Skip to main content
Erschienen in: Archive of Applied Mechanics 3/2023

09.11.2022 | Original

Mathematical modeling of functionally graded nanobeams via fractional heat Conduction model with non-singular kernels

verfasst von: Ahmed E. Abouelregal

Erschienen in: Archive of Applied Mechanics | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Functionally gradient materials (FGM) in nanobeams are interesting issues in the theory of elasticity and thermoelasticity regarding thermal and mechanical stress. These advanced heat-resistant materials are used as structural components in contemporary technology. The thermoelastic interactions in functionally graded nanobeams (FGN) have been studied in this article. The basic equations that control the introduced model have been established based on the Euler–Bernoulli beam concept, Eringen’s theory, and the two phase-lag fractional heat conduction model. The heat equation has been modeled and fractionalized into a new formula that includes nonsingular and nonlocal differential operators. The physical properties of the nanobeam vary in graded according to its thickness. The FGN nanobeam is subject to a time-dependent and periodically varying heat flow. The differential equations are analyzed analytically in the Laplace transform field. The responses in the nanobeam are graphically depicted for various fractional-order values, the influence of the nonlocal parameter and the periodic frequency of the heat flux. The results show that the gap between classical and nonlocal theories widens with increasing nonlocal parameters and decreasing nanobeam length.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Uchida, Y., Yamada, J., Kathuria, Y.P., Hayashi, N., Watanabe, S., Higa, S., Uchida, Y.: Excimer laser processing of functionally graded materials. Funct. Graded Mater. 1996, 337–342 (1997) Uchida, Y., Yamada, J., Kathuria, Y.P., Hayashi, N., Watanabe, S., Higa, S., Uchida, Y.: Excimer laser processing of functionally graded materials. Funct. Graded Mater. 1996, 337–342 (1997)
2.
Zurück zum Zitat Wang, H., Qin, Q.-H.: Meshless approach for thermo-mechanical analysis of functionally graded materials. Eng. Anal. Boundary Elem. 32(9), 704–712 (2008)MATHCrossRef Wang, H., Qin, Q.-H.: Meshless approach for thermo-mechanical analysis of functionally graded materials. Eng. Anal. Boundary Elem. 32(9), 704–712 (2008)MATHCrossRef
3.
Zurück zum Zitat Nejad, M.Z., Rahimi, G.H.: Deformations and stresses in rotating FGM pressurized thick hollow cylinder under thermal load. Sci. Res. Essay 4(3), 131–140 (2009) Nejad, M.Z., Rahimi, G.H.: Deformations and stresses in rotating FGM pressurized thick hollow cylinder under thermal load. Sci. Res. Essay 4(3), 131–140 (2009)
4.
Zurück zum Zitat Eltaher, M.A., Emam, S.A., Mahmoud, F.F.: Free vibration analysis of functionally graded size-dependent nanobeams. Appl. Math. Comput. 218(14), 7406–7420 (2012)MathSciNetMATH Eltaher, M.A., Emam, S.A., Mahmoud, F.F.: Free vibration analysis of functionally graded size-dependent nanobeams. Appl. Math. Comput. 218(14), 7406–7420 (2012)MathSciNetMATH
5.
Zurück zum Zitat Sayyad, A.S., Ghugal, Y.M.: Bending, buckling and free vibration analysis of size-dependent nanoscale FG beams using refined models and Eringen’s nonlocal theory. Int. J. Appl. Mech. 12(1), 2050007 (2020)CrossRef Sayyad, A.S., Ghugal, Y.M.: Bending, buckling and free vibration analysis of size-dependent nanoscale FG beams using refined models and Eringen’s nonlocal theory. Int. J. Appl. Mech. 12(1), 2050007 (2020)CrossRef
6.
Zurück zum Zitat Eringen, A.C.: on differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)CrossRef Eringen, A.C.: on differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)CrossRef
7.
Zurück zum Zitat Ansari, R., Sahmani, S.: Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories. Int. J. Eng. Sci. 49, 1244–1255 (2011)CrossRef Ansari, R., Sahmani, S.: Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories. Int. J. Eng. Sci. 49, 1244–1255 (2011)CrossRef
9.
Zurück zum Zitat Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 10, 425–435 (1972)MATHCrossRef Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci 10, 425–435 (1972)MATHCrossRef
10.
Zurück zum Zitat Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int J Solids Struct 4, 109–124 (1968)MATHCrossRef Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int J Solids Struct 4, 109–124 (1968)MATHCrossRef
11.
Zurück zum Zitat Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct. 48, 1962–1990 (2011)CrossRef Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct. 48, 1962–1990 (2011)CrossRef
12.
Zurück zum Zitat Lam, D.C.C., Yang, F., Chong, A.C.M., et al.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids. 51, 1477–1508 (2003)MATHCrossRef Lam, D.C.C., Yang, F., Chong, A.C.M., et al.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids. 51, 1477–1508 (2003)MATHCrossRef
13.
Zurück zum Zitat Misra, A., Poorsolhjouy, P.: Granular micromechanics based micromorphic model predicts frequency band gaps. Contin Mech Thermodyn 28, 215–234 (2016)MathSciNetMATHCrossRef Misra, A., Poorsolhjouy, P.: Granular micromechanics based micromorphic model predicts frequency band gaps. Contin Mech Thermodyn 28, 215–234 (2016)MathSciNetMATHCrossRef
14.
Zurück zum Zitat Grekova, E.F., Porubov, A.V., dell’Isola, F.: Reduced linear constrained elastic and viscoelastic homogeneous cosserat media as acoustic metamaterials. Symmetry (Basel) 12, 521 (2020)CrossRef Grekova, E.F., Porubov, A.V., dell’Isola, F.: Reduced linear constrained elastic and viscoelastic homogeneous cosserat media as acoustic metamaterials. Symmetry (Basel) 12, 521 (2020)CrossRef
17.
Zurück zum Zitat Alavi, S.E., Sadighi, M., Pazhooh, M.D., Ganghoffer, J.-F.: Development of size-dependent consistent couple stress theory of Timoshenko beams. Appl. Math. Model. 79, 685–712 (2020)MathSciNetMATHCrossRef Alavi, S.E., Sadighi, M., Pazhooh, M.D., Ganghoffer, J.-F.: Development of size-dependent consistent couple stress theory of Timoshenko beams. Appl. Math. Model. 79, 685–712 (2020)MathSciNetMATHCrossRef
19.
Zurück zum Zitat Evgrafov, A., Bellido, J.C.: From nonlocal Eringen’s model to fractional elasticity. Math. Mech. Solids 24, 1935–1953 (2019)MathSciNetMATHCrossRef Evgrafov, A., Bellido, J.C.: From nonlocal Eringen’s model to fractional elasticity. Math. Mech. Solids 24, 1935–1953 (2019)MathSciNetMATHCrossRef
20.
Zurück zum Zitat Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)CrossRef Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)CrossRef
21.
Zurück zum Zitat Xu, M.: Free transverse vibrations of nano-to-micronscale beams. Proceed. Royal Soc. 462, 2977–2995 (2006)MATH Xu, M.: Free transverse vibrations of nano-to-micronscale beams. Proceed. Royal Soc. 462, 2977–2995 (2006)MATH
22.
Zurück zum Zitat Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)MATHCrossRef Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)MATHCrossRef
23.
Zurück zum Zitat Abouelregal, A.E., Marin, M.: The response of nanobeams with temperature-dependent properties using state-space method via modified couple stress theory. Symmetry 12(8), 1276 (2020)CrossRef Abouelregal, A.E., Marin, M.: The response of nanobeams with temperature-dependent properties using state-space method via modified couple stress theory. Symmetry 12(8), 1276 (2020)CrossRef
24.
Zurück zum Zitat Nasr, M.E., Abouelregal, A.E., Soleiman, A., Khalil, K.M.: Thermoelastic vibrations of nonlocal nanobeams resting on a Pasternak foundation via DPL model. J. Appl. Comput. Mech. 7(1), 34–44 (2021) Nasr, M.E., Abouelregal, A.E., Soleiman, A., Khalil, K.M.: Thermoelastic vibrations of nonlocal nanobeams resting on a Pasternak foundation via DPL model. J. Appl. Comput. Mech. 7(1), 34–44 (2021)
25.
Zurück zum Zitat Abouelregal, A.E., Ahmad, H., Nofal, T.A., Abu-Zinadah, H.: Thermo-viscoelastic fractional model of rotating nanobeams with variable thermal conductivity due to mechanical and thermal loads. Mod. Phys. Lett. B 35(18), 2150297 (2021)MathSciNetCrossRef Abouelregal, A.E., Ahmad, H., Nofal, T.A., Abu-Zinadah, H.: Thermo-viscoelastic fractional model of rotating nanobeams with variable thermal conductivity due to mechanical and thermal loads. Mod. Phys. Lett. B 35(18), 2150297 (2021)MathSciNetCrossRef
26.
Zurück zum Zitat Abouelregal, A.E., Ahmad, H., Gepreeld, K.A., Thounthong, P.: Modelling of vibrations of rotating nanoscale beams surrounded by a magnetic field and subjected to a harmonic thermal field using a state-space approach. Eur. Phys. J. Plus. 136, 268 (2021)CrossRef Abouelregal, A.E., Ahmad, H., Gepreeld, K.A., Thounthong, P.: Modelling of vibrations of rotating nanoscale beams surrounded by a magnetic field and subjected to a harmonic thermal field using a state-space approach. Eur. Phys. J. Plus. 136, 268 (2021)CrossRef
27.
Zurück zum Zitat Civalek, Ö., Demir, Ç., Akgöz, B.: Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model. Math. Computat. Appl. 15(2), 289–298 (2010)MathSciNetMATH Civalek, Ö., Demir, Ç., Akgöz, B.: Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model. Math. Computat. Appl. 15(2), 289–298 (2010)MathSciNetMATH
28.
Zurück zum Zitat Kilbas, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications Gordon and Breach Science Publishers. Gordon and breach science publishers, Switzerland, USA (1993) Kilbas, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications Gordon and Breach Science Publishers. Gordon and breach science publishers, Switzerland, USA (1993)
29.
Zurück zum Zitat Khader, M.M., Saad, K.M.: A numerical approach for solving the problem of biological invasion (fractional Fisher equation) using Chebyshev spectral collocation method. Chaos Soliton. Fract. 110, 169–177 (2018)MATHCrossRef Khader, M.M., Saad, K.M.: A numerical approach for solving the problem of biological invasion (fractional Fisher equation) using Chebyshev spectral collocation method. Chaos Soliton. Fract. 110, 169–177 (2018)MATHCrossRef
30.
Zurück zum Zitat Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Redding (2006) Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Redding (2006)
31.
Zurück zum Zitat Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Yverdon (1993)MATH Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Yverdon (1993)MATH
32.
Zurück zum Zitat Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 1–13 (2015) Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 1–13 (2015)
33.
Zurück zum Zitat Atangana, A., Baleanu, D.: New fractional derivative with nonlocal and nonsingular kernel. Therm. Sci. 20, 757–763 (2016)CrossRef Atangana, A., Baleanu, D.: New fractional derivative with nonlocal and nonsingular kernel. Therm. Sci. 20, 757–763 (2016)CrossRef
34.
Zurück zum Zitat Saad, K.M.: Comparing the caputo, caputo-fabrizio and atangana-baleanu derivative with fractional order: fractional cubic isothermal auto-catalytic chemical system. Eur. Phys. J. Plus 133(3), 1–12 (2018)CrossRef Saad, K.M.: Comparing the caputo, caputo-fabrizio and atangana-baleanu derivative with fractional order: fractional cubic isothermal auto-catalytic chemical system. Eur. Phys. J. Plus 133(3), 1–12 (2018)CrossRef
35.
Zurück zum Zitat Khan, M.A.: The dynamics of a new chaotic system through the caputo-fabrizio and atanagan-baleanu fractional operators. Adv. Mech. Eng. 11(7), 1–12 (2019)CrossRef Khan, M.A.: The dynamics of a new chaotic system through the caputo-fabrizio and atanagan-baleanu fractional operators. Adv. Mech. Eng. 11(7), 1–12 (2019)CrossRef
36.
Zurück zum Zitat Khan, M.A., Gómez-Aguilar, J.F.: Tuberculosis model with relapse via fractional conformable derivative with power law mathematical methods in the applied sciences. Math. Method Appl. Sci. 42(18), 7113–7125 (2019)MATHCrossRef Khan, M.A., Gómez-Aguilar, J.F.: Tuberculosis model with relapse via fractional conformable derivative with power law mathematical methods in the applied sciences. Math. Method Appl. Sci. 42(18), 7113–7125 (2019)MATHCrossRef
37.
Zurück zum Zitat Atangana, A., Khan, M.A.: Validity of fractal derivative to capturing chaotic attractors. Chaos Soliton. Fract. 126, 50–59 (2019)MathSciNetMATHCrossRef Atangana, A., Khan, M.A.: Validity of fractal derivative to capturing chaotic attractors. Chaos Soliton. Fract. 126, 50–59 (2019)MathSciNetMATHCrossRef
38.
Zurück zum Zitat Jana, R., Khan, M.A., Kumam, P., Thounthong, P.: Modeling the transmission of dengue infection through fractional derivatives Chaos Soliton. Fract. 127, 189–261 (2019)MATH Jana, R., Khan, M.A., Kumam, P., Thounthong, P.: Modeling the transmission of dengue infection through fractional derivatives Chaos Soliton. Fract. 127, 189–261 (2019)MATH
39.
Zurück zum Zitat Lord, H.W., Shulman, Y.H.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)MATHCrossRef Lord, H.W., Shulman, Y.H.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)MATHCrossRef
40.
Zurück zum Zitat Tzou, D.Y.: Thermal shock phenomena under high rate response in solids. Annual Rev. Heat Transf. 4(4), 111–185 (1992)CrossRef Tzou, D.Y.: Thermal shock phenomena under high rate response in solids. Annual Rev. Heat Transf. 4(4), 111–185 (1992)CrossRef
41.
Zurück zum Zitat Tzou, D.Y.: A unified field approach for heat conduction from macro-to micro-scales. J. Heat Transf. 117(1), 8–16 (1995)CrossRef Tzou, D.Y.: A unified field approach for heat conduction from macro-to micro-scales. J. Heat Transf. 117(1), 8–16 (1995)CrossRef
42.
Zurück zum Zitat Tzou, D.Y.: The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transf. 38(17), 3231–3240 (1995)CrossRef Tzou, D.Y.: The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transf. 38(17), 3231–3240 (1995)CrossRef
43.
Zurück zum Zitat Abouelregal, A.E.: Two-temperature thermoelastic model without energy dissipation including higher order time-derivatives and two phase-lags. Mater. Res. Express. 6(11), 116535 (2019)CrossRef Abouelregal, A.E.: Two-temperature thermoelastic model without energy dissipation including higher order time-derivatives and two phase-lags. Mater. Res. Express. 6(11), 116535 (2019)CrossRef
44.
Zurück zum Zitat Abouelregal, A.E.: On Green and Naghdi thermoelasticity model without energy dissipation with higher order time differential and phase-lags. J Appl Computat Mech 6(3), 445–456 (2020) Abouelregal, A.E.: On Green and Naghdi thermoelasticity model without energy dissipation with higher order time differential and phase-lags. J Appl Computat Mech 6(3), 445–456 (2020)
45.
Zurück zum Zitat Abouelregal, A.E.: A novel generalized thermoelasticity with higher-order time-derivatives and three-phase lags. Multidiscip. Model. Mater. Struct. 16(4), 689–711 (2020)CrossRef Abouelregal, A.E.: A novel generalized thermoelasticity with higher-order time-derivatives and three-phase lags. Multidiscip. Model. Mater. Struct. 16(4), 689–711 (2020)CrossRef
46.
Zurück zum Zitat Abouelregal, A.E.: Three-phase-lag thermoelastic heat conduction model with higher-order time-fractional derivatives. Indian J. Phys 94, 1949–1963 (2020)CrossRef Abouelregal, A.E.: Three-phase-lag thermoelastic heat conduction model with higher-order time-fractional derivatives. Indian J. Phys 94, 1949–1963 (2020)CrossRef
47.
Zurück zum Zitat Miller, K.S., Ross, B.: An Introduction to the Fractional Integrals and Derivatives, Theory and Applications. Wiley, New York, USA (1993) Miller, K.S., Ross, B.: An Introduction to the Fractional Integrals and Derivatives, Theory and Applications. Wiley, New York, USA (1993)
48.
Zurück zum Zitat Atangana, A., Baleanu, D.: Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer. J. Eng. Mech. 143, 5 (2016) Atangana, A., Baleanu, D.: Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer. J. Eng. Mech. 143, 5 (2016)
49.
Zurück zum Zitat Atangana, A., Koca, I.: Chaos in a simple nonlinear system ith Atangana-Baleanu derivatives with fractional order. Chaos, Solitons Fractals. 89, 447–454 (2016)MathSciNetMATHCrossRef Atangana, A., Koca, I.: Chaos in a simple nonlinear system ith Atangana-Baleanu derivatives with fractional order. Chaos, Solitons Fractals. 89, 447–454 (2016)MathSciNetMATHCrossRef
50.
Zurück zum Zitat Zhang, Y.Q., Liu, G.R., Xie, X.Y.: Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys. Rev. B 71(19), 195404 (2005)CrossRef Zhang, Y.Q., Liu, G.R., Xie, X.Y.: Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys. Rev. B 71(19), 195404 (2005)CrossRef
51.
Zurück zum Zitat Zenkour, A.M., Abouelregal, A.E.: Vibration of FG nanobeams induced by sinusoidal pulse-heating via a nonlocal thermoelastic model. Acta Mech 225(12), 3409–3421 (2014)MathSciNetMATHCrossRef Zenkour, A.M., Abouelregal, A.E.: Vibration of FG nanobeams induced by sinusoidal pulse-heating via a nonlocal thermoelastic model. Acta Mech 225(12), 3409–3421 (2014)MathSciNetMATHCrossRef
52.
Zurück zum Zitat Oden, J.T., Ripperger, E.A.: Mechanics of Elastic Structures. Hemisphere/McGraw-Hill, New York (1981) Oden, J.T., Ripperger, E.A.: Mechanics of Elastic Structures. Hemisphere/McGraw-Hill, New York (1981)
53.
Zurück zum Zitat Abouelregal, A.E., Mohamed, B.O.: Fractional order thermoelasticity for a functionally graded thermoelastic nanobeam induced by a sinusoidal pulse heating. J. Comput. Theor. Nanosci. 15(4), 1233–1242 (2018)CrossRef Abouelregal, A.E., Mohamed, B.O.: Fractional order thermoelasticity for a functionally graded thermoelastic nanobeam induced by a sinusoidal pulse heating. J. Comput. Theor. Nanosci. 15(4), 1233–1242 (2018)CrossRef
54.
Zurück zum Zitat Zenkour, A.M., Abouelregal, A.E.: Effect of harmonically varying heat on FG nanobeams in the context of a nonlocal two-temperature thermoelasticity theory. Europ. J. Computat. Mech. 23(1–2), 1–14 (2014)MATH Zenkour, A.M., Abouelregal, A.E.: Effect of harmonically varying heat on FG nanobeams in the context of a nonlocal two-temperature thermoelasticity theory. Europ. J. Computat. Mech. 23(1–2), 1–14 (2014)MATH
55.
Zurück zum Zitat Youssef, H.M., Elsibai, K.A.: Vibration of gold nanobeam induced by different types of thermal loading—a state-space approach. Nanoscale Microscale Thermophys. Eng. 15(1), 48–69 (2011)CrossRef Youssef, H.M., Elsibai, K.A.: Vibration of gold nanobeam induced by different types of thermal loading—a state-space approach. Nanoscale Microscale Thermophys. Eng. 15(1), 48–69 (2011)CrossRef
56.
Zurück zum Zitat Honig, G., Hirdes, U.: A method for the numerical inversion of the Laplace transform. J. Comp. Appl. Math. 10, 113–132 (1984)MathSciNetMATHCrossRef Honig, G., Hirdes, U.: A method for the numerical inversion of the Laplace transform. J. Comp. Appl. Math. 10, 113–132 (1984)MathSciNetMATHCrossRef
57.
Zurück zum Zitat Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H., Rahaeifard, M.: On the size-dependent behavior of functionally graded micro-beams. Mater. Des. 31(5), 2324–2329 (2010)CrossRef Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H., Rahaeifard, M.: On the size-dependent behavior of functionally graded micro-beams. Mater. Des. 31(5), 2324–2329 (2010)CrossRef
58.
Zurück zum Zitat Abouelregal, A.E.: Thermoelastic fractional derivative model for exciting viscoelastic microbeam resting on Winkler foundation. J. Vib. Control 27(17–18), 2123–2135 (2021)MathSciNetCrossRef Abouelregal, A.E.: Thermoelastic fractional derivative model for exciting viscoelastic microbeam resting on Winkler foundation. J. Vib. Control 27(17–18), 2123–2135 (2021)MathSciNetCrossRef
59.
Zurück zum Zitat Tiwari, R., Abouelregal, A.E.: Memory response on magneto-thermoelastic vibrations on a viscoelastic micro-beam exposed to a laser pulse heat source. Appl. Math. Modell. 99, 328–345 (2021)MathSciNetMATHCrossRef Tiwari, R., Abouelregal, A.E.: Memory response on magneto-thermoelastic vibrations on a viscoelastic micro-beam exposed to a laser pulse heat source. Appl. Math. Modell. 99, 328–345 (2021)MathSciNetMATHCrossRef
60.
Zurück zum Zitat Mittal, G., Kulkarni, V.S.: Two temperature fractional order thermoelasticity theory in a spherical domain. J. Therm. Stresses 42(9), 1136–1152 (2019)CrossRef Mittal, G., Kulkarni, V.S.: Two temperature fractional order thermoelasticity theory in a spherical domain. J. Therm. Stresses 42(9), 1136–1152 (2019)CrossRef
Metadaten
Titel
Mathematical modeling of functionally graded nanobeams via fractional heat Conduction model with non-singular kernels
verfasst von
Ahmed E. Abouelregal
Publikationsdatum
09.11.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 3/2023
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-022-02309-9

Weitere Artikel der Ausgabe 3/2023

Archive of Applied Mechanics 3/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.