Skip to main content
Erschienen in: Cellulose 1/2019

05.01.2019 | Review Paper

Mechanochemistry of cellulose

verfasst von: Shigenori Kuga, Min Wu

Erschienen in: Cellulose | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mechanochemistry is a rapidly developing field in organic chemistry and materials processing. Its application to cellulose has not been abundant, but is giving rise to important discoveries after ca. 2010. Here the works on mechanochemical processing of cellulose and related substances are reviewed under classification of reaction types: saccharification, esterification, radical reactions, decrystallization/nano-dispersion. Historical development in each topic is tabulated. Special emphasis is laid on solid-state milling by ball mill/attritor. Notable recent findings are briefly commented. Potential of mechanical devices is discussed. 82 references.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Another important cellulose ester is nitrate, but challenge for it is not endorsed for its intrinsic hazard.
 
Literatur
Zurück zum Zitat Ago M, Endo T, Hirotsu T (2004) Crystalline transformation of native cellulose from cellulose I to cellulose ID polymorph by a ball-milling method with a specific amount of water. Cellulose 11:163–167CrossRef Ago M, Endo T, Hirotsu T (2004) Crystalline transformation of native cellulose from cellulose I to cellulose ID polymorph by a ball-milling method with a specific amount of water. Cellulose 11:163–167CrossRef
Zurück zum Zitat Ago M, Endo T, Okajima K (2007) Effect of solvent on morphological and structural change of cellulose under ball-milling. Polym J 39:435–441CrossRef Ago M, Endo T, Okajima K (2007) Effect of solvent on morphological and structural change of cellulose under ball-milling. Polym J 39:435–441CrossRef
Zurück zum Zitat Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z, Criado J, Delogu F, Dutková E, Gaffet E, Gotor F, Kumar R, Mitov I, Rojac T, Senna M, Streletskii A, Wieczorek-Ciurowa K (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42:7571–7637CrossRefPubMed Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z, Criado J, Delogu F, Dutková E, Gaffet E, Gotor F, Kumar R, Mitov I, Rojac T, Senna M, Streletskii A, Wieczorek-Ciurowa K (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42:7571–7637CrossRefPubMed
Zurück zum Zitat Bhama Iyer P, Sreenivasan S, Chidambareswaran PK, Patil NB (1984) Crystallization of amorphous cellulose. Text Res J 54:732–735CrossRef Bhama Iyer P, Sreenivasan S, Chidambareswaran PK, Patil NB (1984) Crystallization of amorphous cellulose. Text Res J 54:732–735CrossRef
Zurück zum Zitat Bhama Iyer P, Sreenivasan S, Chidambareswaran PK, Patil NB (1986) Recrystallization of cellulose. Text Res J 56:509–511CrossRef Bhama Iyer P, Sreenivasan S, Chidambareswaran PK, Patil NB (1986) Recrystallization of cellulose. Text Res J 56:509–511CrossRef
Zurück zum Zitat Breiby DW, Sølling TI, Bunk O, Nyberg RB, Norrman K, Nielsen MM (2005) Structural surprises in friction-deposited films of poly(tetrafluoroethylene). Macromolecules 38:2383–2390CrossRef Breiby DW, Sølling TI, Bunk O, Nyberg RB, Norrman K, Nielsen MM (2005) Structural surprises in friction-deposited films of poly(tetrafluoroethylene). Macromolecules 38:2383–2390CrossRef
Zurück zum Zitat Bruckmann A, Krebs A, Bolm C (2008) Organocatalytic reactions: effects of ball milling, microwave and ultrasound irradiation. Green Chem 10:1131–1141CrossRef Bruckmann A, Krebs A, Bolm C (2008) Organocatalytic reactions: effects of ball milling, microwave and ultrasound irradiation. Green Chem 10:1131–1141CrossRef
Zurück zum Zitat Calka A, Radlinski AP (1991) Universal high performance ball-milling device and its application for mechanical alloying. Mater Sci Eng A 134:1350–1353CrossRef Calka A, Radlinski AP (1991) Universal high performance ball-milling device and its application for mechanical alloying. Mater Sci Eng A 134:1350–1353CrossRef
Zurück zum Zitat Caulfield DF, Steffes RA (1969) Water-induced recrystallization of cellulose. TAPPI 52:1361–1366 Caulfield DF, Steffes RA (1969) Water-induced recrystallization of cellulose. TAPPI 52:1361–1366
Zurück zum Zitat Dornath P, Cho HJ, Paulsen A, Dauenhauer P, Fan W (2015) Efficient mechano-catalytic depolymerization of crystalline cellulose by formation of branched glucan chains. Green Chem 17:769–775CrossRef Dornath P, Cho HJ, Paulsen A, Dauenhauer P, Fan W (2015) Efficient mechano-catalytic depolymerization of crystalline cellulose by formation of branched glucan chains. Green Chem 17:769–775CrossRef
Zurück zum Zitat Fokina EL, Budim NI, Kochnev VG, Chernik GG (2004) Planetary mills of periodic and continuous action. J Mater Sci 39:5217–5221CrossRef Fokina EL, Budim NI, Kochnev VG, Chernik GG (2004) Planetary mills of periodic and continuous action. J Mater Sci 39:5217–5221CrossRef
Zurück zum Zitat Friščić T (2012) Supramolecular concepts and new techniques in mechanochemistry: cocrystals, cages, rotaxanes, open metal–organic frameworks. Chem Soc Rev 41:3493–3510CrossRefPubMed Friščić T (2012) Supramolecular concepts and new techniques in mechanochemistry: cocrystals, cages, rotaxanes, open metal–organic frameworks. Chem Soc Rev 41:3493–3510CrossRefPubMed
Zurück zum Zitat Furcht PW, Silla H (1990) Comparison of simultaneous wet milling and enzymatic hydrolysis of cellulose in ball mill and attrition mill reactors. Biotechnol Bioeng 35:630–645CrossRefPubMed Furcht PW, Silla H (1990) Comparison of simultaneous wet milling and enzymatic hydrolysis of cellulose in ball mill and attrition mill reactors. Biotechnol Bioeng 35:630–645CrossRefPubMed
Zurück zum Zitat Gaffet E et al (1999) Some recent developments in mechanical activation and mechanosynthesis. J Mater Chem 9:305–314CrossRef Gaffet E et al (1999) Some recent developments in mechanical activation and mechanosynthesis. J Mater Chem 9:305–314CrossRef
Zurück zum Zitat Gan T, Zhang Y, Su Y, Hu H, Huang H, Huang Z, Chen D, Yang M, Wu J (2017) Esterification of bagasse cellulose with metal salts as efficient catalyst in mechanical activation-assisted solid phase reaction system. Cellulose 24:5371–5387CrossRef Gan T, Zhang Y, Su Y, Hu H, Huang H, Huang Z, Chen D, Yang M, Wu J (2017) Esterification of bagasse cellulose with metal salts as efficient catalyst in mechanical activation-assisted solid phase reaction system. Cellulose 24:5371–5387CrossRef
Zurück zum Zitat Hermans PH, Weidinger A (1946) On the recrystallization of amorphous cellulose. J Am Chem Soc 68:2547–2552CrossRef Hermans PH, Weidinger A (1946) On the recrystallization of amorphous cellulose. J Am Chem Soc 68:2547–2552CrossRef
Zurück zum Zitat Hermans PH, Weidinger A (1949) Change in crystallinity upon heterogeneous acid hydrolysis of cellulose fibers. J Polym Sci 4:317–322CrossRef Hermans PH, Weidinger A (1949) Change in crystallinity upon heterogeneous acid hydrolysis of cellulose fibers. J Polym Sci 4:317–322CrossRef
Zurück zum Zitat Hess K, Kiessig H, Gundermann J (1941) Röntgenographische und elektronenmikroskopische. Z Phys Chem 49B:64–82 Hess K, Kiessig H, Gundermann J (1941) Röntgenographische und elektronenmikroskopische. Z Phys Chem 49B:64–82
Zurück zum Zitat Hick SM, Griebel C, Restrepo DT, Truitt JH, Buker EJ, Bylda C, Blair RG (2010) Mechanocatalysis for biomass-derived chemicals and fuels. Green Chem 12:468–474CrossRef Hick SM, Griebel C, Restrepo DT, Truitt JH, Buker EJ, Bylda C, Blair RG (2010) Mechanocatalysis for biomass-derived chemicals and fuels. Green Chem 12:468–474CrossRef
Zurück zum Zitat Hilgert J, Meine N, Rinaldi R, Schüth F (2013) Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols. Energy Environ Sci 6:92–96CrossRef Hilgert J, Meine N, Rinaldi R, Schüth F (2013) Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols. Energy Environ Sci 6:92–96CrossRef
Zurück zum Zitat Hon DN-S (1979) Formation and behavior of mechanoradicals in pulp cellulose. J Appl Polym Sci 23:1487–1499CrossRef Hon DN-S (1979) Formation and behavior of mechanoradicals in pulp cellulose. J Appl Polym Sci 23:1487–1499CrossRef
Zurück zum Zitat Hon DN-S (1980) On the reactivity of cellulose free radicals in graft copolymerization reactions. J Polym Sci A-Polym Chem 18:1857–1869CrossRef Hon DN-S (1980) On the reactivity of cellulose free radicals in graft copolymerization reactions. J Polym Sci A-Polym Chem 18:1857–1869CrossRef
Zurück zum Zitat Howsmon JA, Marchessault RH (1959) The ball-milling of cellulose fibers and recrystallization effects. J Appl Polym Sci 1:313–322CrossRef Howsmon JA, Marchessault RH (1959) The ball-milling of cellulose fibers and recrystallization effects. J Appl Polym Sci 1:313–322CrossRef
Zurück zum Zitat Hu H et al (2015) Green mechanical activation-assisted solid phase synthesis of cellulose esters using a co-reactant: effect of chain length of fatty acids on reaction efficiency and structure properties of products. RSC Adv 5:20656–20662CrossRef Hu H et al (2015) Green mechanical activation-assisted solid phase synthesis of cellulose esters using a co-reactant: effect of chain length of fatty acids on reaction efficiency and structure properties of products. RSC Adv 5:20656–20662CrossRef
Zurück zum Zitat Huang P, Wu M, Kuga S, Wang D, Wu D, Huang Y (2012) One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent. ChemSusChem 5:2319–2322CrossRefPubMed Huang P, Wu M, Kuga S, Wang D, Wu D, Huang Y (2012) One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent. ChemSusChem 5:2319–2322CrossRefPubMed
Zurück zum Zitat Huang P, Wu M, Kuga S, Wang D, Wu D, Huang Y (2015) Aqueous pretreatment for reactive ball milling of cellulose. Cellulose 20:2175–2178CrossRef Huang P, Wu M, Kuga S, Wang D, Wu D, Huang Y (2015) Aqueous pretreatment for reactive ball milling of cellulose. Cellulose 20:2175–2178CrossRef
Zurück zum Zitat James SL et al (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41:413–447CrossRefPubMed James SL et al (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41:413–447CrossRefPubMed
Zurück zum Zitat Jones EO, Lee JM (1988) Kinetic analysis of bioconversion of cellulose in attrition bioreactor. Biotechnol Bioeng 31:35–40CrossRefPubMed Jones EO, Lee JM (1988) Kinetic analysis of bioconversion of cellulose in attrition bioreactor. Biotechnol Bioeng 31:35–40CrossRefPubMed
Zurück zum Zitat Käldström M, Meine N, Farès C, Schüth F, Rinaldi R (2014) Deciphering ‘water-soluble lignocellulose’ obtained by mechanocatalysis: new insights into the chemical processes leading to deep depolymerization. Green Chem 16:3528–3538CrossRef Käldström M, Meine N, Farès C, Schüth F, Rinaldi R (2014) Deciphering ‘water-soluble lignocellulose’ obtained by mechanocatalysis: new insights into the chemical processes leading to deep depolymerization. Green Chem 16:3528–3538CrossRef
Zurück zum Zitat Kaneniwa N, Ikekawa A (1972) Influence of ball-milling atmosphere on decrease of molecular weight of polyvinylpyrrolidone powders. Chem Pharm Bull 20:1536–1543CrossRef Kaneniwa N, Ikekawa A (1972) Influence of ball-milling atmosphere on decrease of molecular weight of polyvinylpyrrolidone powders. Chem Pharm Bull 20:1536–1543CrossRef
Zurück zum Zitat Kaufman Rechulski MD, Käldström M, Richter U, Schüth F, Rinaldi R (2015) Mechanocatalytic depolymerization of lignocellulose performed on hectogram and kilogram scales. Ind Eng Chem Res 54:4581–4592CrossRef Kaufman Rechulski MD, Käldström M, Richter U, Schüth F, Rinaldi R (2015) Mechanocatalytic depolymerization of lignocellulose performed on hectogram and kilogram scales. Ind Eng Chem Res 54:4581–4592CrossRef
Zurück zum Zitat Kaupp G (2005) Organic solid-state reactions with 100% Yield. In: Toda F (ed) Organic solid state reactions. Springer, Berlin, pp 95–183CrossRef Kaupp G (2005) Organic solid-state reactions with 100% Yield. In: Toda F (ed) Organic solid state reactions. Springer, Berlin, pp 95–183CrossRef
Zurück zum Zitat Kaupp G (2006) Waste-free large-scale syntheses without auxiliaries for sustainable production omitting purifying workup. CrystEngComm 8:794–804CrossRef Kaupp G (2006) Waste-free large-scale syntheses without auxiliaries for sustainable production omitting purifying workup. CrystEngComm 8:794–804CrossRef
Zurück zum Zitat Kaupp G, Schmeyers J, Naimi-Jamal MR, Zoz H, Ren H (2002) Reactive milling with the Simoloyer®: environmentally benign quantitative reactions without solvents and wastes. Chem Eng Sci 57:763–765CrossRef Kaupp G, Schmeyers J, Naimi-Jamal MR, Zoz H, Ren H (2002) Reactive milling with the Simoloyer®: environmentally benign quantitative reactions without solvents and wastes. Chem Eng Sci 57:763–765CrossRef
Zurück zum Zitat Kelsey RG, Shafizadeh F (1980) Enhancement of cellulose accessibility and enzymatic hydrolysis by simultaneous wet milling. Biotechnol Bioeng 22:1025–1036CrossRef Kelsey RG, Shafizadeh F (1980) Enhancement of cellulose accessibility and enzymatic hydrolysis by simultaneous wet milling. Biotechnol Bioeng 22:1025–1036CrossRef
Zurück zum Zitat Kleine T, Buendia J, Bolm C (2013) Mechanochemical degradation of lignin and wood by solvent-free grinding in a reactive medium. Green Chem 15:160–166CrossRef Kleine T, Buendia J, Bolm C (2013) Mechanochemical degradation of lignin and wood by solvent-free grinding in a reactive medium. Green Chem 15:160–166CrossRef
Zurück zum Zitat Kuzuya M, Yamauchi Y, S-i Kondo (1999) Mechanolysis of glucose-based polysaccharides as studied by electron spin resonance. J Phys Chem B 103:8051–8059CrossRef Kuzuya M, Yamauchi Y, S-i Kondo (1999) Mechanolysis of glucose-based polysaccharides as studied by electron spin resonance. J Phys Chem B 103:8051–8059CrossRef
Zurück zum Zitat Lu Q, Lin W, Tang L, Wang S, Chen X, Huang B (2015a) A mechanochemical approach to manufacturing bamboo cellulose nanocrystals. J Mater Sci 50:611–619CrossRef Lu Q, Lin W, Tang L, Wang S, Chen X, Huang B (2015a) A mechanochemical approach to manufacturing bamboo cellulose nanocrystals. J Mater Sci 50:611–619CrossRef
Zurück zum Zitat Lu Q-l, Li X-y, Tang L-r, Lu B-l, Huang B (2015b) One-pot tandem reactions for the preparation of esterified cellulose nanocrystals with 4-dimethylaminopyridine as a catalyst. RSC Adv 5:56198–56204CrossRef Lu Q-l, Li X-y, Tang L-r, Lu B-l, Huang B (2015b) One-pot tandem reactions for the preparation of esterified cellulose nanocrystals with 4-dimethylaminopyridine as a catalyst. RSC Adv 5:56198–56204CrossRef
Zurück zum Zitat Mais U, Esteghlalian AR, Saddler JN, Mansfield SD (2002) Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling. Appl Biochem Biotechnol 98:815–832CrossRefPubMed Mais U, Esteghlalian AR, Saddler JN, Mansfield SD (2002) Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling. Appl Biochem Biotechnol 98:815–832CrossRefPubMed
Zurück zum Zitat May PA, Moore JS (2013) Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chem Soc Rev 42:7497–7506CrossRefPubMed May PA, Moore JS (2013) Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chem Soc Rev 42:7497–7506CrossRefPubMed
Zurück zum Zitat Meine N, Rinaldi R, Schüth F (2012) Solvent-free catalytic depolymerization of cellulose to water-soluble oligosaccharides. ChemSusChem 5:1449–1454CrossRefPubMed Meine N, Rinaldi R, Schüth F (2012) Solvent-free catalytic depolymerization of cellulose to water-soluble oligosaccharides. ChemSusChem 5:1449–1454CrossRefPubMed
Zurück zum Zitat Motokawa T, Makino M, Enomoto-Rogers Y, Kawaguchi T, Ohura T, Iwata T, Sakaguchi M (2015) Novel method of the surface modification of the microcrystalline cellulose powder with poly(isobutyl vinyl ether) using mechanochemical polymerization. Adv Powder Technol 26:1383–1390CrossRef Motokawa T, Makino M, Enomoto-Rogers Y, Kawaguchi T, Ohura T, Iwata T, Sakaguchi M (2015) Novel method of the surface modification of the microcrystalline cellulose powder with poly(isobutyl vinyl ether) using mechanochemical polymerization. Adv Powder Technol 26:1383–1390CrossRef
Zurück zum Zitat Murata Y, Han A, Komatsu K (2003) Mechanochemical synthesis of a novel C60 dimer connected by a germanium bridge and a single bond. Tetrahedron Lett 44:8199–8201CrossRef Murata Y, Han A, Komatsu K (2003) Mechanochemical synthesis of a novel C60 dimer connected by a germanium bridge and a single bond. Tetrahedron Lett 44:8199–8201CrossRef
Zurück zum Zitat Nakagawa YS et al (2011) Development of innovative technologies to decrease the environmental burdens associated with using chitin as a biomass resource: mechanochemical grinding and enzymatic degradation. Carbohydr Polym 83:1843–1849CrossRef Nakagawa YS et al (2011) Development of innovative technologies to decrease the environmental burdens associated with using chitin as a biomass resource: mechanochemical grinding and enzymatic degradation. Carbohydr Polym 83:1843–1849CrossRef
Zurück zum Zitat Neilson MJ, Kelsey RG, Shafizadeh F (1982) Enhancement of enzymatic hydrolysis by simultaneous attrition of cellulosic substrates. Biotechnol Bioeng 24:293–304CrossRefPubMed Neilson MJ, Kelsey RG, Shafizadeh F (1982) Enhancement of enzymatic hydrolysis by simultaneous attrition of cellulosic substrates. Biotechnol Bioeng 24:293–304CrossRefPubMed
Zurück zum Zitat Niu Y, Zhang X, He X, Zhao J, Zhang W, Lu C (2015) Effective dispersion and crosslinking in PVA/cellulose fiber biocomposites via solid-state mechanochemistry. Int J Biol Macromol 72:855–861CrossRefPubMed Niu Y, Zhang X, He X, Zhao J, Zhang W, Lu C (2015) Effective dispersion and crosslinking in PVA/cellulose fiber biocomposites via solid-state mechanochemistry. Int J Biol Macromol 72:855–861CrossRefPubMed
Zurück zum Zitat Ott RL (1964) Mechanism of the mechanical degradation of cellulose. J Polym Sci A: Gen Pap 2:973–982 Ott RL (1964) Mechanism of the mechanical degradation of cellulose. J Polym Sci A: Gen Pap 2:973–982
Zurück zum Zitat Paes SS, Sun S, MacNaughtan W, Ibbett R, Ganster J, Foster TJ, Mitchell JR (2010) The glass transition and crystallization of ball milled cellulose. Cellulose 17:693–709CrossRef Paes SS, Sun S, MacNaughtan W, Ibbett R, Ganster J, Foster TJ, Mitchell JR (2010) The glass transition and crystallization of ball milled cellulose. Cellulose 17:693–709CrossRef
Zurück zum Zitat Qi X, Yang G, Jing M, Fu Q, Chiu F-C (2014) Microfibrillated cellulose-reinforced bio-based poly(propylene carbonate) with dual shape memory and self-healing properties. J Mater Chem A 2:20393–20401CrossRef Qi X, Yang G, Jing M, Fu Q, Chiu F-C (2014) Microfibrillated cellulose-reinforced bio-based poly(propylene carbonate) with dual shape memory and self-healing properties. J Mater Chem A 2:20393–20401CrossRef
Zurück zum Zitat Qiu W, Zhang F, Endo T, Hirotsu T (2004) Milling-induced esterification between cellulose and maleated polypropylene. J Appl Polym Sci 91:1703–1709CrossRef Qiu W, Zhang F, Endo T, Hirotsu T (2004) Milling-induced esterification between cellulose and maleated polypropylene. J Appl Polym Sci 91:1703–1709CrossRef
Zurück zum Zitat Rao X, Kuga S, Wu M, Huang Y (2015) Influence of solvent polarity on surface-fluorination of cellulose nanofiber by ball milling. Cellulose 22:2341–2348CrossRef Rao X, Kuga S, Wu M, Huang Y (2015) Influence of solvent polarity on surface-fluorination of cellulose nanofiber by ball milling. Cellulose 22:2341–2348CrossRef
Zurück zum Zitat Rodriguez B, Bruckmann A, Rantanen T, Bolm C (2007) Solvent-free carbon–carbon bond formations in ball mills. Adv Synth Catal 349:2213–2233CrossRef Rodriguez B, Bruckmann A, Rantanen T, Bolm C (2007) Solvent-free carbon–carbon bond formations in ball mills. Adv Synth Catal 349:2213–2233CrossRef
Zurück zum Zitat Ryu SK, Lee JM (1983) Bioconversion of waste cellulose by using an attrition bioreactor. Biotechnol Bioeng 25:53–65CrossRefPubMed Ryu SK, Lee JM (1983) Bioconversion of waste cellulose by using an attrition bioreactor. Biotechnol Bioeng 25:53–65CrossRefPubMed
Zurück zum Zitat Sakaguchi M et al (2010) Diblock copolymer of bacterial cellulose and poly(methyl methacrylate) initiated by chain-end-type radicals produced by mechanical scission of glycosidic linkages of bacterial cellulose. Biomacromolecules 11:3059–3066CrossRefPubMed Sakaguchi M et al (2010) Diblock copolymer of bacterial cellulose and poly(methyl methacrylate) initiated by chain-end-type radicals produced by mechanical scission of glycosidic linkages of bacterial cellulose. Biomacromolecules 11:3059–3066CrossRefPubMed
Zurück zum Zitat Sakaguchi M, Ohura T, Iwata T, Enomoto-Rogers Y (2012) Nano cellulose particles covered with block copolymer of cellulose and methyl methacrylate produced by solid mechano chemical polymerization. Polym Degrad Stab 97:257–263CrossRef Sakaguchi M, Ohura T, Iwata T, Enomoto-Rogers Y (2012) Nano cellulose particles covered with block copolymer of cellulose and methyl methacrylate produced by solid mechano chemical polymerization. Polym Degrad Stab 97:257–263CrossRef
Zurück zum Zitat Schmidt R, Fuhrmann S, Wondraczek L, Stolle A (2016) Influence of reaction parameters on the depolymerization of H2SO4-impregnated cellulose in planetary ball mills. Powder Technol 288:123–131CrossRef Schmidt R, Fuhrmann S, Wondraczek L, Stolle A (2016) Influence of reaction parameters on the depolymerization of H2SO4-impregnated cellulose in planetary ball mills. Powder Technol 288:123–131CrossRef
Zurück zum Zitat Schüth F, Rinaldi R, Meine N, Käldström M, Hilgert J, Rechulski MDK (2014) Mechanocatalytic depolymerization of cellulose and raw biomass and downstream processing of the products. Catal Today 234:24–30CrossRef Schüth F, Rinaldi R, Meine N, Käldström M, Hilgert J, Rechulski MDK (2014) Mechanocatalytic depolymerization of cellulose and raw biomass and downstream processing of the products. Catal Today 234:24–30CrossRef
Zurück zum Zitat Senna M (2010) The promising aspects of processing nanomaterials under mechanical stressing for physicochemical viewpoints. Adva Powder Technol 21:586–591CrossRef Senna M (2010) The promising aspects of processing nanomaterials under mechanical stressing for physicochemical viewpoints. Adva Powder Technol 21:586–591CrossRef
Zurück zum Zitat Shrotri A, Lambert LK, Tanksale A, Beltramini J (2013) Mechanical depolymerisation of acidulated cellulose: understanding the solubility of high molecular weight oligomers. Green Chem 15:2761–2768CrossRef Shrotri A, Lambert LK, Tanksale A, Beltramini J (2013) Mechanical depolymerisation of acidulated cellulose: understanding the solubility of high molecular weight oligomers. Green Chem 15:2761–2768CrossRef
Zurück zum Zitat Shrotri A, Kobayashi H, Fukuoka A (2016) Mechanochemical synthesis of a carboxylated carbon catalyst and its application in cellulose hydrolysis. ChemCatChem 8:1059–1064CrossRef Shrotri A, Kobayashi H, Fukuoka A (2016) Mechanochemical synthesis of a carboxylated carbon catalyst and its application in cellulose hydrolysis. ChemCatChem 8:1059–1064CrossRef
Zurück zum Zitat Sirviö J, Liimatainen H, Niinimäki J, Hormi O (2011) Dialdehyde cellulose microfibers generated from wood pulp by milling-induced periodate oxidation. Carbohydr Polym 86:260–265CrossRef Sirviö J, Liimatainen H, Niinimäki J, Hormi O (2011) Dialdehyde cellulose microfibers generated from wood pulp by milling-induced periodate oxidation. Carbohydr Polym 86:260–265CrossRef
Zurück zum Zitat Solala I, Henniges U, Pirker KF, Rosenau T, Potthast A, Vuorinen T (2015) Mechanochemical reactions of cellulose and styrene. Cellulose 22:3217–3224CrossRef Solala I, Henniges U, Pirker KF, Rosenau T, Potthast A, Vuorinen T (2015) Mechanochemical reactions of cellulose and styrene. Cellulose 22:3217–3224CrossRef
Zurück zum Zitat Su J, Qiu M, Shen F, Qi X (2018) Efficient hydrolysis of cellulose to glucose in water by agricultural residue-derived solid acid catalyst. Cellulose 25:17–22CrossRef Su J, Qiu M, Shen F, Qi X (2018) Efficient hydrolysis of cellulose to glucose in water by agricultural residue-derived solid acid catalyst. Cellulose 25:17–22CrossRef
Zurück zum Zitat Sun P, Kuga S, Wu M, Huang Y (2014) Exfoliation of graphite by dry ball milling with cellulose. Cellulose 21:2469–2478CrossRef Sun P, Kuga S, Wu M, Huang Y (2014) Exfoliation of graphite by dry ball milling with cellulose. Cellulose 21:2469–2478CrossRef
Zurück zum Zitat Tang L, Huang B, Yang N, Li T, Lu Q, Lin W, Chen X (2013) Organic solvent-free and efficient manufacture of functionalized cellulose nanocrystals via one-pot tandem reactions. Green Chem 15:2369–2373CrossRef Tang L, Huang B, Yang N, Li T, Lu Q, Lin W, Chen X (2013) Organic solvent-free and efficient manufacture of functionalized cellulose nanocrystals via one-pot tandem reactions. Green Chem 15:2369–2373CrossRef
Zurück zum Zitat Tjerneld F, Persson I, Lee JM (1991) Enzymatic cellulose hydrolysis in an attrition bioreactor combined with an aqueous two-phase system. Biotechnol Bioeng 37:876–882CrossRefPubMed Tjerneld F, Persson I, Lee JM (1991) Enzymatic cellulose hydrolysis in an attrition bioreactor combined with an aqueous two-phase system. Biotechnol Bioeng 37:876–882CrossRefPubMed
Zurück zum Zitat Toda F, Yagi M, Kiyoshige K (1988) Baeyer–Villiger reaction in the solid state. J Chem Soc-Chem Commun 14:958–959CrossRef Toda F, Yagi M, Kiyoshige K (1988) Baeyer–Villiger reaction in the solid state. J Chem Soc-Chem Commun 14:958–959CrossRef
Zurück zum Zitat Toda F, Kiyoshige K, Yagi M (1989) NaBH4 reduction of ketones in the solid state. Angew Chem Int Ed 28:320–321CrossRef Toda F, Kiyoshige K, Yagi M (1989) NaBH4 reduction of ketones in the solid state. Angew Chem Int Ed 28:320–321CrossRef
Zurück zum Zitat Toda F, Tanaka K, Hamai K (1990) Aldol condensations in the absence of solvent: acceleration of the reaction and enhancement of the stereoselectivity. J Chem Soc-Perkin Trans 1:3207–3209CrossRef Toda F, Tanaka K, Hamai K (1990) Aldol condensations in the absence of solvent: acceleration of the reaction and enhancement of the stereoselectivity. J Chem Soc-Perkin Trans 1:3207–3209CrossRef
Zurück zum Zitat Wang G-W, Komatsu K, Murata Y, Shiro M (1997) Synthesis and X-ray structure of dumb-bell-shaped C-120. Nature 387:583–586CrossRef Wang G-W, Komatsu K, Murata Y, Shiro M (1997) Synthesis and X-ray structure of dumb-bell-shaped C-120. Nature 387:583–586CrossRef
Zurück zum Zitat Wu Z-H, Sumimoto M, Tanaka H (1995) Generation of oxygen-containing radicals in the aqueous media of mechanical pulping. J Wood Chem Technol 15:27–42CrossRef Wu Z-H, Sumimoto M, Tanaka H (1995) Generation of oxygen-containing radicals in the aqueous media of mechanical pulping. J Wood Chem Technol 15:27–42CrossRef
Zurück zum Zitat Xing H, Yaylayan VA (2018) Mechanochemical depolymerization of inulin. Carbohydr Res 460:14–18CrossRefPubMed Xing H, Yaylayan VA (2018) Mechanochemical depolymerization of inulin. Carbohydr Res 460:14–18CrossRefPubMed
Zurück zum Zitat Yabushita M, Kobayashi H, Hara K, Fukuoka A (2014) Quantitative evaluation of ball-milling effects on the hydrolysis of cellulose catalysed by activated carbon. Catal Sci Technol 4:2312–2317CrossRef Yabushita M, Kobayashi H, Hara K, Fukuoka A (2014) Quantitative evaluation of ball-milling effects on the hydrolysis of cellulose catalysed by activated carbon. Catal Sci Technol 4:2312–2317CrossRef
Zurück zum Zitat Yabushita M, Kobayashi H, Kuroki K, Ito S, Fukuoka A (2015) Catalytic depolymerization of chitin with retention of N-acetyl group. ChemSusChem 8:3760–3763CrossRefPubMed Yabushita M, Kobayashi H, Kuroki K, Ito S, Fukuoka A (2015) Catalytic depolymerization of chitin with retention of N-acetyl group. ChemSusChem 8:3760–3763CrossRefPubMed
Zurück zum Zitat Yan L, Li W, Qi Z, Liu S (2006) Solvent-free synthesis of cellulose acetate by solid superacid catalysis. J Polym Res 13:375–378CrossRef Yan L, Li W, Qi Z, Liu S (2006) Solvent-free synthesis of cellulose acetate by solid superacid catalysis. J Polym Res 13:375–378CrossRef
Zurück zum Zitat Zhang Q, Jérôme F (2013) Mechanocatalytic deconstruction of cellulose: an emerging entry into biorefinery. ChemSusChem 6:2042–2044CrossRefPubMed Zhang Q, Jérôme F (2013) Mechanocatalytic deconstruction of cellulose: an emerging entry into biorefinery. ChemSusChem 6:2042–2044CrossRefPubMed
Zurück zum Zitat Zhang F, Qiu W, Yang L, Endo T, Hirotsu T (2002) Mechanochemical preparation and properties of a cellulose–polyethylene composite. J Mater Chem 12:24–26CrossRef Zhang F, Qiu W, Yang L, Endo T, Hirotsu T (2002) Mechanochemical preparation and properties of a cellulose–polyethylene composite. J Mater Chem 12:24–26CrossRef
Zurück zum Zitat Zhang W, Li C, Liang M, Geng Y, Lu C (2010) Preparation of carboxylate-functionalized cellulose via solvent-free mechanochemistry and its characterization as a biosorbent for removal of Pb2+ from aqueous solution. J Hazard Mater 181:468–473CrossRefPubMed Zhang W, Li C, Liang M, Geng Y, Lu C (2010) Preparation of carboxylate-functionalized cellulose via solvent-free mechanochemistry and its characterization as a biosorbent for removal of Pb2+ from aqueous solution. J Hazard Mater 181:468–473CrossRefPubMed
Zurück zum Zitat Zhang Q, Benoit M, De Oliveira Vigier K, Barrault J, Jégou G, Philippe M, Jérôme F (2013) Pretreatment of microcrystalline cellulose by ultrasounds: effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose. Green Chem 15:963–969CrossRef Zhang Q, Benoit M, De Oliveira Vigier K, Barrault J, Jégou G, Philippe M, Jérôme F (2013) Pretreatment of microcrystalline cellulose by ultrasounds: effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose. Green Chem 15:963–969CrossRef
Zurück zum Zitat Zhao H, Kwak JH, Wang Y, Franz JA, White JM, Holladay JE (2006) Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study. Energy Fuels 20:807–811CrossRef Zhao H, Kwak JH, Wang Y, Franz JA, White JM, Holladay JE (2006) Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study. Energy Fuels 20:807–811CrossRef
Zurück zum Zitat Zhao M, Kuga S, Jiang S, Wu M, Huang Y (2016a) Cellulose nanosheets induced by mechanical impacts under hydrophobic environment. Cellulose 23:2809–2818CrossRef Zhao M, Kuga S, Jiang S, Wu M, Huang Y (2016a) Cellulose nanosheets induced by mechanical impacts under hydrophobic environment. Cellulose 23:2809–2818CrossRef
Zurück zum Zitat Zhao M, Kuga S, Wu M, Huang Y (2016b) Hydrophobic nanocoating of cellulose by solventless mechanical milling. Green Chem 18:3006–3012CrossRef Zhao M, Kuga S, Wu M, Huang Y (2016b) Hydrophobic nanocoating of cellulose by solventless mechanical milling. Green Chem 18:3006–3012CrossRef
Zurück zum Zitat Zoz H, Ernst D, Reichardt R, Ren H, Mizutani T, Nishida M, Okouchi H (1999) Simoloyer CM100s: semi-continuous mechanical alloying on a production scale using cycle operation-Part II. Mater Manuf Process 14:861–874CrossRef Zoz H, Ernst D, Reichardt R, Ren H, Mizutani T, Nishida M, Okouchi H (1999) Simoloyer CM100s: semi-continuous mechanical alloying on a production scale using cycle operation-Part II. Mater Manuf Process 14:861–874CrossRef
Metadaten
Titel
Mechanochemistry of cellulose
verfasst von
Shigenori Kuga
Min Wu
Publikationsdatum
05.01.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 1/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-2197-1

Weitere Artikel der Ausgabe 1/2019

Cellulose 1/2019 Zur Ausgabe