Skip to main content
Erschienen in: Journal of Materials Science 21/2020

20.04.2020 | Materials for life sciences

Mechanical characterization of a polymeric scaffold for bone implant

verfasst von: Bankole I. Oladapo, Oluwadamilola B. Obisesan, Bowoto Oluwole, Victor A. Adebiyi, Hazrat Usman, Affan Khan

Erschienen in: Journal of Materials Science | Ausgabe 21/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The 3D printing of polyether ether ketone (PEEK) composite of lightweight, high strength, and relatively low-cost composite are rare. This is due to the high melting temperature and poor adhesion problems. This research carefully examines the computational characterization of the nanos-tructure and finite element analysis (FEA) of PEEK/hydroxyapatite (HAP)/-graphene oxide (GO) to solve the problems of high melting temperature and poor adhesion and makes it possible to achieve the lightweight characteristic. Based on the loading condition, a new principal stress trajectory is generated through FEA and used as the guidance for the placement path of PEEK/HAP/GO. The design of the hot extrusion head was implemented at the ambient temperature. Many essential factors were considered while printing PEEK/HAP/GO structures without distortion and degradation of the composite. Compression and traction tests were performed to investigate the mechanical properties of the new PEEK/HAP/GO structure. These were done using three-point flexure test techniques. The addition of physiologically active substances such as bioglass and the incorporation of porosity in PEEK/HAP/GO have been identified as an effective way to improve the osseointegration of bone-implant interfaces, produce a lightweight structure, and improve the biocompatibility of product. A 3000 mm/min printing speed was observed in the 3D-printed PEEK/HAP/GO, with a porosity of 1.2% of maximum increasing strength. This article will help researchers to strengthen their conceptual and computational knowledge of 3D printing tools and medical devices as well as explore future possibilities based on the use of PEEK/HAP/GO.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Siddiq AR, Kennedy AR (2015) Porous PEEK manufactured by a novel powder route using near-spherical salt bead porogens: characterisation and mechanical properties. Mech Sci Eng C 47:180–188CrossRef Siddiq AR, Kennedy AR (2015) Porous PEEK manufactured by a novel powder route using near-spherical salt bead porogens: characterisation and mechanical properties. Mech Sci Eng C 47:180–188CrossRef
2.
Zurück zum Zitat Sobieraj MC, Rimnac CM (2012) Behaviour of PEEK. In: Kurtz SM (ed) PEEK bioms handbook. WAP, Oxford, pp 61–73CrossRef Sobieraj MC, Rimnac CM (2012) Behaviour of PEEK. In: Kurtz SM (ed) PEEK bioms handbook. WAP, Oxford, pp 61–73CrossRef
3.
Zurück zum Zitat Toth JM (2012) Chapter 7-biocompatibility of PEEK polymers. In: Kurtz SM (ed) PEEK bioms handbook. WAP, Oxford, pp 81–92CrossRef Toth JM (2012) Chapter 7-biocompatibility of PEEK polymers. In: Kurtz SM (ed) PEEK bioms handbook. WAP, Oxford, pp 81–92CrossRef
5.
Zurück zum Zitat Schmidt M, Pohle D, Rechtenwald T (2007) SLS of PEEK. CIRP Ann 56:205–208CrossRef Schmidt M, Pohle D, Rechtenwald T (2007) SLS of PEEK. CIRP Ann 56:205–208CrossRef
6.
Zurück zum Zitat Vaezi M, Seitz H, Yang S (2013) A review on 3D micro-AM technologies. IJAMT 67:1721–1754 Vaezi M, Seitz H, Yang S (2013) A review on 3D micro-AM technologies. IJAMT 67:1721–1754
7.
Zurück zum Zitat Vadapalli S et al (2006) Biomechanical the rationale for using PEEK spacers FEA study. Spine 31:E992–E998CrossRef Vadapalli S et al (2006) Biomechanical the rationale for using PEEK spacers FEA study. Spine 31:E992–E998CrossRef
10.
Zurück zum Zitat Ijagbemi CO, Oladapo BI, Campbell HM, Ijagbemi CO (2016) Design and simulation of fatigue analysis for a vehicle suspension system (VSS) and its effect on global warming. Procedia Eng 159:124–132CrossRef Ijagbemi CO, Oladapo BI, Campbell HM, Ijagbemi CO (2016) Design and simulation of fatigue analysis for a vehicle suspension system (VSS) and its effect on global warming. Procedia Eng 159:124–132CrossRef
11.
Zurück zum Zitat Oladapo BI, Zahedi SA, Chong S, Omigbodun FT, Malachi IO (2020) 3D printing of surface characterisation and finite element analysis improvement of PEEK-HAP-GO in bone implant. Int J Adv Man Technol 106(3–4):829–841CrossRef Oladapo BI, Zahedi SA, Chong S, Omigbodun FT, Malachi IO (2020) 3D printing of surface characterisation and finite element analysis improvement of PEEK-HAP-GO in bone implant. Int J Adv Man Technol 106(3–4):829–841CrossRef
13.
Zurück zum Zitat Vaezi M, Yang SF (2015) A novel bioactive PEEK/HA composite with controlled 3D interconnected HA network. IJBiop 1:66–76 Vaezi M, Yang SF (2015) A novel bioactive PEEK/HA composite with controlled 3D interconnected HA network. IJBiop 1:66–76
15.
Zurück zum Zitat Vaezi M, Yang S (2015) Extru-based AM of PEEK for biomed. Appl Virtual Phys Prototyp 10:123–135CrossRef Vaezi M, Yang S (2015) Extru-based AM of PEEK for biomed. Appl Virtual Phys Prototyp 10:123–135CrossRef
16.
Zurück zum Zitat Zahedi SA, Kodsi C, Berto F (2019) Numerical predictions of U-notched sample failure based on a discrete energy argument. Theor Appl Fract Mech 100:298–306CrossRef Zahedi SA, Kodsi C, Berto F (2019) Numerical predictions of U-notched sample failure based on a discrete energy argument. Theor Appl Fract Mech 100:298–306CrossRef
17.
Zurück zum Zitat Yang HY, Yang SF, Chi XP, Evans JRG, Thompson I, Cook RJ, Robinson P (2008) Sintering behaviour of calcium phosphate filaments for use as hard tissue Scafd. JECS 28:159–167 Yang HY, Yang SF, Chi XP, Evans JRG, Thompson I, Cook RJ, Robinson P (2008) Sintering behaviour of calcium phosphate filaments for use as hard tissue Scafd. JECS 28:159–167
18.
Zurück zum Zitat Oladapo BI, Zahedi SA, Vahidnia F, Ikumapayi OM, Farooq MU (2018) Three-dimensional finite element analysis of a porcelain crowned tooth. Beni-Suef Univ J Basic Appl Sci 7(4):461–464CrossRef Oladapo BI, Zahedi SA, Vahidnia F, Ikumapayi OM, Farooq MU (2018) Three-dimensional finite element analysis of a porcelain crowned tooth. Beni-Suef Univ J Basic Appl Sci 7(4):461–464CrossRef
19.
Zurück zum Zitat Vaezi M, Yang SF (2015) A novel bioactive PEEK/HA composite with controlled 3D interconnected HA network. IJ Bioprint 1:66–76 Vaezi M, Yang SF (2015) A novel bioactive PEEK/HA composite with controlled 3D interconnected HA network. IJ Bioprint 1:66–76
20.
Zurück zum Zitat Miyanaji H, Momenzadeh N, Yang L (2018) Effect of printing speed on quality of printed parts in Binder Jetting process. Addit Manuf 20:1–10 Miyanaji H, Momenzadeh N, Yang L (2018) Effect of printing speed on quality of printed parts in Binder Jetting process. Addit Manuf 20:1–10
21.
Zurück zum Zitat Bhuthalingam R, Lim PQ, Irvine SA, Agrawal A, Mhaisalkar PS, An J, Chua CK, Venkatraman S (2015) A novel 3DP method for cell aligt. and difft. IJ Bioprint 1:57–65 Bhuthalingam R, Lim PQ, Irvine SA, Agrawal A, Mhaisalkar PS, An J, Chua CK, Venkatraman S (2015) A novel 3DP method for cell aligt. and difft. IJ Bioprint 1:57–65
22.
Zurück zum Zitat Adeoye AOM, Kayode JF, Oladapo BI, Afolabi SO (2017) Experimental analysis and optimization of synthesized magnetic nanoparticles coated with PMAMPC-MNPs for bioengineering application. St Petersburg Polytech Univ J Phys Math 3(4):333–338 Adeoye AOM, Kayode JF, Oladapo BI, Afolabi SO (2017) Experimental analysis and optimization of synthesized magnetic nanoparticles coated with PMAMPC-MNPs for bioengineering application. St Petersburg Polytech Univ J Phys Math 3(4):333–338
24.
Zurück zum Zitat Dizon JRC, Espera AH, Chen Q, Advincula RC (2018) Mechanical characterization of 3D-printed polymers. Addit Manuf 20:44–67 Dizon JRC, Espera AH, Chen Q, Advincula RC (2018) Mechanical characterization of 3D-printed polymers. Addit Manuf 20:44–67
25.
Zurück zum Zitat Shepherd JNH, Parker ST, Shepherd RF, Gillette MU, Lewis JA, Nuzzo RG (2011) 3D Microperiodic hydrogel scaffolds for robust neuronal cultures. AFM 21:47–54 Shepherd JNH, Parker ST, Shepherd RF, Gillette MU, Lewis JA, Nuzzo RG (2011) 3D Microperiodic hydrogel scaffolds for robust neuronal cultures. AFM 21:47–54
26.
Zurück zum Zitat Balogun VA, Oladapo BI (2016) Electrical energy demand modeling of 3D printing technology for sustainable manufacture. Int J Eng 29(7):954–961 Balogun VA, Oladapo BI (2016) Electrical energy demand modeling of 3D printing technology for sustainable manufacture. Int J Eng 29(7):954–961
28.
Zurück zum Zitat Oladapo BI, Zahedi SA, Adeoye AOM (2019) 3D printing of bone scaffolds with hybrid biomaterials. Compos Part B Eng 158:428–436CrossRef Oladapo BI, Zahedi SA, Adeoye AOM (2019) 3D printing of bone scaffolds with hybrid biomaterials. Compos Part B Eng 158:428–436CrossRef
30.
Zurück zum Zitat Fan JP, Tsui CP, Tang CY, Chow CL (2004) Influence of interphase layer on the overall elasto-plastic behaviors of HA/PEEK bioComposite. Biomaterials 25:5363–5373CrossRef Fan JP, Tsui CP, Tang CY, Chow CL (2004) Influence of interphase layer on the overall elasto-plastic behaviors of HA/PEEK bioComposite. Biomaterials 25:5363–5373CrossRef
31.
Zurück zum Zitat Abu Bakar MS, Cheang P, Khor KA (2003) Tensile properties and microstructural analysis of spheroidized HA-PEEK biocomposite. Mater Sci Eng A 345:55–63CrossRef Abu Bakar MS, Cheang P, Khor KA (2003) Tensile properties and microstructural analysis of spheroidized HA-PEEK biocomposite. Mater Sci Eng A 345:55–63CrossRef
32.
Zurück zum Zitat Zahedi SA, Demiral M, Roy A, Silberschmidt VV (2013) FE/SPH modelling of orthogonal micro-machining of fcc single crystal. Comput Mater Sci 78:104–109CrossRef Zahedi SA, Demiral M, Roy A, Silberschmidt VV (2013) FE/SPH modelling of orthogonal micro-machining of fcc single crystal. Comput Mater Sci 78:104–109CrossRef
33.
Zurück zum Zitat Zahedi SA, Roy A, Silberschmidt VV (2013) Modeling of micro-machining single-crystal FCC metals. Procedia CIRP 8:346–350CrossRef Zahedi SA, Roy A, Silberschmidt VV (2013) Modeling of micro-machining single-crystal FCC metals. Procedia CIRP 8:346–350CrossRef
34.
Zurück zum Zitat Zahedi SA, Demiral M, Roy A, Babitsky VI, Silberschmidt VV (2012) Indentation in FCC single crystals. Solid State Phenom 188:219–225CrossRef Zahedi SA, Demiral M, Roy A, Babitsky VI, Silberschmidt VV (2012) Indentation in FCC single crystals. Solid State Phenom 188:219–225CrossRef
35.
Zurück zum Zitat Zahedi SA, Roy A, Silberschmidt VV (2012) Modelling of vibration assisted machining FCC single crystal. Procedia CIRP 31:393–398CrossRef Zahedi SA, Roy A, Silberschmidt VV (2012) Modelling of vibration assisted machining FCC single crystal. Procedia CIRP 31:393–398CrossRef
36.
Zurück zum Zitat Zahedi SA (2014) Crystal-plasticity modelling of machining. PhD Thesis, Loughborough University Zahedi SA (2014) Crystal-plasticity modelling of machining. PhD Thesis, Loughborough University
37.
Zurück zum Zitat Zahedi SA, Roy A, Silberschmidt VV (2016) Variation of cutting forces in machining of FCC single crystals. Acta Mech 227(1):3–9CrossRef Zahedi SA, Roy A, Silberschmidt VV (2016) Variation of cutting forces in machining of FCC single crystals. Acta Mech 227(1):3–9CrossRef
38.
Zurück zum Zitat Xia Z, Shi Y, He H, Pan Y, Liu C (2018) Development of biodegradable bone graft substitutes using 3D printing. In: Liu C, He H (eds) Developments and applications of calcium phosphate bone cement. Springer, Singapore, pp 517–545CrossRef Xia Z, Shi Y, He H, Pan Y, Liu C (2018) Development of biodegradable bone graft substitutes using 3D printing. In: Liu C, He H (eds) Developments and applications of calcium phosphate bone cement. Springer, Singapore, pp 517–545CrossRef
41.
Zurück zum Zitat Berretta S (2015) Processability of PEEK, a new polymer for (HT-LS). Eur Polym J 68(Suppl. C):243–246CrossRef Berretta S (2015) Processability of PEEK, a new polymer for (HT-LS). Eur Polym J 68(Suppl. C):243–246CrossRef
42.
Zurück zum Zitat Wu W (2014) Manufacture and thermal deformation analysis of semicrystalline polymer polyether ether ketone by 3D printing. Mater Res Inn 18(Suppl. 5):S5–S12 Wu W (2014) Manufacture and thermal deformation analysis of semicrystalline polymer polyether ether ketone by 3D printing. Mater Res Inn 18(Suppl. 5):S5–S12
43.
Zurück zum Zitat Oladapo BI, Adeoye AOM, Ismail M (2018) Analytical optimization of a nanoparticle of microstructural fused deposition of resins for additive manufacturing. Compos Part B Eng 150(1):248–254CrossRef Oladapo BI, Adeoye AOM, Ismail M (2018) Analytical optimization of a nanoparticle of microstructural fused deposition of resins for additive manufacturing. Compos Part B Eng 150(1):248–254CrossRef
44.
Zurück zum Zitat Rahman KM (2015) Mechanical properties of additively manufactured PEEK components using fused filament fabrication. In: ASME 2015 international mechanical engineering congress and exposition, vol 2A, advanced manufacturing. Houston, Texas, p 57359 Rahman KM (2015) Mechanical properties of additively manufactured PEEK components using fused filament fabrication. In: ASME 2015 international mechanical engineering congress and exposition, vol 2A, advanced manufacturing. Houston, Texas, p 57359
45.
Zurück zum Zitat Javaid M, Haleem A (2018) Additive manufacturing applications in orthopaedics: a review. J Clin Orthop Trauma 9(3):202–206CrossRef Javaid M, Haleem A (2018) Additive manufacturing applications in orthopaedics: a review. J Clin Orthop Trauma 9(3):202–206CrossRef
46.
Zurück zum Zitat Oladapo BI, Zahedi SA, Chaluvadi SC, Bollapalli SS, Ismail M (2018) Model design of a superconducting quantum interference device of magnetic field sensors for magnetocardiography. Biomed Sig Proc Cont 46:116–120CrossRef Oladapo BI, Zahedi SA, Chaluvadi SC, Bollapalli SS, Ismail M (2018) Model design of a superconducting quantum interference device of magnetic field sensors for magnetocardiography. Biomed Sig Proc Cont 46:116–120CrossRef
47.
Zurück zum Zitat Evans NT, Torstrick FB, Lee CSD, Dupont KM, Safranski DL, Chang WA, Macedo AE, Lin AS, Boothby JM, Whittingslow DC et al (2015) High-strength, surface-porous polyether-ether-ketone for load-bearing orthopaedic implants. Acta Biomater 13:159–167CrossRef Evans NT, Torstrick FB, Lee CSD, Dupont KM, Safranski DL, Chang WA, Macedo AE, Lin AS, Boothby JM, Whittingslow DC et al (2015) High-strength, surface-porous polyether-ether-ketone for load-bearing orthopaedic implants. Acta Biomater 13:159–167CrossRef
48.
Zurück zum Zitat Haleem A, Javaid M (2019) 3D scanning applications in medical field: a literature-based review. Clin Epidemiol Glob Health 7(2):199–210CrossRef Haleem A, Javaid M (2019) 3D scanning applications in medical field: a literature-based review. Clin Epidemiol Glob Health 7(2):199–210CrossRef
50.
Zurück zum Zitat Oladapo BI, Zahedi SA, Omigbodun FT, Oshin EA, Adebiyi VA, Malachi OB (2019) Microstructural evaluation of aluminum alloy A365 T6 in machining operation. J Mater Res Technol 8(3):3213–3222CrossRef Oladapo BI, Zahedi SA, Omigbodun FT, Oshin EA, Adebiyi VA, Malachi OB (2019) Microstructural evaluation of aluminum alloy A365 T6 in machining operation. J Mater Res Technol 8(3):3213–3222CrossRef
52.
Zurück zum Zitat Aziz R, Haq MIU, Raina A (2020) Effect of surface texturing on friction behaviour of 3D printed polylactic acid (PLA). Polym Test 11(1):118–124 Aziz R, Haq MIU, Raina A (2020) Effect of surface texturing on friction behaviour of 3D printed polylactic acid (PLA). Polym Test 11(1):118–124
53.
Zurück zum Zitat Asil K, Yaldiz C (2016) Retrospective company patients who underwent lumbar spinal posterior stabilization. Medicine 95:e3235CrossRef Asil K, Yaldiz C (2016) Retrospective company patients who underwent lumbar spinal posterior stabilization. Medicine 95:e3235CrossRef
55.
Zurück zum Zitat Javaid M, Haleem A (2018) Additive manufacturing applications in medical cases: a literature-based review. Alex J Med 54(4):411–422CrossRef Javaid M, Haleem A (2018) Additive manufacturing applications in medical cases: a literature-based review. Alex J Med 54(4):411–422CrossRef
56.
Zurück zum Zitat Jiang R, Kleer R, Piller FT (2017) Predicting the future of AM Delphi study on economic and societal implications of 3D printing for 2030. Technol Forecast Soc Change 117:84–97CrossRef Jiang R, Kleer R, Piller FT (2017) Predicting the future of AM Delphi study on economic and societal implications of 3D printing for 2030. Technol Forecast Soc Change 117:84–97CrossRef
Metadaten
Titel
Mechanical characterization of a polymeric scaffold for bone implant
verfasst von
Bankole I. Oladapo
Oluwadamilola B. Obisesan
Bowoto Oluwole
Victor A. Adebiyi
Hazrat Usman
Affan Khan
Publikationsdatum
20.04.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 21/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04638-y

Weitere Artikel der Ausgabe 21/2020

Journal of Materials Science 21/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.