Skip to main content
Erschienen in: Cellulose 1/2019

13.12.2018 | Review Paper

Structure/function relationships in the rosette cellulose synthesis complex illuminated by an evolutionary perspective

verfasst von: Candace H. Haigler, Alison W. Roberts

Erschienen in: Cellulose | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellulose microfibrils are a key component of plant cell walls, which in turn compose most of our renewable biomaterials. Consequently, there is considerable interest in understanding how cellulose microfibrils are made in living cells by the plant cellulose synthesis complex (CSC). This remarkable multi-subunit complex contains cellulose synthase (CESA) proteins, and it is often called a rosette due to its six-lobed shape. Each CSC moves within the plasma membrane as it spins a strong cellulose microfibril in its wake. To accomplish this biological manufacturing process, the CESAs harvest an activated sugar substrate from the cytoplasm for use in the polymerization of glucan chains. An elongating glucan is simultaneously translocated across the plasma membrane by each CESA, where the group of chains emanating from one CSC co-crystallizes into a cellulose microfibril that becomes part of the assembling cell wall. Here we review major advances in understanding CESA and CSC structure/function relationships since 2013, when ground-breaking insights about the structure of cellulose synthases in bacteria and plants were published. We additionally discuss: (a) the relationship of CSC substructure to the size of the fundamental cellulose fibril; (b) an evolutionary perspective on the driving force behind the existence of hetero-oligomeric CSCs that currently appear to dominate in land plants; and (c) how cellulose properties may be regulated by CESA and CSC activity. We also pose major questions that still remain in this rapidly changing and exciting research field.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Arioli T et al (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720CrossRefPubMed Arioli T et al (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720CrossRefPubMed
Zurück zum Zitat Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRefPubMed Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRefPubMed
Zurück zum Zitat Atanassov II, Pittman JK, Turner SR (2009) Elucidating the mechanisms of assembly and subunit interaction of the cellulose synthase complex of Arabidopsis secondary cell walls. J Biol Chem 284:3833–3841CrossRefPubMed Atanassov II, Pittman JK, Turner SR (2009) Elucidating the mechanisms of assembly and subunit interaction of the cellulose synthase complex of Arabidopsis secondary cell walls. J Biol Chem 284:3833–3841CrossRefPubMed
Zurück zum Zitat Betancur L, Singh B, Rapp RA, Wendel JF, Marks MD, Roberts AW, Haigler CH (2011) Phylogenetically distinct cellulose synthase genes support secondary wall thickening in arabidopsis shoot trichomes and cotton fiber. J Integr Plant Biol 52:205–220CrossRef Betancur L, Singh B, Rapp RA, Wendel JF, Marks MD, Roberts AW, Haigler CH (2011) Phylogenetically distinct cellulose synthase genes support secondary wall thickening in arabidopsis shoot trichomes and cotton fiber. J Integr Plant Biol 52:205–220CrossRef
Zurück zum Zitat Bowling AJ, Brown RM Jr (2008) The cytoplasmic domain of the cellulose-synthesizing complex in vascular plants. Protoplasma 233:115–127CrossRefPubMed Bowling AJ, Brown RM Jr (2008) The cytoplasmic domain of the cellulose-synthesizing complex in vascular plants. Protoplasma 233:115–127CrossRefPubMed
Zurück zum Zitat Brown DM, Zeef LA, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2281–2295CrossRefPubMedPubMedCentral Brown DM, Zeef LA, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2281–2295CrossRefPubMedPubMedCentral
Zurück zum Zitat Carpita NC (2011) How plants make cellulose and other (1->4)-b-d-glycans. Plant Physiol 155:171–184CrossRefPubMed Carpita NC (2011) How plants make cellulose and other (1->4)-b-d-glycans. Plant Physiol 155:171–184CrossRefPubMed
Zurück zum Zitat Chen S, Ehrhardt DW, Somerville CR (2010) Mutations of cellulose synthase (CESA1) phosphorylation sites modulate anisotropic cell expansion and bidirectional mobility of cellulose synthase. Proc Natl Acad Sci USA 107:17188–17193CrossRefPubMed Chen S, Ehrhardt DW, Somerville CR (2010) Mutations of cellulose synthase (CESA1) phosphorylation sites modulate anisotropic cell expansion and bidirectional mobility of cellulose synthase. Proc Natl Acad Sci USA 107:17188–17193CrossRefPubMed
Zurück zum Zitat Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9:938–950CrossRefPubMed Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9:938–950CrossRefPubMed
Zurück zum Zitat Delmer DP (1987) Cellulose biosynthesis. Ann Rev Plant Physiol 38:259–290CrossRef Delmer DP (1987) Cellulose biosynthesis. Ann Rev Plant Physiol 38:259–290CrossRef
Zurück zum Zitat Delmer DP (1999) Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol 50:245–276CrossRefPubMed Delmer DP (1999) Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol 50:245–276CrossRefPubMed
Zurück zum Zitat Desprez T et al (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:15572–15577CrossRefPubMed Desprez T et al (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:15572–15577CrossRefPubMed
Zurück zum Zitat Donaldson L (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41:443–460CrossRef Donaldson L (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41:443–460CrossRef
Zurück zum Zitat Doolittle WF (2012) Evolutionary biology: a ratchet for protein complexity. Nature 481:270–271CrossRefPubMed Doolittle WF (2012) Evolutionary biology: a ratchet for protein complexity. Nature 481:270–271CrossRefPubMed
Zurück zum Zitat Dupree R, Simmons TJ, Mortimer JC, Patel D, Iuga D, Brown SP, Dupree P (2015) Probing the molecular architecture of Arabidopsis thaliana secondary cell walls using two- and three-dimensional (13)C solid state nuclear magnetic resonance spectroscopy. Biochemistry 54:2335–2345. https://doi.org/10.1021/bi501552k CrossRefPubMed Dupree R, Simmons TJ, Mortimer JC, Patel D, Iuga D, Brown SP, Dupree P (2015) Probing the molecular architecture of Arabidopsis thaliana secondary cell walls using two- and three-dimensional (13)C solid state nuclear magnetic resonance spectroscopy. Biochemistry 54:2335–2345. https://​doi.​org/​10.​1021/​bi501552k CrossRefPubMed
Zurück zum Zitat Emons AMC (1991) Role of particle rosettes and terminal globules in cellulose synthesis. In: Haigler CH, Weimer PJ (eds) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York, pp 71–98 Emons AMC (1991) Role of particle rosettes and terminal globules in cellulose synthesis. In: Haigler CH, Weimer PJ (eds) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York, pp 71–98
Zurück zum Zitat Fang L, Catchmark JM (2014) Structure characterization of native cellulose during dehydration and rehydration. Cellulose 21:3951–3963CrossRef Fang L, Catchmark JM (2014) Structure characterization of native cellulose during dehydration and rehydration. Cellulose 21:3951–3963CrossRef
Zurück zum Zitat Foston M et al (2011) Chemical, ultrastructural and supramolecular analysis of tension wood in Populus tremula x alba as a model substrate for reduced recalcitrance. Energy Environ Sci 4:4962–4971CrossRef Foston M et al (2011) Chemical, ultrastructural and supramolecular analysis of tension wood in Populus tremula x alba as a model substrate for reduced recalcitrance. Energy Environ Sci 4:4962–4971CrossRef
Zurück zum Zitat Giddings TH Jr, Brower DL, Staehelin LA (1980) Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J Cell Biol 84:327–339CrossRefPubMed Giddings TH Jr, Brower DL, Staehelin LA (1980) Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J Cell Biol 84:327–339CrossRefPubMed
Zurück zum Zitat Guerriero G, Fugelstad J, Bulone V (2010) What do we really know about cellulose biosynthesis in higher plants? J Integr Plant Biol 52:161–175CrossRefPubMed Guerriero G, Fugelstad J, Bulone V (2010) What do we really know about cellulose biosynthesis in higher plants? J Integr Plant Biol 52:161–175CrossRefPubMed
Zurück zum Zitat Haigler CH, Davis J, Slabaugh E, Kubicki JD (2016) Biosynthesis and assembly of cellulose. In: Rose JK (ed) Molecular cell biology of the growth and differentiation of plant cells. CRC Press, Boca Raton, pp 120–138. https://doi.org/10.1201/b20316 CrossRef Haigler CH, Davis J, Slabaugh E, Kubicki JD (2016) Biosynthesis and assembly of cellulose. In: Rose JK (ed) Molecular cell biology of the growth and differentiation of plant cells. CRC Press, Boca Raton, pp 120–138. https://​doi.​org/​10.​1201/​b20316 CrossRef
Zurück zum Zitat Hamann T, Osborne E, Youngs HL, Misson J, Nussaume L, Somerville C (2004) Global expression analysis of CESA and CSL genes in Arabidopsis. Cellulose 11:279–286CrossRef Hamann T, Osborne E, Youngs HL, Misson J, Nussaume L, Somerville C (2004) Global expression analysis of CESA and CSL genes in Arabidopsis. Cellulose 11:279–286CrossRef
Zurück zum Zitat Harholt J, Moestrup Ø, Ulvskov P (2016) Why plants were terrestrial from the beginning. Trends Plant Sci 21:96–101CrossRefPubMed Harholt J, Moestrup Ø, Ulvskov P (2016) Why plants were terrestrial from the beginning. Trends Plant Sci 21:96–101CrossRefPubMed
Zurück zum Zitat Harris D, Stork J, Debolt S (2009) Genetic modification in cellulose-synthase reduces crystallinity and improves biochemical conversion to fermentable sugar. Glob Change Biol 1:51–61CrossRef Harris D, Stork J, Debolt S (2009) Genetic modification in cellulose-synthase reduces crystallinity and improves biochemical conversion to fermentable sugar. Glob Change Biol 1:51–61CrossRef
Zurück zum Zitat Harris DM et al (2012) Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1A903V and CESA3T942I of cellulose synthase. Proc Natl Acad Sci USA 109:4098–4103CrossRefPubMed Harris DM et al (2012) Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1A903V and CESA3T942I of cellulose synthase. Proc Natl Acad Sci USA 109:4098–4103CrossRefPubMed
Zurück zum Zitat Herth W (1983) Arrays of plasma-membrane “rosettes” involved in cellulose microfibril formation of Spirogyra. Planta 159:347–356CrossRefPubMed Herth W (1983) Arrays of plasma-membrane “rosettes” involved in cellulose microfibril formation of Spirogyra. Planta 159:347–356CrossRefPubMed
Zurück zum Zitat Herth W (1985) Plant cell wall formation. In: Robards AW (ed) Botanical microscopy. Oxford University Press, Oxford, pp 285–310 Herth W (1985) Plant cell wall formation. In: Robards AW (ed) Botanical microscopy. Oxford University Press, Oxford, pp 285–310
Zurück zum Zitat Hill JL Jr, Hill AN, Roberts AW, Haigler CH, Tien M (2018a) Domain swaps of Arabidopsis secondary wall cellulose synthases to elucidate their class specificity. Plant Direct 2:e00061CrossRefPubMedPubMedCentral Hill JL Jr, Hill AN, Roberts AW, Haigler CH, Tien M (2018a) Domain swaps of Arabidopsis secondary wall cellulose synthases to elucidate their class specificity. Plant Direct 2:e00061CrossRefPubMedPubMedCentral
Zurück zum Zitat Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, Brown RM Jr (1999) Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11:2075–2085CrossRefPubMedPubMedCentral Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, Brown RM Jr (1999) Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11:2075–2085CrossRefPubMedPubMedCentral
Zurück zum Zitat Kumar M et al (2009) An update on the nomenclature for the cellulose synthase genes in Populus. Trends Plant Sci 14:248–254CrossRefPubMed Kumar M et al (2009) An update on the nomenclature for the cellulose synthase genes in Populus. Trends Plant Sci 14:248–254CrossRefPubMed
Zurück zum Zitat Lee CM, Kafle K, Belias DW, Park YB, Glick RE, Haigler CH, Kim SH (2015) Comprehensive analysis of cellulose content, crystallinity, and lateral packing in Gossypium hirsutum and Gossypium barbadense cotton fibers using sum frequency generation, infrared and Raman spectroscopy, and X-ray diffraction. Cellulose 22:971–989CrossRef Lee CM, Kafle K, Belias DW, Park YB, Glick RE, Haigler CH, Kim SH (2015) Comprehensive analysis of cellulose content, crystallinity, and lateral packing in Gossypium hirsutum and Gossypium barbadense cotton fibers using sum frequency generation, infrared and Raman spectroscopy, and X-ray diffraction. Cellulose 22:971–989CrossRef
Zurück zum Zitat Li X (2017) Characterization of cellulose synthesis complexes and Physcomitrella patens. University of Rhode Island, Kingston Li X (2017) Characterization of cellulose synthesis complexes and Physcomitrella patens. University of Rhode Island, Kingston
Zurück zum Zitat Mølhøj M, Ulvskov P, Dal Degan F (2001) Characterization of a functional soluble form of a Brassica napus membrane-anchored endo-1,4-β-glucanase heterologously expressed in Pichia pastoris. Plant Physiol 127:674–684CrossRefPubMedPubMedCentral Mølhøj M, Ulvskov P, Dal Degan F (2001) Characterization of a functional soluble form of a Brassica napus membrane-anchored endo-1,4-β-glucanase heterologously expressed in Pichia pastoris. Plant Physiol 127:674–684CrossRefPubMedPubMedCentral
Zurück zum Zitat Mueller SC, Brown RM Jr (1980) Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. J Cell Biol 84:315–326CrossRefPubMed Mueller SC, Brown RM Jr (1980) Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. J Cell Biol 84:315–326CrossRefPubMed
Zurück zum Zitat Mühlethaler K (1967) Ultrastructure and formation of plant cell walls. Annu Rev Plant Physiol 18:1–24CrossRef Mühlethaler K (1967) Ultrastructure and formation of plant cell walls. Annu Rev Plant Physiol 18:1–24CrossRef
Zurück zum Zitat Mutwil M, Debolt S, Persson S (2008) Cellulose synthesis: a complex complex. Curr Opin Plant Biol 11:252–257CrossRefPubMed Mutwil M, Debolt S, Persson S (2008) Cellulose synthesis: a complex complex. Curr Opin Plant Biol 11:252–257CrossRefPubMed
Zurück zum Zitat Nixon BT, Mansouri K, Singh A, Du J, Davis JK, Lee J-G, Slabaugh E, Vandavasi VG, O’Neill H, Roberts EM, Roberts AW, Yingling YG, Haigler CH (2016) Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex Sci Rep 6:28696PubMed Nixon BT, Mansouri K, Singh A, Du J, Davis JK, Lee J-G, Slabaugh E, Vandavasi VG, O’Neill H, Roberts EM, Roberts AW, Yingling YG, Haigler CH (2016) Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex Sci Rep 6:28696PubMed
Zurück zum Zitat Norris JH et al (2017) Functional specialization of cellulose synthase isoforms in a moss shows parallels with seed plants. Plant Physiol 175:210–222CrossRefPubMedPubMedCentral Norris JH et al (2017) Functional specialization of cellulose synthase isoforms in a moss shows parallels with seed plants. Plant Physiol 175:210–222CrossRefPubMedPubMedCentral
Zurück zum Zitat Oehme D, Doblin MS, Wagner J, Bacic A, Downton MT, Gidley MJ (2015a) Gaining insight into cell wall cellulose macrofibril organisation by simulating microfibril adsorption. Cellulose 22:3501–3520CrossRef Oehme D, Doblin MS, Wagner J, Bacic A, Downton MT, Gidley MJ (2015a) Gaining insight into cell wall cellulose macrofibril organisation by simulating microfibril adsorption. Cellulose 22:3501–3520CrossRef
Zurück zum Zitat Okuda K, Brown RM Jr (1992) A new putative cellulose-synthesizing complex of Coleochaete scutata. Protoplasma 168:51–63CrossRef Okuda K, Brown RM Jr (1992) A new putative cellulose-synthesizing complex of Coleochaete scutata. Protoplasma 168:51–63CrossRef
Zurück zum Zitat Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495CrossRefPubMed Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495CrossRefPubMed
Zurück zum Zitat Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA 93:12637–12642CrossRefPubMed Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA 93:12637–12642CrossRefPubMed
Zurück zum Zitat Persson S et al (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci USA 104:15566–15571CrossRefPubMed Persson S et al (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci USA 104:15566–15571CrossRefPubMed
Zurück zum Zitat Purushotham P, Cho SH, Díaz-Moreno SM, Kumar M, Nixon BT, Bulone V, Zimmer J (2016) A single heterologously expressed plant cellulose synthase isoform is sufficient for cellulose microfibril formation in vitro. Proc Natl Acad Sci USA 113:11360–11365CrossRefPubMed Purushotham P, Cho SH, Díaz-Moreno SM, Kumar M, Nixon BT, Bulone V, Zimmer J (2016) A single heterologously expressed plant cellulose synthase isoform is sufficient for cellulose microfibril formation in vitro. Proc Natl Acad Sci USA 113:11360–11365CrossRefPubMed
Zurück zum Zitat Roberts AW, Bushoven JT (2007) The cellulose synthase (CESA) gene superfamily of the moss Physcomitrella patens. Plant Mol Biol 63:207–219CrossRefPubMed Roberts AW, Bushoven JT (2007) The cellulose synthase (CESA) gene superfamily of the moss Physcomitrella patens. Plant Mol Biol 63:207–219CrossRefPubMed
Zurück zum Zitat Saxena IM, Lin FC, Brown RM Jr (1990) Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. Plant Mol Biol 15:673–683CrossRefPubMed Saxena IM, Lin FC, Brown RM Jr (1990) Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. Plant Mol Biol 15:673–683CrossRefPubMed
Zurück zum Zitat Scheible W-R, Eshed R, Richmond T, Delmer D, Somerville C (2001) Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. Proc Natl Acad Sci USA 98:10079–10084CrossRefPubMed Scheible W-R, Eshed R, Richmond T, Delmer D, Somerville C (2001) Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. Proc Natl Acad Sci USA 98:10079–10084CrossRefPubMed
Zurück zum Zitat Schneider B, Herth W (1986) Distribution of plasma membrane rosettes and kinetics of cellulose formation in xylem development of higher plants. Protoplasma 131:142–152CrossRef Schneider B, Herth W (1986) Distribution of plasma membrane rosettes and kinetics of cellulose formation in xylem development of higher plants. Protoplasma 131:142–152CrossRef
Zurück zum Zitat Sethaphong L, Davis JK, Slabaugh E, Singh A, Haigler CH, Yingling YG (2016) Prediction of the structures of the plant-specific regions of vascular plant cellulose synthases and correlated functional analysis. Cellulose 23:145–161CrossRef Sethaphong L, Davis JK, Slabaugh E, Singh A, Haigler CH, Yingling YG (2016) Prediction of the structures of the plant-specific regions of vascular plant cellulose synthases and correlated functional analysis. Cellulose 23:145–161CrossRef
Zurück zum Zitat Shim I, Law R, Kileeg Z, Stronghill P, Northey JGB, Strap JL, Bonetta D (2018) Alleles causing resistance to isoxaben and flupoxam highlight the significance of transmembrane domains for CESA protein function. Front Plant Sci 9:1152CrossRefPubMedPubMedCentral Shim I, Law R, Kileeg Z, Stronghill P, Northey JGB, Strap JL, Bonetta D (2018) Alleles causing resistance to isoxaben and flupoxam highlight the significance of transmembrane domains for CESA protein function. Front Plant Sci 9:1152CrossRefPubMedPubMedCentral
Zurück zum Zitat Song D, Shen J, Li L (2010) Characterization of cellulose synthase complexes in Populus xylem differentiation. New Phytol 187:777–790CrossRefPubMed Song D, Shen J, Li L (2010) Characterization of cellulose synthase complexes in Populus xylem differentiation. New Phytol 187:777–790CrossRefPubMed
Zurück zum Zitat Taylor JB (1957) The water solubilities and heats of solution of short chain cellulosic oligosaccharides. Trans Faraday Soc 53:1198–1203CrossRef Taylor JB (1957) The water solubilities and heats of solution of short chain cellulosic oligosaccharides. Trans Faraday Soc 53:1198–1203CrossRef
Zurück zum Zitat Taylor NG (2007) Identification of cellulose synthase AtCesA7 (IRX3) in vivo phosphorylation sites—a potential role in regulating protein degradation. Plant Mol Biol 64:161–171CrossRefPubMed Taylor NG (2007) Identification of cellulose synthase AtCesA7 (IRX3) in vivo phosphorylation sites—a potential role in regulating protein degradation. Plant Mol Biol 64:161–171CrossRefPubMed
Zurück zum Zitat Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA 100:1450–1455CrossRefPubMed Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA 100:1450–1455CrossRefPubMed
Zurück zum Zitat Taylor NG, Gardiner JC, Whiteman R, Turner SR (2004) Cellulose synthesis in the Arabidopsis secondary cell wall. Cellulose 11:329–338CrossRef Taylor NG, Gardiner JC, Whiteman R, Turner SR (2004) Cellulose synthesis in the Arabidopsis secondary cell wall. Cellulose 11:329–338CrossRef
Zurück zum Zitat Thomas LH, Forsyth VT, Martel A, Grillo I, Altaner CM, Jarvis MC (2014) Structure and spacing of cellulose microfibrils in woody cell walls of dicots. Cellulose 21:3887–3895CrossRef Thomas LH, Forsyth VT, Martel A, Grillo I, Altaner CM, Jarvis MC (2014) Structure and spacing of cellulose microfibrils in woody cell walls of dicots. Cellulose 21:3887–3895CrossRef
Zurück zum Zitat Timpa JD, Triplett BA (1993) Analysis of cell-wall polymers during cotton fiber development. Planta 189:101–108CrossRef Timpa JD, Triplett BA (1993) Analysis of cell-wall polymers during cotton fiber development. Planta 189:101–108CrossRef
Zurück zum Zitat Tsekos I (1999) The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes. J Phycol 35:635–655CrossRef Tsekos I (1999) The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes. J Phycol 35:635–655CrossRef
Zurück zum Zitat Turner SR, Somerville CR (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9:689–701CrossRefPubMedPubMedCentral Turner SR, Somerville CR (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9:689–701CrossRefPubMedPubMedCentral
Zurück zum Zitat Umemura M, Yuguchi Y, Hirotsu T (2004) Interaction between cellooligosaccharides in aqueous solution from molecular dynamics simulation: comparison of cellotetraose, cellopentaose, and cellohexaose. J Phys Chem A 108:7063–7070CrossRef Umemura M, Yuguchi Y, Hirotsu T (2004) Interaction between cellooligosaccharides in aqueous solution from molecular dynamics simulation: comparison of cellotetraose, cellopentaose, and cellohexaose. J Phys Chem A 108:7063–7070CrossRef
Zurück zum Zitat Vergara CE, Carpita NC (2001) b-d-glycan synthases and the CesA gene family: lessons to be learned from the mixed-linkage (1→3), (1→4)b-d-glucan synthase. Plant Mol Biol 47:145–160CrossRefPubMed Vergara CE, Carpita NC (2001) b-d-glycan synthases and the CesA gene family: lessons to be learned from the mixed-linkage (1→3), (1→4)b-d-glucan synthase. Plant Mol Biol 47:145–160CrossRefPubMed
Zurück zum Zitat Wang J, Howles PA, Cork AH, Birch RJ, Williamson RE (2006) Chimeric proteins suggest that the catalytic and/or C-terminal domains give CesA1 and CesA3 access to their specific sites in the cellulose synthase of primary walls. Plant Physiol 142:685–695CrossRefPubMedPubMedCentral Wang J, Howles PA, Cork AH, Birch RJ, Williamson RE (2006) Chimeric proteins suggest that the catalytic and/or C-terminal domains give CesA1 and CesA3 access to their specific sites in the cellulose synthase of primary walls. Plant Physiol 142:685–695CrossRefPubMedPubMedCentral
Zurück zum Zitat Willison JHM (1976) Plasmodesmata: a freeze-fracture view. Can J Bot 54:2842–2847CrossRef Willison JHM (1976) Plasmodesmata: a freeze-fracture view. Can J Bot 54:2842–2847CrossRef
Zurück zum Zitat Wong HC et al (1990) Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc Natl Acad Sci USA 87:8130–8134CrossRefPubMed Wong HC et al (1990) Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc Natl Acad Sci USA 87:8130–8134CrossRefPubMed
Zurück zum Zitat Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818CrossRefPubMed Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818CrossRefPubMed
Zurück zum Zitat Zhang T, Mahgsoudy-Louyeh S, Tittmann B, Cosgrove DJ (2014) Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. Cellulose 21:853–862CrossRef Zhang T, Mahgsoudy-Louyeh S, Tittmann B, Cosgrove DJ (2014) Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. Cellulose 21:853–862CrossRef
Metadaten
Titel
Structure/function relationships in the rosette cellulose synthesis complex illuminated by an evolutionary perspective
verfasst von
Candace H. Haigler
Alison W. Roberts
Publikationsdatum
13.12.2018
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 1/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-2157-9

Weitere Artikel der Ausgabe 1/2019

Cellulose 1/2019 Zur Ausgabe