Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2021

12.07.2021

Mechanical Behaviors of Cold-Rolled and Subsequently Annealed Fe35Ni35Cr20Mn10 High-Entropy Alloy

verfasst von: Jun Zhou, Hengcheng Liao, Hao Chen, Aijing Huang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effects of cold rolling and subsequent annealing on the microstructure and mechanical behaviors of Fe35Ni35Cr20Mn10 (in at.%, unless otherwise stated) high-entropy alloys (HEAs) were investigated by microstructure observation and mechanical property testing. The cold rolling results in a significant rise in the strength of the prepared HEA but a great reduction in the fracture elongation. The dominant fine subgrain structure and much higher density of dislocations in the as-rolled sample are responsible for this phenomenon. The combined effects of the significantly decreased dislocation density, obviously coarsened recrystallization grains, and considerable reduction in the amount and significant coarsening in the size of the annealing twins with the annealing temperature decreased the yield strength, but the elongation improved significantly. The prepared Fe35Ni35Cr20Mn10 HEA annealed at 800 °C for 1 h after cold rolling has a good combination of strength and elongation, with a high yield strength of ~ 336 MPa, a high ultimate tensile strength of ~ 525 MPa, and an excellent elongation to fracture of ~ 44%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303.CrossRef J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303.CrossRef
2.
Zurück zum Zitat B. Cantor, I.T.H. Chang, P. Knight and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng., A, 2004, 375–377, p 213–218.CrossRef B. Cantor, I.T.H. Chang, P. Knight and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng., A, 2004, 375–377, p 213–218.CrossRef
3.
Zurück zum Zitat W.Y. Huo, F. Fang, X.D. Liu, S.Y. Tan, Z.H. Xie and J.Q. Jiang, Fatigue Resistance of Nanotwinned High-Entropy Alloy Films, Mater. Sci. Eng., A, 2019, 739(2), p 26–30.CrossRef W.Y. Huo, F. Fang, X.D. Liu, S.Y. Tan, Z.H. Xie and J.Q. Jiang, Fatigue Resistance of Nanotwinned High-Entropy Alloy Films, Mater. Sci. Eng., A, 2019, 739(2), p 26–30.CrossRef
4.
Zurück zum Zitat M. Glienke, M. Vaidya, K. Gururaj, L. Daum, B. Tas, L. Rogal, K.G. Pradeep, S.V. Divinski and G. Wilde, Grain Boundary Diffusion in CoCrFeMnNi High Entropy Alloy: Kinetic Hints Towards a Phase Decomposition, Acta Mater., 2020, 195(15), p 304–316.CrossRef M. Glienke, M. Vaidya, K. Gururaj, L. Daum, B. Tas, L. Rogal, K.G. Pradeep, S.V. Divinski and G. Wilde, Grain Boundary Diffusion in CoCrFeMnNi High Entropy Alloy: Kinetic Hints Towards a Phase Decomposition, Acta Mater., 2020, 195(15), p 304–316.CrossRef
5.
Zurück zum Zitat R. Gawel, Ł Rogal, J. Dąbek, M. Wójcik-Bania and K. Przybylski, High Temperature Oxidation Behaviour of Non-equimolar AlCoCrFeNi High Entropy Alloys, Vacuum, 2021, 184, p 109969.CrossRef R. Gawel, Ł Rogal, J. Dąbek, M. Wójcik-Bania and K. Przybylski, High Temperature Oxidation Behaviour of Non-equimolar AlCoCrFeNi High Entropy Alloys, Vacuum, 2021, 184, p 109969.CrossRef
6.
Zurück zum Zitat N.D. Stepanov, D.G. Shaysultanov, M.S. Ozerov, S.V. Zherebtsov and G.A. Salishchev, Second Phase Formation in the CoCrFeNiMn High Entropy Alloy After Recrystallization Annealing, Mater. Lett., 2016, 185(15), p 1–4.CrossRef N.D. Stepanov, D.G. Shaysultanov, M.S. Ozerov, S.V. Zherebtsov and G.A. Salishchev, Second Phase Formation in the CoCrFeNiMn High Entropy Alloy After Recrystallization Annealing, Mater. Lett., 2016, 185(15), p 1–4.CrossRef
7.
Zurück zum Zitat Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka and D. Raabe, Design of a Twinning-Induced Plasticity High Entropy Alloy, Acta Mater., 2015, 94, p 124–133.CrossRef Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka and D. Raabe, Design of a Twinning-Induced Plasticity High Entropy Alloy, Acta Mater., 2015, 94, p 124–133.CrossRef
8.
Zurück zum Zitat P. Lu, T.W. Zhang, D. Zhao, S.G. Ma, Q. Li, T. Wang and Z.H. Wang, Effects of Stress States and Strain Rates on Mechanical Behavior and Texture Evolution of the CoCrFeNi High-Entropy Alloy: Experiment and Simulation, J. Alloys Compd., 2021, 851, p 156779.CrossRef P. Lu, T.W. Zhang, D. Zhao, S.G. Ma, Q. Li, T. Wang and Z.H. Wang, Effects of Stress States and Strain Rates on Mechanical Behavior and Texture Evolution of the CoCrFeNi High-Entropy Alloy: Experiment and Simulation, J. Alloys Compd., 2021, 851, p 156779.CrossRef
9.
Zurück zum Zitat J.W. Qiao, S.G. Ma, E.W. Huang, C.P. Chuang, P.K. Liaw and Y. Zhang, Microstructural Characteristics and Mechanical Behaviors of AlCoCrFeNi High-Entropy Alloys at Ambient and Cryogenic Temperatures, Mater. Sci. Forum, 2011, 688, p 419–425.CrossRef J.W. Qiao, S.G. Ma, E.W. Huang, C.P. Chuang, P.K. Liaw and Y. Zhang, Microstructural Characteristics and Mechanical Behaviors of AlCoCrFeNi High-Entropy Alloys at Ambient and Cryogenic Temperatures, Mater. Sci. Forum, 2011, 688, p 419–425.CrossRef
10.
Zurück zum Zitat S.J. Zinkle and L.L. Snead, Designing Radiation Resistance in Materials for Fusion Energy, Annu. Rev. Mater. Res., 2014, 44(1), p 241–267.CrossRef S.J. Zinkle and L.L. Snead, Designing Radiation Resistance in Materials for Fusion Energy, Annu. Rev. Mater. Res., 2014, 44(1), p 241–267.CrossRef
11.
Zurück zum Zitat B.B. Bian, N. Guo, H.J. Yang, R.P. Guo, L. Yang, Y.C. Wu and J.W. Qiao, A Novel Cobalt-Free FeMnCrNi Medium-Entropy Alloy with Exceptional Yield Strength and Ductility at Cryogenic Temperature, J. Alloys Compd., 2020, 827, p 153981.CrossRef B.B. Bian, N. Guo, H.J. Yang, R.P. Guo, L. Yang, Y.C. Wu and J.W. Qiao, A Novel Cobalt-Free FeMnCrNi Medium-Entropy Alloy with Exceptional Yield Strength and Ductility at Cryogenic Temperature, J. Alloys Compd., 2020, 827, p 153981.CrossRef
12.
Zurück zum Zitat J.G. Gigaxa, O. El-Atwani, Q. McCulloch, B. Aytuna, M. Efe, S. Fensin, S.A. Maloy and N. Li, Micro- and Mesoscale Mechanical Properties of an Ultra-Fine Grained CrFeMnNi High Entropy Alloy Produced by Large Strain Machining, Scr. Mater., 2020, 178, p 508–512.CrossRef J.G. Gigaxa, O. El-Atwani, Q. McCulloch, B. Aytuna, M. Efe, S. Fensin, S.A. Maloy and N. Li, Micro- and Mesoscale Mechanical Properties of an Ultra-Fine Grained CrFeMnNi High Entropy Alloy Produced by Large Strain Machining, Scr. Mater., 2020, 178, p 508–512.CrossRef
13.
Zurück zum Zitat N.A.P. Kiran Kumar, C. Li, K.J. Leonard, H. Bei and S.J. Zinkle, Microstructural Stability and Mechanical Behavior of FeNiMnCr High Entropy Alloy Under Ion Irradiation, Acta Mater., 2016, 113, p 230–244.CrossRef N.A.P. Kiran Kumar, C. Li, K.J. Leonard, H. Bei and S.J. Zinkle, Microstructural Stability and Mechanical Behavior of FeNiMnCr High Entropy Alloy Under Ion Irradiation, Acta Mater., 2016, 113, p 230–244.CrossRef
14.
Zurück zum Zitat V.N. Voyevodin, S.A. Karpov, G.D. Tolstolutskaya, M.A. Tikhonovsky, A.N. Velikodnyi, I.E. Kopanets, G.N. Tolmachova, A.S. Kalchenko, R.L. Vasilenko and I.V. Kolodiy, Effect of Irradiation on Microstructure and Hardening of Cr-Fe-Ni-Mn High-Entropy Alloy and Its Strengthened Version, Philos. Mag., 2020, 100, p 822–836.CrossRef V.N. Voyevodin, S.A. Karpov, G.D. Tolstolutskaya, M.A. Tikhonovsky, A.N. Velikodnyi, I.E. Kopanets, G.N. Tolmachova, A.S. Kalchenko, R.L. Vasilenko and I.V. Kolodiy, Effect of Irradiation on Microstructure and Hardening of Cr-Fe-Ni-Mn High-Entropy Alloy and Its Strengthened Version, Philos. Mag., 2020, 100, p 822–836.CrossRef
15.
Zurück zum Zitat Z. Wu, H. Bei, F. Otto, G.M. Pharr and E.P. George, Recovery, Recrystallization, Grain Growth and Phase Stability of a Family of FCC-Structured Multi-Component Equiatomic Solid Solution Alloys, Intermetallics, 2014, 46, p 131–140.CrossRef Z. Wu, H. Bei, F. Otto, G.M. Pharr and E.P. George, Recovery, Recrystallization, Grain Growth and Phase Stability of a Family of FCC-Structured Multi-Component Equiatomic Solid Solution Alloys, Intermetallics, 2014, 46, p 131–140.CrossRef
16.
Zurück zum Zitat V. Randle and G. Owen, Mechanisms of Grain Boundary Engineering, Acta Mater., 2006, 54, p 1777–1783.CrossRef V. Randle and G. Owen, Mechanisms of Grain Boundary Engineering, Acta Mater., 2006, 54, p 1777–1783.CrossRef
17.
Zurück zum Zitat V. Randle, M. Coleman and M. Waterton, The Role of Σ9 Boundaries in Grain Boundary Engineering, Metall. Mater. Trans. A, 2011, 42(3), p 582–586.CrossRef V. Randle, M. Coleman and M. Waterton, The Role of Σ9 Boundaries in Grain Boundary Engineering, Metall. Mater. Trans. A, 2011, 42(3), p 582–586.CrossRef
18.
Zurück zum Zitat X.L. An, C.L. Chua, L. Zhou, J. Ji, B.L. Shen and P.K. Chu, Controlling the Corrosion Behavior of CoNiFe Medium Entropy Alloy by Grain Boundary Engineering, Mater. Charact., 2020, 164, p 110323.CrossRef X.L. An, C.L. Chua, L. Zhou, J. Ji, B.L. Shen and P.K. Chu, Controlling the Corrosion Behavior of CoNiFe Medium Entropy Alloy by Grain Boundary Engineering, Mater. Charact., 2020, 164, p 110323.CrossRef
19.
Zurück zum Zitat C.L. Hu, S. Xia, H. Li, T.G. Liu, B.G. Zhou, W.J. Chen and N. Wang, Improving the Intergranular Corrosion Resistance of 304 Stainless Steel by Grain Boundary Network Control, Corros. Sci., 2011, 53(5), p 1880–1886.CrossRef C.L. Hu, S. Xia, H. Li, T.G. Liu, B.G. Zhou, W.J. Chen and N. Wang, Improving the Intergranular Corrosion Resistance of 304 Stainless Steel by Grain Boundary Network Control, Corros. Sci., 2011, 53(5), p 1880–1886.CrossRef
20.
Zurück zum Zitat Q. Deng, Y.J. Tang, Y.F. Tan, X.H. Tan, Y. Yang and H. Xu, Effect of Grain Boundary Character Distribution on Soft Magnetic Property of Face-Centered Cubic FeCoNiAl0.2 Medium-Entropy Alloy, Mater. Charact., 2020, 159, p 110028.CrossRef Q. Deng, Y.J. Tang, Y.F. Tan, X.H. Tan, Y. Yang and H. Xu, Effect of Grain Boundary Character Distribution on Soft Magnetic Property of Face-Centered Cubic FeCoNiAl0.2 Medium-Entropy Alloy, Mater. Charact., 2020, 159, p 110028.CrossRef
21.
Zurück zum Zitat X.J. Guan, F. Shi, H.M. Ji and X.W. Li, Gain Boundary Character Distribution Optimization of Cu-16at.%Al Alloy by Thermomechanical Process: Critical Role of Deformation Microstructure, Mater. Sci. Eng.: A, 2019, 765, p 138299.CrossRef X.J. Guan, F. Shi, H.M. Ji and X.W. Li, Gain Boundary Character Distribution Optimization of Cu-16at.%Al Alloy by Thermomechanical Process: Critical Role of Deformation Microstructure, Mater. Sci. Eng.: A, 2019, 765, p 138299.CrossRef
22.
Zurück zum Zitat Y. Liu, Y. He and S.L. Cai, Gradient Recrystallization to Improve Strength and Ductility of Medium-Entropy Alloy, J. Alloys Compd., 2021, 853, p 157388.CrossRef Y. Liu, Y. He and S.L. Cai, Gradient Recrystallization to Improve Strength and Ductility of Medium-Entropy Alloy, J. Alloys Compd., 2021, 853, p 157388.CrossRef
23.
Zurück zum Zitat R.J. Vikram, S. Gaddam, R. Kalsar, S. Acharya and S. Suwas, A Fractal Approach to Predict the Oxidation and Corrosion Behavior of a Grain Boundary Engineered Low SFE High Entropy Alloy, Materialia, 2019, 7, p 100398.CrossRef R.J. Vikram, S. Gaddam, R. Kalsar, S. Acharya and S. Suwas, A Fractal Approach to Predict the Oxidation and Corrosion Behavior of a Grain Boundary Engineered Low SFE High Entropy Alloy, Materialia, 2019, 7, p 100398.CrossRef
24.
Zurück zum Zitat Y.X. He, H.X. Yang, C.D. Zhao, Y. Zhang, X.Y. Pan, J.S. Li and J. Wang, Enhancing Mechanical Properties of Al0.25CoCrFeNi High-Entropy Alloy Via Cold Rolling and Subsequent Annealing, J. Alloys Compd., 2020, 830, p 154645.CrossRef Y.X. He, H.X. Yang, C.D. Zhao, Y. Zhang, X.Y. Pan, J.S. Li and J. Wang, Enhancing Mechanical Properties of Al0.25CoCrFeNi High-Entropy Alloy Via Cold Rolling and Subsequent Annealing, J. Alloys Compd., 2020, 830, p 154645.CrossRef
25.
Zurück zum Zitat P. Asghari-Rad, P. Sathiyamoorthi, N.T. Nguyen, J.W. Bae, H. Shahmir and H.S. Kim, Fine-Tuning of Mechanical Properties in V10Cr15Mn5Fe35Co10Ni25 High-Entropy Alloy Through High-Pressure Torsion and Annealing, Mater. Sci. Eng.: A, 2020, 771, p 138604.CrossRef P. Asghari-Rad, P. Sathiyamoorthi, N.T. Nguyen, J.W. Bae, H. Shahmir and H.S. Kim, Fine-Tuning of Mechanical Properties in V10Cr15Mn5Fe35Co10Ni25 High-Entropy Alloy Through High-Pressure Torsion and Annealing, Mater. Sci. Eng.: A, 2020, 771, p 138604.CrossRef
26.
Zurück zum Zitat F. Shi, R.H. Gao, X.J. Guan, C.M. Liu and X.W. Li, Application of Grain Boundary Engineering to Improve Intergranular Corrosion Resistance in a Fe-Cr-Mn-Mo-N High-Nitrogen and Nickel-Free Austenitic Stainless Steel, Acta Metall. Sin. (Engl. Lett.), 2020, 33, p 789–798.CrossRef F. Shi, R.H. Gao, X.J. Guan, C.M. Liu and X.W. Li, Application of Grain Boundary Engineering to Improve Intergranular Corrosion Resistance in a Fe-Cr-Mn-Mo-N High-Nitrogen and Nickel-Free Austenitic Stainless Steel, Acta Metall. Sin. (Engl. Lett.), 2020, 33, p 789–798.CrossRef
27.
Zurück zum Zitat T.G. Liu, S. Xia, D.H. Du, Q. Bai, L.F. Zhang and Y.H. Lu, Grain Boundary Engineering of Large-Size 316 Stainless Steel Via Warm-Rolling for Improving Resistance to Intergranular Attack, Mater. Lett., 2019, 234, p 201–204.CrossRef T.G. Liu, S. Xia, D.H. Du, Q. Bai, L.F. Zhang and Y.H. Lu, Grain Boundary Engineering of Large-Size 316 Stainless Steel Via Warm-Rolling for Improving Resistance to Intergranular Attack, Mater. Lett., 2019, 234, p 201–204.CrossRef
28.
Zurück zum Zitat C.L. Chen and M.J. Tan, Effect of Grain Boundary Character Distribution (GBCD) on the Cavitation Behaviour During Superplastic Deformation of Al7475, Mater. Sci. Eng.: A, 2002, 338(1–2), p 243–252.CrossRef C.L. Chen and M.J. Tan, Effect of Grain Boundary Character Distribution (GBCD) on the Cavitation Behaviour During Superplastic Deformation of Al7475, Mater. Sci. Eng.: A, 2002, 338(1–2), p 243–252.CrossRef
29.
Zurück zum Zitat X. He, L. Liu, T. Zeng and Y. Yao, Micromechanical Modeling of Work Hardening for Coupling Micro-structure Evolution, Dynamic Recovery and Recrystallization: Application to High Entropy Alloys, Int. J. Mech. Sci., 2020, 177, p 105567.CrossRef X. He, L. Liu, T. Zeng and Y. Yao, Micromechanical Modeling of Work Hardening for Coupling Micro-structure Evolution, Dynamic Recovery and Recrystallization: Application to High Entropy Alloys, Int. J. Mech. Sci., 2020, 177, p 105567.CrossRef
30.
Zurück zum Zitat Y.N. Wu, C.M. Liu, H.C. Liao, J.H. Jiang and A.B. Ma, Joint Effect of Micro-sized Si Particles and Nano-sized Dispersoids on the Flow Behavior and Dynamic Recrystallization of Near-Eutectic Al-Si Based Alloys During Hot Compression, J. Alloys Compd., 2021, 856, p 158072.CrossRef Y.N. Wu, C.M. Liu, H.C. Liao, J.H. Jiang and A.B. Ma, Joint Effect of Micro-sized Si Particles and Nano-sized Dispersoids on the Flow Behavior and Dynamic Recrystallization of Near-Eutectic Al-Si Based Alloys During Hot Compression, J. Alloys Compd., 2021, 856, p 158072.CrossRef
31.
Zurück zum Zitat G.K. Williamson and R.E. Smallman III., Dislocation Densities in Some Annealed and Cold-Worked Metals from Measurements on the X-ray Debye–Scherrer Spectrum, Philos. Mag., 1956, 1(1), p 34–46.CrossRef G.K. Williamson and R.E. Smallman III., Dislocation Densities in Some Annealed and Cold-Worked Metals from Measurements on the X-ray Debye–Scherrer Spectrum, Philos. Mag., 1956, 1(1), p 34–46.CrossRef
32.
Zurück zum Zitat E.O. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results, Proc. Phys. Soc. Sect. B, 1951, 64, p 747–753.CrossRef E.O. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results, Proc. Phys. Soc. Sect. B, 1951, 64, p 747–753.CrossRef
33.
Zurück zum Zitat R.W. Armstrong, The (Cleavage) Strength of Pre-cracked Polycrystals, Eng. Fract. Mech., 1987, 28, p 529–538.CrossRef R.W. Armstrong, The (Cleavage) Strength of Pre-cracked Polycrystals, Eng. Fract. Mech., 1987, 28, p 529–538.CrossRef
34.
Zurück zum Zitat N. Hansen, Hall–Petch Relation and Boundary Strengthening, Scr. Mater., 2004, 51, p 801–806.CrossRef N. Hansen, Hall–Petch Relation and Boundary Strengthening, Scr. Mater., 2004, 51, p 801–806.CrossRef
35.
Zurück zum Zitat S.Y. Chen, K.K. Tseng, Y. Tong, W.D. Li, C.W. Tsai, J.W. Yeh and P.K. Liaw, Grain Growth and Hall–Petch Relationship in a Refractory HfNbTaZrTi High-Entropy Alloy, J. Alloy. Compd., 2019, 795, p 19–26.CrossRef S.Y. Chen, K.K. Tseng, Y. Tong, W.D. Li, C.W. Tsai, J.W. Yeh and P.K. Liaw, Grain Growth and Hall–Petch Relationship in a Refractory HfNbTaZrTi High-Entropy Alloy, J. Alloy. Compd., 2019, 795, p 19–26.CrossRef
36.
Zurück zum Zitat D. Liu, X. Jin, N. Guo, P.K. Liaw and J.W. Qiao, Non-equiatomic FeMnCrNiAl High-Entropy Alloys with Heterogeneous Structures for Strength and Ductility Combination, Mater. Sci. Eng.: A, 2021, 818, p 141386.CrossRef D. Liu, X. Jin, N. Guo, P.K. Liaw and J.W. Qiao, Non-equiatomic FeMnCrNiAl High-Entropy Alloys with Heterogeneous Structures for Strength and Ductility Combination, Mater. Sci. Eng.: A, 2021, 818, p 141386.CrossRef
37.
Zurück zum Zitat H. Shahmir, T. Mousavi, J. He, Z.P. Lu, M. Kawasaki and T.G. Langdon, Microstructure and Properties of a CoCrFeNiMn High-Entropy Alloy Processed by Equal-Channel Angular Pressing, Mater. Sci. Eng., A, 2017, 705, p 411–419.CrossRef H. Shahmir, T. Mousavi, J. He, Z.P. Lu, M. Kawasaki and T.G. Langdon, Microstructure and Properties of a CoCrFeNiMn High-Entropy Alloy Processed by Equal-Channel Angular Pressing, Mater. Sci. Eng., A, 2017, 705, p 411–419.CrossRef
38.
Zurück zum Zitat J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An and Z.P. Lu, A Precipitation-Hardened High-Entropy Alloy with Outstanding Tensile Properties, Acta Mater., 2016, 102, p 187–196.CrossRef J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An and Z.P. Lu, A Precipitation-Hardened High-Entropy Alloy with Outstanding Tensile Properties, Acta Mater., 2016, 102, p 187–196.CrossRef
39.
Zurück zum Zitat M.J. Yao, K.G. Pradeep, C.C. Tasan and D. Raabe, A Novel, Single Phase, Non-equiatomic FeMnNiCoCr High-Entropy Alloy with Exceptional Phase Stability and Tensile Ductility, Scr. Mater., 2014, 72–73, p 5–8.CrossRef M.J. Yao, K.G. Pradeep, C.C. Tasan and D. Raabe, A Novel, Single Phase, Non-equiatomic FeMnNiCoCr High-Entropy Alloy with Exceptional Phase Stability and Tensile Ductility, Scr. Mater., 2014, 72–73, p 5–8.CrossRef
40.
Zurück zum Zitat P. Sathiyamoorthi, P. Asghari-Rad, J.W. Bae and H.S. Kim, Fine Tuning of Tensile Properties in CrCoNi Medium Entropy Alloy Through Cold Rolling and Annealing, Intermetallics, 2019, 113, p 106578.CrossRef P. Sathiyamoorthi, P. Asghari-Rad, J.W. Bae and H.S. Kim, Fine Tuning of Tensile Properties in CrCoNi Medium Entropy Alloy Through Cold Rolling and Annealing, Intermetallics, 2019, 113, p 106578.CrossRef
41.
Zurück zum Zitat X.L. An, H. Zhao, T. Dai, H.G. Yua, Z.H. Huang, C. Guo, P.K. Chu and C.L. Chu, Effects of Heat Treatment on the Microstructure and Properties of Cold-Forged CoNiFe Medium Entropy Alloy, Intermetallics, 2019, 110, p 106477.CrossRef X.L. An, H. Zhao, T. Dai, H.G. Yua, Z.H. Huang, C. Guo, P.K. Chu and C.L. Chu, Effects of Heat Treatment on the Microstructure and Properties of Cold-Forged CoNiFe Medium Entropy Alloy, Intermetallics, 2019, 110, p 106477.CrossRef
42.
Zurück zum Zitat X. Zhang, H. Wang, R.O. Scattergood, J. Narayan and C.C. Koch, Mechanical Properties of Cyromilled Nanocrystalline Zn Studied by the Miniaturized Disk Bend Test, Acta Mater., 2002, 50(13), p 3527–3533.CrossRef X. Zhang, H. Wang, R.O. Scattergood, J. Narayan and C.C. Koch, Mechanical Properties of Cyromilled Nanocrystalline Zn Studied by the Miniaturized Disk Bend Test, Acta Mater., 2002, 50(13), p 3527–3533.CrossRef
43.
Zurück zum Zitat N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki and T. Furuhara, Stress-Strain Behavior of Ferrite and Bainite with Nano-precipitation in Low Carbon Steels, Acta Mater., 2015, 83, p 383–396.CrossRef N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki and T. Furuhara, Stress-Strain Behavior of Ferrite and Bainite with Nano-precipitation in Low Carbon Steels, Acta Mater., 2015, 83, p 383–396.CrossRef
44.
Zurück zum Zitat L. Meng and I. Baker, Nitriding of a High Entropy FeNiMnAlCr Alloy, J. Alloy. Compd., 2015, 645, p 376–381.CrossRef L. Meng and I. Baker, Nitriding of a High Entropy FeNiMnAlCr Alloy, J. Alloy. Compd., 2015, 645, p 376–381.CrossRef
45.
Zurück zum Zitat E. Bailey and P.B. Hirsch, The Dislocation Distribution, Flow Stress, and Stored Energy in Cold-Worked Polycrystalline Silver, Philos. Mag., 1960, 5(53), p 485–497.CrossRef E. Bailey and P.B. Hirsch, The Dislocation Distribution, Flow Stress, and Stored Energy in Cold-Worked Polycrystalline Silver, Philos. Mag., 1960, 5(53), p 485–497.CrossRef
46.
Zurück zum Zitat A. Hughes and N. Hansen, Microstructure and Strength of Nickel at Large Strains, Acta Mater., 2000, 48, p 2985–3004.CrossRef A. Hughes and N. Hansen, Microstructure and Strength of Nickel at Large Strains, Acta Mater., 2000, 48, p 2985–3004.CrossRef
47.
Zurück zum Zitat J.Y. He, C. Zhu, D.Q. Zhou, W.H. Liu, T.G. Nieh and Z.P. Lu, Steady State Flow of the FeCoNiCrMn High Entropy Alloy at Elevated Temperatures, Intermetallics, 2014, 55, p 9–14.CrossRef J.Y. He, C. Zhu, D.Q. Zhou, W.H. Liu, T.G. Nieh and Z.P. Lu, Steady State Flow of the FeCoNiCrMn High Entropy Alloy at Elevated Temperatures, Intermetallics, 2014, 55, p 9–14.CrossRef
48.
Zurück zum Zitat G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler and E.P. George, Temperature Dependencies of the Elastic Moduli and Thermal Expansion Coefficient of an Equiatomic, Single-Phase CoCrFeMnNi High-Entropy Alloy, J. Alloy. Compd., 2015, 623, p 348–353.CrossRef G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler and E.P. George, Temperature Dependencies of the Elastic Moduli and Thermal Expansion Coefficient of an Equiatomic, Single-Phase CoCrFeMnNi High-Entropy Alloy, J. Alloy. Compd., 2015, 623, p 348–353.CrossRef
49.
Zurück zum Zitat S. Mahajan, Critique of Mechanisms of Formation of Deformation, Annealing and Growth Twins: Face-Centered Cubic Metals and Alloys, Scr. Mater., 2013, 68(2), p 95–99.CrossRef S. Mahajan, Critique of Mechanisms of Formation of Deformation, Annealing and Growth Twins: Face-Centered Cubic Metals and Alloys, Scr. Mater., 2013, 68(2), p 95–99.CrossRef
50.
Zurück zum Zitat Y.C. Xin, L.C. Lv, H.W. Chen, C. He, H.H. Yu and Q. Liu, Effect of Dislocation-Twin Boundary Interaction on Deformation by Twin Boundary Migration, Mater. Sci. Eng., A, 2016, 662, p 95–99.CrossRef Y.C. Xin, L.C. Lv, H.W. Chen, C. He, H.H. Yu and Q. Liu, Effect of Dislocation-Twin Boundary Interaction on Deformation by Twin Boundary Migration, Mater. Sci. Eng., A, 2016, 662, p 95–99.CrossRef
51.
Zurück zum Zitat B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345(6201), p 1153–1158.CrossRef B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345(6201), p 1153–1158.CrossRef
52.
Zurück zum Zitat L. Lu, Z.S. You and K. Lu, Work Hardening of Polycrystalline Cu with Nanoscale Twins, Scr. Mater., 2012, 66(11), p 837–842.CrossRef L. Lu, Z.S. You and K. Lu, Work Hardening of Polycrystalline Cu with Nanoscale Twins, Scr. Mater., 2012, 66(11), p 837–842.CrossRef
Metadaten
Titel
Mechanical Behaviors of Cold-Rolled and Subsequently Annealed Fe35Ni35Cr20Mn10 High-Entropy Alloy
verfasst von
Jun Zhou
Hengcheng Liao
Hao Chen
Aijing Huang
Publikationsdatum
12.07.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06016-4

Weitere Artikel der Ausgabe 11/2021

Journal of Materials Engineering and Performance 11/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.