Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 1/2023

20.06.2022 | Technical Article

Mechanical and Oxidation Characteristics of Ti20-Al16-V16-Fe16- Ni16-Cr16 High-Entropy Alloy Developed via Spark Plasma Sintering for High-Temperature/Strength Applications

verfasst von: C. O. Ujah, A. P. I. Popoola, O. M. Popoola, A. E. Afolabi, U. O. Uyor

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ti6Al4V is one of the most useful alloys because of its high strength, low weight, high oxidation resistance and low CTE. However, it is weak in shear strength which has affected its performance. This research was aimed at developing high-entropy alloy of Ti20-Al16-V16-Fe16-Ni16-Cr16 at near equi-molar level via spark plasma sintering technique which would possess better mechanical and oxidation characteristics than Ti64. The powders were blended, sintered at varying temperatures from 700 to 1100 °C and characterized. Results showed that HEA sintered at 1000 °C possessed the best mechanical, oxidative and microstructural properties, while that sintered at 700 °C had the least mechanical and thermal properties. The developed HEA had elastic modulus improvement of about 336% over Ti6Al4V and about 277% over Ti6Al4V-0.55B alloys. It had creep resistance of 2.47% at loading of 300 mN and 4.38% at loading of 500 mN, densification of 98.86%, porosity of 1.14% and a parabolic oxidation profile. It was concluded that the developed alloy has superior mechanical and oxidation properties than Ti64 and so can perform better in applications where high strength at high temperature is required.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Yao et al., Tempering Softening of Overlapping Zones During Multi-track Laser Quenching for Carbon Steel and Alloy Steel, Trans. Mater. Heat Treat., 2009, 30(5), p 131–135. C. Yao et al., Tempering Softening of Overlapping Zones During Multi-track Laser Quenching for Carbon Steel and Alloy Steel, Trans. Mater. Heat Treat., 2009, 30(5), p 131–135.
3.
Zurück zum Zitat D.B. Miracle and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448–511.CrossRef D.B. Miracle and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448–511.CrossRef
4.
Zurück zum Zitat J.W. Yeh et al., Nanostructured High-entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303.CrossRef J.W. Yeh et al., Nanostructured High-entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303.CrossRef
5.
Zurück zum Zitat M. Dada et al., High Entropy Alloys for Aerospace Applications, Aerodynamics, IntechOpen, 2019. M. Dada et al., High Entropy Alloys for Aerospace Applications, Aerodynamics, IntechOpen, 2019.
6.
Zurück zum Zitat M. Bondesgaard et al., General Solvothermal Synthesis Method for Complete Solubility Range Bimetallic and High-Entropy Alloy Nanocatalysts, Adv. Func. Mater., 2019, 29(50), p 1905933.CrossRef M. Bondesgaard et al., General Solvothermal Synthesis Method for Complete Solubility Range Bimetallic and High-Entropy Alloy Nanocatalysts, Adv. Func. Mater., 2019, 29(50), p 1905933.CrossRef
7.
Zurück zum Zitat M. Liu et al., Entropy-Maximized Synthesis of Multimetallic Nanoparticle Catalysts via a Ultrasonication-Assisted Wet Chemistry Method under Ambient Conditions, Adv. Mater. Interfaces, 2019, 6(7), p 1900015.CrossRef M. Liu et al., Entropy-Maximized Synthesis of Multimetallic Nanoparticle Catalysts via a Ultrasonication-Assisted Wet Chemistry Method under Ambient Conditions, Adv. Mater. Interfaces, 2019, 6(7), p 1900015.CrossRef
8.
Zurück zum Zitat Y. Yao et al., Carbothermal Shock Synthesis of High-Entropy-Alloy Nanoparticles, Science, 2018, 359(6383), p 1489–1494.CrossRef Y. Yao et al., Carbothermal Shock Synthesis of High-Entropy-Alloy Nanoparticles, Science, 2018, 359(6383), p 1489–1494.CrossRef
9.
Zurück zum Zitat S. Gao et al., Synthesis of High-Entropy Alloy Nanoparticles on Supports by the Fast Moving Bed Pyrolysis, Nat. Commun., 2020, 11(1), p 1–11.CrossRef S. Gao et al., Synthesis of High-Entropy Alloy Nanoparticles on Supports by the Fast Moving Bed Pyrolysis, Nat. Commun., 2020, 11(1), p 1–11.CrossRef
10.
Zurück zum Zitat Z. Fu et al., Fabrication and Properties of Nanocrystalline Co0. 5FeNiCrTi0. 5 High Entropy Alloy by MA–SPS Technique, Mater. Des., 2013, 44, p 535–539.CrossRef Z. Fu et al., Fabrication and Properties of Nanocrystalline Co0. 5FeNiCrTi0. 5 High Entropy Alloy by MA–SPS Technique, Mater. Des., 2013, 44, p 535–539.CrossRef
11.
Zurück zum Zitat J.-W. Yeh et al., Formation of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Alloys with Multiprincipal Metallic Elements, Metall. Mater. Trans. A., 2004, 35(8), p 2533–2536.CrossRef J.-W. Yeh et al., Formation of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Alloys with Multiprincipal Metallic Elements, Metall. Mater. Trans. A., 2004, 35(8), p 2533–2536.CrossRef
12.
Zurück zum Zitat Z. Fu et al., Effects of Co and Sintering Method on Microstructure and Mechanical Behavior of a High-Entropy Al0. 6NiFeCrCo Alloy Prepared by Powder Metallurgy, J. Alloys Compd., 2015, 646, p 175–182.CrossRef Z. Fu et al., Effects of Co and Sintering Method on Microstructure and Mechanical Behavior of a High-Entropy Al0. 6NiFeCrCo Alloy Prepared by Powder Metallurgy, J. Alloys Compd., 2015, 646, p 175–182.CrossRef
14.
Zurück zum Zitat K. Thomson et al., Characterization and Mechanical Testing of Alumina-Based Nanocomposites Reinforced with Niobium and/or Carbon Nanotubes Fabricated by Spark Plasma Sintering, Acta Mater., 2012, 60(2), p 622–632.CrossRef K. Thomson et al., Characterization and Mechanical Testing of Alumina-Based Nanocomposites Reinforced with Niobium and/or Carbon Nanotubes Fabricated by Spark Plasma Sintering, Acta Mater., 2012, 60(2), p 622–632.CrossRef
15.
Zurück zum Zitat C. Ujah, O. Popoola and V. Aigbodion, Optimisation of Spark Plasma Sintering Parameters of Al-CNTs-Nb Nano-composite Using Taguchi Design of Experiment, Int. J. Adv. Manuf. Technol., 2019, 100(5–8), p 1563–1573.CrossRef C. Ujah, O. Popoola and V. Aigbodion, Optimisation of Spark Plasma Sintering Parameters of Al-CNTs-Nb Nano-composite Using Taguchi Design of Experiment, Int. J. Adv. Manuf. Technol., 2019, 100(5–8), p 1563–1573.CrossRef
16.
Zurück zum Zitat A. Agapovichev et al., Possibilities and limitations of titanium alloy additive manufacturing. in MATEC Web of Conferences. 2018. EDP Sciences A. Agapovichev et al., Possibilities and limitations of titanium alloy additive manufacturing. in MATEC Web of Conferences. 2018. EDP Sciences
17.
Zurück zum Zitat E. Colombini et al., High Entropy Alloys Obtained by Field Assisted Powder Metallurgy Route: SPS and Microwave Heating, Mater. Chem. Phys., 2018, 210, p 78–86.CrossRef E. Colombini et al., High Entropy Alloys Obtained by Field Assisted Powder Metallurgy Route: SPS and Microwave Heating, Mater. Chem. Phys., 2018, 210, p 78–86.CrossRef
18.
Zurück zum Zitat R. Wang et al., Evolution of Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Direct Laser Fabrication, J. Alloy. Compd., 2017, 694, p 971–981.CrossRef R. Wang et al., Evolution of Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Direct Laser Fabrication, J. Alloy. Compd., 2017, 694, p 971–981.CrossRef
19.
Zurück zum Zitat H. Wu et al., Influence of Cr Content on the Microstructure and Mechanical Properties of CrxFeNiCu High Entropy Alloys, Prog. Nat. Sci. Mater. Int., 2020, 30(2), p 239–245.CrossRef H. Wu et al., Influence of Cr Content on the Microstructure and Mechanical Properties of CrxFeNiCu High Entropy Alloys, Prog. Nat. Sci. Mater. Int., 2020, 30(2), p 239–245.CrossRef
20.
Zurück zum Zitat P. Popoola et al., Improving Tribological and Thermal Properties of Al Alloy Using CNTs and Nb Nanopowder via SPS for Power Transmission Conductor, Trans. oNonferrous Met. Soc. China, 2020, 30(2), p 333–343.CrossRef P. Popoola et al., Improving Tribological and Thermal Properties of Al Alloy Using CNTs and Nb Nanopowder via SPS for Power Transmission Conductor, Trans. oNonferrous Met. Soc. China, 2020, 30(2), p 333–343.CrossRef
21.
Zurück zum Zitat M.B. Shongwe et al., Effect of Sintering Temperature on the Microstructure and Mechanical Properties of Fe–30% Ni Alloys Produced by Spark Plasma Sintering, J. Alloy. Compd., 2015, 649, p 824–832.CrossRef M.B. Shongwe et al., Effect of Sintering Temperature on the Microstructure and Mechanical Properties of Fe–30% Ni Alloys Produced by Spark Plasma Sintering, J. Alloy. Compd., 2015, 649, p 824–832.CrossRef
23.
Zurück zum Zitat L.R. Kanyane, et al. Oxidation and Corrosion properties of a Novel Al15Ti30Si30Mo15Ni10 High Entropy Alloy fabricated by Spark Plasma Sintering Technology. in IOP Conference Series: Materials Science and Engineering. 2021. IOP Publishing. L.R. Kanyane, et al. Oxidation and Corrosion properties of a Novel Al15Ti30Si30Mo15Ni10 High Entropy Alloy fabricated by Spark Plasma Sintering Technology. in IOP Conference Series: Materials Science and Engineering. 2021. IOP Publishing.
24.
Zurück zum Zitat W. Zhou et al., Thermal, Electrical, and Mechanical Properties of Hexagonal Boron Nitride–Reinforced Epoxy Composites, J. Compos. Mater., 2014, 48(20), p 2517–2526.CrossRef W. Zhou et al., Thermal, Electrical, and Mechanical Properties of Hexagonal Boron Nitride–Reinforced Epoxy Composites, J. Compos. Mater., 2014, 48(20), p 2517–2526.CrossRef
25.
Zurück zum Zitat K. Miyake et al., The Effect of Particle Shape on Sintering Behavior and Compressive Strength of Porous Alumina, Materials, 2018, 11(7), p 1137.CrossRef K. Miyake et al., The Effect of Particle Shape on Sintering Behavior and Compressive Strength of Porous Alumina, Materials, 2018, 11(7), p 1137.CrossRef
26.
Zurück zum Zitat L. Yuan, C. Min, L. Yanxiang, and C. Xiang, Microstructure and Mechanical Performance of AlxCoCrCuFeNi High-Entropy Alloys, Rare Met. Mater. Eng., 2009, 38(9), p 1602–1607. L. Yuan, C. Min, L. Yanxiang, and C. Xiang, Microstructure and Mechanical Performance of AlxCoCrCuFeNi High-Entropy Alloys, Rare Met. Mater. Eng., 2009, 38(9), p 1602–1607.
27.
Zurück zum Zitat S. Luo et al., Selective Laser Melting of Dual Phase AlCrCuFeNix High Entropy Alloys: Formability, Heterogeneous Microstructures and Deformation Mechanisms, Addit. Manuf., 2020, 31, 100925. S. Luo et al., Selective Laser Melting of Dual Phase AlCrCuFeNix High Entropy Alloys: Formability, Heterogeneous Microstructures and Deformation Mechanisms, Addit. Manuf., 2020, 31, 100925.
28.
Zurück zum Zitat R. Chen et al., Composition Design of High Entropy Alloys Using the Valence Electron Concentration to Balance Strength and Ductility, Acta Mater., 2018, 144, p 129–137.CrossRef R. Chen et al., Composition Design of High Entropy Alloys Using the Valence Electron Concentration to Balance Strength and Ductility, Acta Mater., 2018, 144, p 129–137.CrossRef
29.
Zurück zum Zitat X. Ou, Molecular Dynamics Simulations of fcc-to-bcc Transformation in Pure Iron: A Review, Mater. Sci. Technol., 2017, 33(7), p 822–835.CrossRef X. Ou, Molecular Dynamics Simulations of fcc-to-bcc Transformation in Pure Iron: A Review, Mater. Sci. Technol., 2017, 33(7), p 822–835.CrossRef
30.
Zurück zum Zitat A.E. Afolabi et al., Temperature Effects on Microstructure and Mechanical Properties of Sintered High-Entropy Equiatomic Ti 20 V 20 Al 20 Fe 20 Cr 20 Alloy for Aero-Gear application, Int. J. Adv. Manuf. Technol., 2020, 108(11), p 3563–3570.CrossRef A.E. Afolabi et al., Temperature Effects on Microstructure and Mechanical Properties of Sintered High-Entropy Equiatomic Ti 20 V 20 Al 20 Fe 20 Cr 20 Alloy for Aero-Gear application, Int. J. Adv. Manuf. Technol., 2020, 108(11), p 3563–3570.CrossRef
31.
Zurück zum Zitat C. Ujah, P. Popoola, O.M. Popoola, and V. Aigbodion, Enhanced Mechanical, Electrical and Corrosion Characteristics of Al-CNTs-Nb Composite Processed via Spark Plasma Sintering for Conductor Core, J. Compos. Mater., 2019, 53, p 3775–3786.CrossRef C. Ujah, P. Popoola, O.M. Popoola, and V. Aigbodion, Enhanced Mechanical, Electrical and Corrosion Characteristics of Al-CNTs-Nb Composite Processed via Spark Plasma Sintering for Conductor Core, J. Compos. Mater., 2019, 53, p 3775–3786.CrossRef
33.
Zurück zum Zitat M.-F. Yu et al., Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties, Phys. Rev. Lett., 2000, 84(24), p 5552.CrossRef M.-F. Yu et al., Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties, Phys. Rev. Lett., 2000, 84(24), p 5552.CrossRef
34.
Zurück zum Zitat Y. Wen et al., Nanoindentation Characterization on Local Plastic Response of Ti-6Al-4V Under High-Load Spherical Indentation, J. Market. Res., 2019, 8(4), p 3434–3442. Y. Wen et al., Nanoindentation Characterization on Local Plastic Response of Ti-6Al-4V Under High-Load Spherical Indentation, J. Market. Res., 2019, 8(4), p 3434–3442.
35.
Zurück zum Zitat R. Honeycombe and R. Mehl, Transformation from Austenite in Alloy Steels, Metall. Trans. A, 1976, 7(7), p 915–936.CrossRef R. Honeycombe and R. Mehl, Transformation from Austenite in Alloy Steels, Metall. Trans. A, 1976, 7(7), p 915–936.CrossRef
36.
Zurück zum Zitat X.-L. Li et al., Precipitation Strengthening in Titanium Microalloyed High-Strength Steel Plates with New Generation-Thermomechanical Controlled Processing (NG-TMCP), J. Alloy. Compd., 2016, 689, p 542–553.CrossRef X.-L. Li et al., Precipitation Strengthening in Titanium Microalloyed High-Strength Steel Plates with New Generation-Thermomechanical Controlled Processing (NG-TMCP), J. Alloy. Compd., 2016, 689, p 542–553.CrossRef
37.
Zurück zum Zitat M. Xiao et al., Effect of Heat Treatment Process on Mechanical Properties and Microstructure of FeAlCoCrNiTi0.5 Alloy, AIP Adv., 2018, 8(9), p 095322.CrossRef M. Xiao et al., Effect of Heat Treatment Process on Mechanical Properties and Microstructure of FeAlCoCrNiTi0.5 Alloy, AIP Adv., 2018, 8(9), p 095322.CrossRef
38.
Zurück zum Zitat I. Sen and U. Ramamurty, Elastic modulus of Ti–6Al–4V–xB alloys with B up to 0.55 wt.%, Scr. Mater., 2010, 62(1), p 37–40.CrossRef I. Sen and U. Ramamurty, Elastic modulus of Ti–6Al–4V–xB alloys with B up to 0.55 wt.%, Scr. Mater., 2010, 62(1), p 37–40.CrossRef
41.
Zurück zum Zitat R.J. Lederich, W.O. Soboyejo and T. Srivatsan, Preparing Damage-Tolerant Titanium-Matrix Composites, JOM, 1994, 46(11), p 68–71.CrossRef R.J. Lederich, W.O. Soboyejo and T. Srivatsan, Preparing Damage-Tolerant Titanium-Matrix Composites, JOM, 1994, 46(11), p 68–71.CrossRef
42.
Zurück zum Zitat J.-W. Yeh, Physical Metallurgy of High-Entropy Alloys, Jom, 2015, 67(10), p 2254–2261.CrossRef J.-W. Yeh, Physical Metallurgy of High-Entropy Alloys, Jom, 2015, 67(10), p 2254–2261.CrossRef
43.
Zurück zum Zitat A.K. Mukherjee, An Examination of the Constitutive Equation for Elevated Temperature Plasticity, Mater. Sci. Eng. A, 2002, 322(1–2), p 1–22.CrossRef A.K. Mukherjee, An Examination of the Constitutive Equation for Elevated Temperature Plasticity, Mater. Sci. Eng. A, 2002, 322(1–2), p 1–22.CrossRef
44.
Zurück zum Zitat H. Chen et al., Improvement of the Stability of Superelasticity and Elastocaloric Effect of a Ni-rich Ti-Ni Alloy by Precipitation and Grain Refinement, Scr. Mater., 2019, 162, p 230–234.CrossRef H. Chen et al., Improvement of the Stability of Superelasticity and Elastocaloric Effect of a Ni-rich Ti-Ni Alloy by Precipitation and Grain Refinement, Scr. Mater., 2019, 162, p 230–234.CrossRef
45.
Zurück zum Zitat P. Sathiyamoorthi et al., Thermal Stability and Grain Boundary Strengthening in Ultrafine-Grained CoCrFeNi High Entropy Alloy Composite, Mater. Des., 2017, 134, p 426–433.CrossRef P. Sathiyamoorthi et al., Thermal Stability and Grain Boundary Strengthening in Ultrafine-Grained CoCrFeNi High Entropy Alloy Composite, Mater. Des., 2017, 134, p 426–433.CrossRef
46.
Zurück zum Zitat X. Han et al., Improved Creep Resistance of High Entropy Transition Metal Carbides, J. Eur. Ceram. Soc., 2020, 40(7), p 2709–2715.CrossRef X. Han et al., Improved Creep Resistance of High Entropy Transition Metal Carbides, J. Eur. Ceram. Soc., 2020, 40(7), p 2709–2715.CrossRef
48.
Zurück zum Zitat M. Hardiman, T.J. Vaughan and C.T. McCarthy, A Review of Key Developments and Pertinent Issues in Nanoindentation Testing of Fibre Reinforced Plastic Microstructures, Compos. Struct., 2017, 180, p 782–798.CrossRef M. Hardiman, T.J. Vaughan and C.T. McCarthy, A Review of Key Developments and Pertinent Issues in Nanoindentation Testing of Fibre Reinforced Plastic Microstructures, Compos. Struct., 2017, 180, p 782–798.CrossRef
50.
Zurück zum Zitat D. Hou et al., Nanoindentation Characterization of a Ternary Clay-based Composite Used in Ancient Chinese Construction, Materials, 2016, 9(11), p 866.CrossRef D. Hou et al., Nanoindentation Characterization of a Ternary Clay-based Composite Used in Ancient Chinese Construction, Materials, 2016, 9(11), p 866.CrossRef
51.
Zurück zum Zitat E.P. Koumoulos et al., Carbon Nanotube/Polymer Nanocomposites: a Study on Mechanical Integrity Through Nanoindentation, Polym. Compos., 2015, 36(8), p 1432–1446.CrossRef E.P. Koumoulos et al., Carbon Nanotube/Polymer Nanocomposites: a Study on Mechanical Integrity Through Nanoindentation, Polym. Compos., 2015, 36(8), p 1432–1446.CrossRef
52.
Zurück zum Zitat G.-S. Ham et al., Effect of Ti Addition on the Microstructure and High-Temperature Oxidation Property of AlCoCrFeNi High-entropy Alloy, Met. Mater. Int., 2021, 27(1), p 156–165.CrossRef G.-S. Ham et al., Effect of Ti Addition on the Microstructure and High-Temperature Oxidation Property of AlCoCrFeNi High-entropy Alloy, Met. Mater. Int., 2021, 27(1), p 156–165.CrossRef
53.
Zurück zum Zitat A. Khanna, Chapter 6-High temperature oxidation. Handbook of Environmental Degradation of Materials. William Andrew Publishing, Norwich, New York, p 105–152 (2005). A. Khanna, Chapter 6-High temperature oxidation. Handbook of Environmental Degradation of Materials. William Andrew Publishing, Norwich, New York, p 105–152 (2005).
54.
Zurück zum Zitat H. Guleryuz and H. Cimenoglu, Oxidation of Ti–6Al–4V Alloy, J. Alloy. Compd., 2009, 472(1–2), p 241–246.CrossRef H. Guleryuz and H. Cimenoglu, Oxidation of Ti–6Al–4V Alloy, J. Alloy. Compd., 2009, 472(1–2), p 241–246.CrossRef
55.
Zurück zum Zitat D. Brice et al., Oxidation Behavior and Microstructural Decomposition of Ti-6Al-4V and Ti-6Al-4V-1B Sheet, Corros. Sci., 2016, 112, p 338–346.CrossRef D. Brice et al., Oxidation Behavior and Microstructural Decomposition of Ti-6Al-4V and Ti-6Al-4V-1B Sheet, Corros. Sci., 2016, 112, p 338–346.CrossRef
Metadaten
Titel
Mechanical and Oxidation Characteristics of Ti20-Al16-V16-Fe16- Ni16-Cr16 High-Entropy Alloy Developed via Spark Plasma Sintering for High-Temperature/Strength Applications
verfasst von
C. O. Ujah
A. P. I. Popoola
O. M. Popoola
A. E. Afolabi
U. O. Uyor
Publikationsdatum
20.06.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 1/2023
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07066-y

Weitere Artikel der Ausgabe 1/2023

Journal of Materials Engineering and Performance 1/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.