid. Smart Grid 2:7–12
Zurück zum Zitat Sameer H, Johannes L (2015) A review of large-scale electrical energy storage. Int. J. Energy Storage 39:1179–1195 Sameer H, Johannes L (2015) A review of large-scale electrical energy storage. Int. J. Energy Storage 39:1179–1195
Zurück zum Zitat Kousksou T, Bruel P, Jamil A, Rhafiki T, Zeraouli Y (2014) Energy storage: Applications and challenges. Sol Energy Mater Sol Cell 120:59–80CrossRef Kousksou T, Bruel P, Jamil A, Rhafiki T, Zeraouli Y (2014) Energy storage: Applications and challenges. Sol Energy Mater Sol Cell 120:59–80CrossRef
Zurück zum Zitat Mahlia TMI, Saktisahdan TJ, Jannifar A, Hasan MH, Matseelar HSC (2014) A review of available methods and development on energy storage; technology update. Renew Sustain Energy Rev 33:532–545CrossRef Mahlia TMI, Saktisahdan TJ, Jannifar A, Hasan MH, Matseelar HSC (2014) A review of available methods and development on energy storage; technology update. Renew Sustain Energy Rev 33:532–545CrossRef
Zurück zum Zitat Venkataramani G, Parankusam P, Ramalingam V, Wang J (2016) A review on compressed air energy storage—A pathway for smart grid and polygeneration. Renew Sustain Energy Rev 62:895–907CrossRef Venkataramani G, Parankusam P, Ramalingam V, Wang J (2016) A review on compressed air energy storage—A pathway for smart grid and polygeneration. Renew Sustain Energy Rev 62:895–907CrossRef
Zurück zum Zitat Luo X, Wang J, Dooner M, Clarke J (2015) Overview of current development on electrical energy storage technologies and application potential in power system operation. Appl Energy 137:511–536CrossRef Luo X, Wang J, Dooner M, Clarke J (2015) Overview of current development on electrical energy storage technologies and application potential in power system operation. Appl Energy 137:511–536CrossRef
Metadaten
Titel
Recent Advancement in Battery Energy Storage System for Launch Vehicle
verfasst von
Kiran H. Raut
Asha Shendge
Jagdish Chaudhari
Copyright-Jahr
2022
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-0979-5_35