Skip to main content

2010 | OriginalPaper | Buchkapitel

40. Mass and Heat Transport in BS and EFG Systems

verfasst von : Thomas F. George, Stefan Balint, Liliana Braescu

Erschienen in: Springer Handbook of Crystal Growth

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter several mathematical models describing processes which take place in the Bridgman–Stockbarger (BS) and edge-defined film-fed growth (EFG) systems are presented. Predictions are made concerning the impurity repartition in the crystal in the framework of each of the models. First, a short description of the real processes which are modeled is given, along with the equations, boundary conditions, and initial values defining the mathematical model. After that, numerical results obtained by computations in the framework of the model are provided, making a comparison between the computed results and those obtained in other models, and with the experimental data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
40.1.
Zurück zum Zitat J.A. Burton, R.C. Prim, W.P. Slichter: The distribution of solute on crystals grown from the melt, J. Chem. Phys. 21, 1987–1996 (1953)ADSCrossRef J.A. Burton, R.C. Prim, W.P. Slichter: The distribution of solute on crystals grown from the melt, J. Chem. Phys. 21, 1987–1996 (1953)ADSCrossRef
40.2.
Zurück zum Zitat C. Wagner: Theoretical analysis of diffusion of solutes during the solidification of alloys, J. Met. 6, 154–160 (1954) C. Wagner: Theoretical analysis of diffusion of solutes during the solidification of alloys, J. Met. 6, 154–160 (1954)
40.3.
Zurück zum Zitat K.M. Kim, A.F. Witt, M. Lichtensteiger, H.C. Gatos: Quantitative analysis of the thermo-hydrodynamic effects on crystal growth and segregation under destabilizing vertical thermal gradients: Ga-doped germanium, J. Electrochem. Soc. 125, 475–480 (1974)CrossRef K.M. Kim, A.F. Witt, M. Lichtensteiger, H.C. Gatos: Quantitative analysis of the thermo-hydrodynamic effects on crystal growth and segregation under destabilizing vertical thermal gradients: Ga-doped germanium, J. Electrochem. Soc. 125, 475–480 (1974)CrossRef
40.4.
Zurück zum Zitat J.J. Favier: Macrosegregation-I: Unified analysis during non-steady state. Solidification, Acta Metall. 29, 197–204 (1981)CrossRef J.J. Favier: Macrosegregation-I: Unified analysis during non-steady state. Solidification, Acta Metall. 29, 197–204 (1981)CrossRef
40.5.
Zurück zum Zitat J.J. Favier: Macrosegregation-II: A comparative study of theories, Acta Metall. 29, 205–214 (1981)CrossRef J.J. Favier: Macrosegregation-II: A comparative study of theories, Acta Metall. 29, 205–214 (1981)CrossRef
40.6.
Zurück zum Zitat D.E. Holmes, H.C. Gatos: Convective interference and "effective" diffusion-controlled segregation during directional solidification under stabilizing vertical thermal gradients; Ge, J. Electrochem. Soc. 128, 429–437 (1981)CrossRef D.E. Holmes, H.C. Gatos: Convective interference and "effective" diffusion-controlled segregation during directional solidification under stabilizing vertical thermal gradients; Ge, J. Electrochem. Soc. 128, 429–437 (1981)CrossRef
40.7.
Zurück zum Zitat C.J. Chang, R.A. Brown: Radial segregation induced by natural convection and melt/solid interface shape in vertical Bridgman growth, J. Cryst. Growth 63, 343–364 (1983)ADSCrossRef C.J. Chang, R.A. Brown: Radial segregation induced by natural convection and melt/solid interface shape in vertical Bridgman growth, J. Cryst. Growth 63, 343–364 (1983)ADSCrossRef
40.8.
Zurück zum Zitat W.A. Tiller, K.A. Jackson, J.W. Rutter, B. Chalmers: The redistribution of solute atoms during the solidification of metals, Acta Metall. 1, 428–437 (1953)CrossRef W.A. Tiller, K.A. Jackson, J.W. Rutter, B. Chalmers: The redistribution of solute atoms during the solidification of metals, Acta Metall. 1, 428–437 (1953)CrossRef
40.9.
Zurück zum Zitat P.R. Griffin, S. Motakef: Influence of non-steady gravity on natural convection during micro-gravity solidification of semiconductors. Part I. Time Scale Analysis, J. Appl. Microgravity II 3, 121–127 (1989) P.R. Griffin, S. Motakef: Influence of non-steady gravity on natural convection during micro-gravity solidification of semiconductors. Part I. Time Scale Analysis, J. Appl. Microgravity II 3, 121–127 (1989)
40.10.
Zurück zum Zitat P.R. Griffin, S. Motakef: Influence of non-steady gravity on natural convection during micro-gravity solidification of semiconductors. Part II. Implications for crystal growth experiments, J. Appl. Microgravity II 3, 128–132 (1989) P.R. Griffin, S. Motakef: Influence of non-steady gravity on natural convection during micro-gravity solidification of semiconductors. Part II. Implications for crystal growth experiments, J. Appl. Microgravity II 3, 128–132 (1989)
40.11.
Zurück zum Zitat A.F. Witt, H.C. Gatos, M. Lichtensteiger, M.C. Lavine, C.J. Herman: Crystal growth and steady-state segregation under zero gravity, J. Electrochem. Soc. 122, 276–283 (1975)ADSCrossRef A.F. Witt, H.C. Gatos, M. Lichtensteiger, M.C. Lavine, C.J. Herman: Crystal growth and steady-state segregation under zero gravity, J. Electrochem. Soc. 122, 276–283 (1975)ADSCrossRef
40.12.
Zurück zum Zitat P.M. Adornato, R.A. Brown: Convection and segregation in directional solidification of dilute and non-dilute binary alloys, J. Cryst. Growth 80, 155–190 (1987)ADSCrossRef P.M. Adornato, R.A. Brown: Convection and segregation in directional solidification of dilute and non-dilute binary alloys, J. Cryst. Growth 80, 155–190 (1987)ADSCrossRef
40.13.
Zurück zum Zitat P.A. Clark, W.R. Wilcox: Influence of gravity on thermocapillary convection in floating zone melting of silicon, J. Cryst. Growth 50, 461–469 (1980)ADSCrossRef P.A. Clark, W.R. Wilcox: Influence of gravity on thermocapillary convection in floating zone melting of silicon, J. Cryst. Growth 50, 461–469 (1980)ADSCrossRef
40.14.
Zurück zum Zitat S.A.I. Nikitin, V. Polezhayev, A.I. Fedyushkin: Mathematical simulation of impurity distribution in crystals prepared under microgravity conditions, J. Cryst. Growth 52, 471–477 (1981)ADSCrossRef S.A.I. Nikitin, V. Polezhayev, A.I. Fedyushkin: Mathematical simulation of impurity distribution in crystals prepared under microgravity conditions, J. Cryst. Growth 52, 471–477 (1981)ADSCrossRef
40.15.
Zurück zum Zitat S.R. Coriell, R.F. Sekerka: Lateral solute segregation during unidirectional solidification of a binary alloy with a curved solid-liquid interface, J. Cryst. Growth 46, 479–482 (1979)ADSCrossRef S.R. Coriell, R.F. Sekerka: Lateral solute segregation during unidirectional solidification of a binary alloy with a curved solid-liquid interface, J. Cryst. Growth 46, 479–482 (1979)ADSCrossRef
40.16.
Zurück zum Zitat S.R. Coriell, R.F. Boisvert, R.G. Rehm, R.F. Sekerka: Lateral solute segregation during unidirectional solidification of a binary alloy with a curved solid-liquid interface II. Large departures from planarity, J. Cryst. Growth 54, 167–175 (1981)ADSCrossRef S.R. Coriell, R.F. Boisvert, R.G. Rehm, R.F. Sekerka: Lateral solute segregation during unidirectional solidification of a binary alloy with a curved solid-liquid interface II. Large departures from planarity, J. Cryst. Growth 54, 167–175 (1981)ADSCrossRef
40.17.
Zurück zum Zitat H.M. Ettouney, R.A. Brown: Effect of heat transfer on melt/solid interface shape and solute segregation in edge-defined film-fed growth: Finite element analysis, J. Cryst. Growth 58, 313–329 (1982)ADSCrossRef H.M. Ettouney, R.A. Brown: Effect of heat transfer on melt/solid interface shape and solute segregation in edge-defined film-fed growth: Finite element analysis, J. Cryst. Growth 58, 313–329 (1982)ADSCrossRef
40.18.
Zurück zum Zitat J.P. Kalejs, L.Y. Chin, F.M. Carlson: Interface shape studies for silicon ribbon growth by the EFG technique I. Transport phenomena modeling, J. Cryst. Growth 61, 473–484 (1983)ADSCrossRef J.P. Kalejs, L.Y. Chin, F.M. Carlson: Interface shape studies for silicon ribbon growth by the EFG technique I. Transport phenomena modeling, J. Cryst. Growth 61, 473–484 (1983)ADSCrossRef
40.19.
Zurück zum Zitat C.E. Chang, W.R. Wilcox: Control of interface shape in the vertical Bridgman-Stockbarger technique, J. Cryst. Growth 21, 135–140 (1974)ADSCrossRef C.E. Chang, W.R. Wilcox: Control of interface shape in the vertical Bridgman-Stockbarger technique, J. Cryst. Growth 21, 135–140 (1974)ADSCrossRef
40.20.
Zurück zum Zitat T.W. Fu, W.R. Wilcox: Influence of insulation on stability of interface shape and position in the vertical Bridgman-Stockbarger technique, J. Cryst. Growth 48, 416–424 (1980)ADSCrossRef T.W. Fu, W.R. Wilcox: Influence of insulation on stability of interface shape and position in the vertical Bridgman-Stockbarger technique, J. Cryst. Growth 48, 416–424 (1980)ADSCrossRef
40.21.
Zurück zum Zitat T.W. Clyne: Heat flow in controlled directional solidification of metals I. Experimental investigation, J. Cryst. Growth 50, 684–690 (1980)ADSCrossRef T.W. Clyne: Heat flow in controlled directional solidification of metals I. Experimental investigation, J. Cryst. Growth 50, 684–690 (1980)ADSCrossRef
40.22.
Zurück zum Zitat T.W. Clyne: Heat flow in controlled directional solidification of metals II. Mathematical model, J. Cryst. Growth 50, 691–700 (1980)ADSCrossRef T.W. Clyne: Heat flow in controlled directional solidification of metals II. Mathematical model, J. Cryst. Growth 50, 691–700 (1980)ADSCrossRef
40.23.
Zurück zum Zitat P.C. Sukanek: Deviation of freezing rate from translation rate in the Bridgman-Stockbarger technique I. Very low translation rates, J. Cryst. Growth 58, 208–218 (1982)ADSCrossRef P.C. Sukanek: Deviation of freezing rate from translation rate in the Bridgman-Stockbarger technique I. Very low translation rates, J. Cryst. Growth 58, 208–218 (1982)ADSCrossRef
40.24.
Zurück zum Zitat P.C. Sukanek: Deviation of freezing rate from translation rate in the Bridgman-Stockbarger technique II. Moderate translation rates, J. Cryst. Growth 58, 219–228 (1982)ADSCrossRef P.C. Sukanek: Deviation of freezing rate from translation rate in the Bridgman-Stockbarger technique II. Moderate translation rates, J. Cryst. Growth 58, 219–228 (1982)ADSCrossRef
40.25.
Zurück zum Zitat T. Jasinski, W.M. Rohsenow, A.F. Witt: Heat transfer analysis of the Bridgman-Stockbarger configuration for crystal growth I. Analytical treatment of the axial temperature profile, J. Cryst. Growth 61, 339–354 (1983)ADSCrossRef T. Jasinski, W.M. Rohsenow, A.F. Witt: Heat transfer analysis of the Bridgman-Stockbarger configuration for crystal growth I. Analytical treatment of the axial temperature profile, J. Cryst. Growth 61, 339–354 (1983)ADSCrossRef
40.26.
Zurück zum Zitat L.R. Morris, W.C. Winegard: The development of cells during the solidification dilute Pb-Sb alloy, J. Cryst. Growth 5, 361–375 (1969)ADSCrossRef L.R. Morris, W.C. Winegard: The development of cells during the solidification dilute Pb-Sb alloy, J. Cryst. Growth 5, 361–375 (1969)ADSCrossRef
40.27.
Zurück zum Zitat A.F. Witt, H.C. Gatos, M. Lichtensteiger, C.J. Herman: Crystal growth and segregation under zero gravity, J. Electrochem. Soc. 125, 1832–1840 (1978)CrossRef A.F. Witt, H.C. Gatos, M. Lichtensteiger, C.J. Herman: Crystal growth and segregation under zero gravity, J. Electrochem. Soc. 125, 1832–1840 (1978)CrossRef
40.28.
Zurück zum Zitat A.M. Balint, D.G. Baltean, T. Levy, M. Mihailovici, A. Neculae, S. Balint: The dopant fields in uniform-diffusion-layer, global-thermal-convection and precrystallization-zone models, Mater. Sci. Semicond. Process. 3, 115–121 (2000)CrossRef A.M. Balint, D.G. Baltean, T. Levy, M. Mihailovici, A. Neculae, S. Balint: The dopant fields in uniform-diffusion-layer, global-thermal-convection and precrystallization-zone models, Mater. Sci. Semicond. Process. 3, 115–121 (2000)CrossRef
40.29.
Zurück zum Zitat D.T.J. Hurle, E. Jakeman, C.P. Johnson: Convective temperature oscillations in molten gallium, J. Fluid Mech. 64, 565–576 (1974)ADSCrossRef D.T.J. Hurle, E. Jakeman, C.P. Johnson: Convective temperature oscillations in molten gallium, J. Fluid Mech. 64, 565–576 (1974)ADSCrossRef
40.30.
Zurück zum Zitat C.A. Wang, A.F. Witt: Annual Report Material Processing Center (Massachusetts Institute of Technology, Massachusetts 1984) C.A. Wang, A.F. Witt: Annual Report Material Processing Center (Massachusetts Institute of Technology, Massachusetts 1984)
40.31.
Zurück zum Zitat M.M. Mihailovici, A.M. Balint, S. Balint: The axial and radial segregation due to the thermo-convection, the decrease of the melt in the ampoule and the effect of the precrystallization-zone in the semiconductor crystals grown in a Bridgman-Stockbarger system in a low gravity environment, J. Cryst. Growth 237–239, 1752–1756 (2002)CrossRef M.M. Mihailovici, A.M. Balint, S. Balint: The axial and radial segregation due to the thermo-convection, the decrease of the melt in the ampoule and the effect of the precrystallization-zone in the semiconductor crystals grown in a Bridgman-Stockbarger system in a low gravity environment, J. Cryst. Growth 237–239, 1752–1756 (2002)CrossRef
40.32.
Zurück zum Zitat M.M. Mihailovici, A.M. Balint, S. Balint: On the controllability of the level of the dopant concentration and of the compositional uniformity of a doped crystal, grown in a low gravity environment by Bridgman-Stockbarger method, Int. J. Theor. Physics, Group Theory Nonlin. Opt. 10, 425–436 (2003) M.M. Mihailovici, A.M. Balint, S. Balint: On the controllability of the level of the dopant concentration and of the compositional uniformity of a doped crystal, grown in a low gravity environment by Bridgman-Stockbarger method, Int. J. Theor. Physics, Group Theory Nonlin. Opt. 10, 425–436 (2003)
40.33.
Zurück zum Zitat A.M. Balint, M.M. Mihailovici, D.G. Baltean, S. Balint: A modified Chang-Brown model for the determination of the dopant distribution in a Bridgman-Stockbarger semiconductor crystal growth system, J. Cryst. Growth 230, 195–201 (2001)ADSCrossRef A.M. Balint, M.M. Mihailovici, D.G. Baltean, S. Balint: A modified Chang-Brown model for the determination of the dopant distribution in a Bridgman-Stockbarger semiconductor crystal growth system, J. Cryst. Growth 230, 195–201 (2001)ADSCrossRef
40.34.
Zurück zum Zitat A.M. Balint, M.M. Mihailovici, D.G. Baltean, S. Balint: Interface structure in the growth of semiconductor crystals using the Bridgman-Stockbarger method, Thin Solid Films 380, 108–110 (2000)ADSCrossRef A.M. Balint, M.M. Mihailovici, D.G. Baltean, S. Balint: Interface structure in the growth of semiconductor crystals using the Bridgman-Stockbarger method, Thin Solid Films 380, 108–110 (2000)ADSCrossRef
40.35.
Zurück zum Zitat M.M. Mihailovici, A.M. Balint, S. Balint: The dopant distribution computed in the modified Chang-Brown model using quasi-steady state approximation, Comput. Mater. Sci. 24, 262–267 (2002)CrossRef M.M. Mihailovici, A.M. Balint, S. Balint: The dopant distribution computed in the modified Chang-Brown model using quasi-steady state approximation, Comput. Mater. Sci. 24, 262–267 (2002)CrossRef
40.36.
Zurück zum Zitat D.G. Baltean, T. Levy, S. Balint: Transport de masse par convection et diffusion dans un milieu multiporeux, C. r. Acad. Sci. Paris, Ser. IIB 326, 821–826 (1998)ADSMATH D.G. Baltean, T. Levy, S. Balint: Transport de masse par convection et diffusion dans un milieu multiporeux, C. r. Acad. Sci. Paris, Ser. IIB 326, 821–826 (1998)ADSMATH
40.37.
Zurück zum Zitat K. Moutsopoulos, S. Bories: Dispersion en milieux poreux hétérogènes, C. R. Acad. Sci. Paris, Ser. IIB 316, 1667–1672 (1993), in FrenchMATH K. Moutsopoulos, S. Bories: Dispersion en milieux poreux hétérogènes, C. R. Acad. Sci. Paris, Ser. IIB 316, 1667–1672 (1993), in FrenchMATH
40.38.
Zurück zum Zitat J.C. Maxwell: Electricity and Magnetism (Clarendon, Oxford 1873)MATH J.C. Maxwell: Electricity and Magnetism (Clarendon, Oxford 1873)MATH
40.39.
Zurück zum Zitat V.I. Avetisov, Mendeleev Institute Moscow (personal communication) V.I. Avetisov, Mendeleev Institute Moscow (personal communication)
40.40.
Zurück zum Zitat M.M. Mihailovici, A.M. Balint, S. Balint: Way to improve the compositional uniformity of doped crystals grown by Bridgman-Stockbarger method in a low gravity environment, Int. J. Theor. Phys. Group Theory Nonlinear Opt. 11, 109–119 (2004)MATH M.M. Mihailovici, A.M. Balint, S. Balint: Way to improve the compositional uniformity of doped crystals grown by Bridgman-Stockbarger method in a low gravity environment, Int. J. Theor. Phys. Group Theory Nonlinear Opt. 11, 109–119 (2004)MATH
40.41.
Zurück zum Zitat D.J. Larson, J. Bethin, B.S. Dressler: Shuttle Mission 51-G, Experiment MRS77F055, Flight Sample Characterization (Grumman Corporate Research Center, Bethpage 1988), NASA Report RE-753 D.J. Larson, J. Bethin, B.S. Dressler: Shuttle Mission 51-G, Experiment MRS77F055, Flight Sample Characterization (Grumman Corporate Research Center, Bethpage 1988), NASA Report RE-753
40.42.
Zurück zum Zitat P.S. Dutta, A.G. Ostrogorsky: Segregation of Ga in Ge and InSb in GaSb, J. Cryst. Growth 217, 360–365 (2000)ADSCrossRef P.S. Dutta, A.G. Ostrogorsky: Segregation of Ga in Ge and InSb in GaSb, J. Cryst. Growth 217, 360–365 (2000)ADSCrossRef
40.43.
Zurück zum Zitat L.L. Zheng, D.J. Larson Jr., H. Zhang: Role of thermotransport (Sorret effect) in macrosegregation during eutectic/off-eutectic directional solidification, J. Cryst. Growth 191, 243–251 (1998)ADSCrossRef L.L. Zheng, D.J. Larson Jr., H. Zhang: Role of thermotransport (Sorret effect) in macrosegregation during eutectic/off-eutectic directional solidification, J. Cryst. Growth 191, 243–251 (1998)ADSCrossRef
40.44.
Zurück zum Zitat L. Braescu: The dependence of the dopant distribution on the pulling rate and on the capillary channel radius in the case of a Nd:YVO4 cylindrical bar grown from the melt by the EFG method, Mater. Sci. Eng. B 146, 41–44 (2008)CrossRef L. Braescu: The dependence of the dopant distribution on the pulling rate and on the capillary channel radius in the case of a Nd:YVO4 cylindrical bar grown from the melt by the EFG method, Mater. Sci. Eng. B 146, 41–44 (2008)CrossRef
40.45.
Zurück zum Zitat E. Tulcan-Paulescu, A.M. Balint, S. Balint: The effect of the initial dopant distribution in the melt on the axial compositional uniformity of a thin doped crystal grown in strictly zero-gravity environment by Bridgman-Stockbarger method, J. Cryst. Growth 247, 313–319 (2003)ADSCrossRefMATH E. Tulcan-Paulescu, A.M. Balint, S. Balint: The effect of the initial dopant distribution in the melt on the axial compositional uniformity of a thin doped crystal grown in strictly zero-gravity environment by Bridgman-Stockbarger method, J. Cryst. Growth 247, 313–319 (2003)ADSCrossRefMATH
40.46.
40.47.
Zurück zum Zitat H.E. LaBelle Jr., A.I. Mlavsky, B. Chalmers: Growth of controlled profile crystals from the melt: Part I – Sapphire filaments, Mater. Res. Bull 6, 571–579 (1971)CrossRef H.E. LaBelle Jr., A.I. Mlavsky, B. Chalmers: Growth of controlled profile crystals from the melt: Part I – Sapphire filaments, Mater. Res. Bull 6, 571–579 (1971)CrossRef
40.48.
Zurück zum Zitat H.E. LaBelle Jr., A.I. Mlavsky, B. Chalmers: Growth of controlled profile crystals from the melt: Part II – Edge-defined, film-fed growth (EFG), Mater. Res. Bull. 6, 581 (1971)CrossRef H.E. LaBelle Jr., A.I. Mlavsky, B. Chalmers: Growth of controlled profile crystals from the melt: Part II – Edge-defined, film-fed growth (EFG), Mater. Res. Bull. 6, 581 (1971)CrossRef
40.49.
Zurück zum Zitat B. Chalmers, H.E. LaBelle Jr., A.I. Mlavsky: Edge-defined, film-fed crystal growth, J. Cryst. Growth 13/14, 84–87 (1972)ADSCrossRef B. Chalmers, H.E. LaBelle Jr., A.I. Mlavsky: Edge-defined, film-fed crystal growth, J. Cryst. Growth 13/14, 84–87 (1972)ADSCrossRef
40.50.
Zurück zum Zitat J.P. Kalejs: Impurity redistribution in EFG, J. Cryst. Growth 44, 329–344 (1978)ADSCrossRef J.P. Kalejs: Impurity redistribution in EFG, J. Cryst. Growth 44, 329–344 (1978)ADSCrossRef
40.51.
Zurück zum Zitat J.P. Kalejs, G.M. Freedman, F.V. Wald: Aluminium redistribution in EFG silicon ribbon, J. Cryst. Growth 48, 74–84 (1980)ADSCrossRef J.P. Kalejs, G.M. Freedman, F.V. Wald: Aluminium redistribution in EFG silicon ribbon, J. Cryst. Growth 48, 74–84 (1980)ADSCrossRef
40.52.
Zurück zum Zitat B. Chalmers: Transient solute effects in shaped crystal growth of silicon, J. Cryst. Growth 82, 70–73 (1987)ADSCrossRef B. Chalmers: Transient solute effects in shaped crystal growth of silicon, J. Cryst. Growth 82, 70–73 (1987)ADSCrossRef
40.53.
Zurück zum Zitat J. Cao, M. Prince, J.P. Kalejs: Impurity transients in multiple crystal growth from a single crucible for EFG silicon octagons, J. Cryst. Growth 174, 170–175 (1997)ADSCrossRef J. Cao, M. Prince, J.P. Kalejs: Impurity transients in multiple crystal growth from a single crucible for EFG silicon octagons, J. Cryst. Growth 174, 170–175 (1997)ADSCrossRef
40.54.
Zurück zum Zitat J.P. Kalejs: Interface shape studies for silicon ribbon growth by the EFG technique II. Effect of die asymmetry, J. Cryst. Growth 61, 485–493 (1983)ADSCrossRef J.P. Kalejs: Interface shape studies for silicon ribbon growth by the EFG technique II. Effect of die asymmetry, J. Cryst. Growth 61, 485–493 (1983)ADSCrossRef
40.55.
Zurück zum Zitat J.P. Kalejs: Modeling contribution in commercialization of silicon ribbon growth from the melt, J. Cryst. Growth 230, 10–21 (2001)ADSCrossRef J.P. Kalejs: Modeling contribution in commercialization of silicon ribbon growth from the melt, J. Cryst. Growth 230, 10–21 (2001)ADSCrossRef
40.56.
Zurück zum Zitat O. Bunoiu, I. Nicoara, J.L. Santailler, T. Duffar: Fluid flow and solute segregation in EFG crystal growth process, J. Cryst. Growth 275, 799–805 (2005)ADSCrossRef O. Bunoiu, I. Nicoara, J.L. Santailler, T. Duffar: Fluid flow and solute segregation in EFG crystal growth process, J. Cryst. Growth 275, 799–805 (2005)ADSCrossRef
40.57.
Zurück zum Zitat L. Braescu, S. Balint, L. Tanasie: Numerical studies concerning the dependence of the impurity distribution on the pulling rate and on the radius of the capillary channel in the case of a thin rod grown from the melt by edge-defined film-fed growth (EFG) method, J. Cryst. Growth 291, 52–59 (2006)ADSCrossRef L. Braescu, S. Balint, L. Tanasie: Numerical studies concerning the dependence of the impurity distribution on the pulling rate and on the radius of the capillary channel in the case of a thin rod grown from the melt by edge-defined film-fed growth (EFG) method, J. Cryst. Growth 291, 52–59 (2006)ADSCrossRef
40.58.
Zurück zum Zitat L. Braescu, T.F. George, S. Balint: Evaluation and control of the dopant distribution in a Nd:LiNbO3 fiber grown from the melt by the edge-defined film-fed growth (EFG) method, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications I (Optics and Photonics 2007), SPIE Proc. 6698, 669803:1–8 (2007)CrossRef L. Braescu, T.F. George, S. Balint: Evaluation and control of the dopant distribution in a Nd:LiNbO3 fiber grown from the melt by the edge-defined film-fed growth (EFG) method, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications I (Optics and Photonics 2007), SPIE Proc. 6698, 669803:1–8 (2007)CrossRef
40.59.
Zurück zum Zitat L. Braescu, T. Duffar: Effect of buoyancy and Marangoni forces on the dopant distribution in the case of a single crystal fiber grown from the melt by the edge-defined film-fed growth (EFG) method, J. Cryst. Growth 310, 484–489 (2008)ADSCrossRef L. Braescu, T. Duffar: Effect of buoyancy and Marangoni forces on the dopant distribution in the case of a single crystal fiber grown from the melt by the edge-defined film-fed growth (EFG) method, J. Cryst. Growth 310, 484–489 (2008)ADSCrossRef
40.60.
Zurück zum Zitat T.F. George, L. Braescu: Sapphire fibers grown from the melt by the EFG technique: Dependence of the impurity distribution on temperature and surface tension gradients, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications II (Optics and Photonics 2008), SPIE Proc. 7056, 705603–1–705603–10 (2008)CrossRef T.F. George, L. Braescu: Sapphire fibers grown from the melt by the EFG technique: Dependence of the impurity distribution on temperature and surface tension gradients, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications II (Optics and Photonics 2008), SPIE Proc. 7056, 705603–1–705603–10 (2008)CrossRef
40.61.
Zurück zum Zitat L. Braescu, T.F. George: Arbitrary Lagrangian-Eulerian method for coupled Navier-Stokes and convection-diffusion equations with moving boundaries, Proc. 12nd WSEAS Int. Conf. Appl. Math. – Mathʼ07 (2007) pp.33–36 L. Braescu, T.F. George: Arbitrary Lagrangian-Eulerian method for coupled Navier-Stokes and convection-diffusion equations with moving boundaries, Proc. 12nd WSEAS Int. Conf. Appl. Math. – Mathʼ07 (2007) pp.33–36
40.62.
Zurück zum Zitat F. Duarte, R. Gormaz, S. Natesan: Arbitrary Lagrangian-Eulerian method for Naver-Stokes equations with moving boundaries, Comput. Methods Appl. Mech. Eng. 193, 4819–4836 (2004)ADSMathSciNetCrossRefMATH F. Duarte, R. Gormaz, S. Natesan: Arbitrary Lagrangian-Eulerian method for Naver-Stokes equations with moving boundaries, Comput. Methods Appl. Mech. Eng. 193, 4819–4836 (2004)ADSMathSciNetCrossRefMATH
40.63.
Zurück zum Zitat M. Fernandez, M. Moubachir: Sensitivity analysis for an incompressible aeroelastic system, Math. Models Methods Appl. Sci. 12, 1109–1130 (2002)MathSciNetCrossRefMATH M. Fernandez, M. Moubachir: Sensitivity analysis for an incompressible aeroelastic system, Math. Models Methods Appl. Sci. 12, 1109–1130 (2002)MathSciNetCrossRefMATH
Metadaten
Titel
Mass and Heat Transport in BS and EFG Systems
verfasst von
Thomas F. George
Stefan Balint
Liliana Braescu
Copyright-Jahr
2010
DOI
https://doi.org/10.1007/978-3-540-74761-1_40

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.