Skip to main content
Erschienen in: Adsorption 8/2019

14.08.2019 | Invited Review Article

Medical oxygen concentrators: a review of progress in air separation technology

verfasst von: Mark W. Ackley

Erschienen in: Adsorption | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Air separation by adsorption to produce oxygen for industrial and medical applications represents one of several important commercialized adsorption processes. Fueled by the introduction of synthetic zeolites, adsorbent and process development for air separation have progressed steadily over the last five decades. Early progress was driven primarily by large-scale industrial applications, however, small-scale medical oxygen concentrators (MOC) soon followed. This review presents an overview of the various types of commercially available MOCs, as well as the underlying adsorption technology. Key developments and essential concepts are summarized for air separation technology as it applies to both large and small-scale systems. Specific research targeting oxygen concentrators is also reviewed. The introduction of pulse flow oxygen conserving methodology has given rise to portable concentrators. Pulse flow represents not only a disruptive technology for the small-scale medical products, but also introduces operational challenges not present in large-scale industrial air separation. Process intensification utilizing small adsorbent particles and fast cycles is reviewed along with other key developments in air separation that apply to both large and small-scale systems. Challenges to further improvements in the medical concentrators are explored and opportunities for future research are identified.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Information taken from an abbreviated summary of the full report. Full report available at a significant cost.
 
2
The information in this table was extracted from the manufacturer’s specification sheets, brochures and manuals provided on their respective websites. Device weights and durations generally reflect the basic unit with a single battery installed.
 
3
Gardner Denver Thomas compressors are included here as a matter of convenience to represent compressor characteristics in later discussion of the important design factors in the PSA process.
 
4
Information in Tables 6 and 7 was extracted from material specification sheets provided by each manufacturer.
 
5
The correlation for the Peclet No. (Pe) is incorrect and should be taken from the original source (Langer et al. 1978).
 
Literatur
Zurück zum Zitat Ackley, M.W.: Multilayer adsorbent beds for PSA gas separation. US Patent 6,152,991 (2000) Ackley, M.W.: Multilayer adsorbent beds for PSA gas separation. US Patent 6,152,991 (2000)
Zurück zum Zitat Ackley, M.W., Leavitt, F.W.: Rate-enhanced gas separation. US Patent 6,500,234 B1 (2002) Ackley, M.W., Leavitt, F.W.: Rate-enhanced gas separation. US Patent 6,500,234 B1 (2002)
Zurück zum Zitat Ackley, M.W.: Adsorptive separation performance improvements resulting from enhanced adsorption rate. 225th ACS National Meeting, New Orleans (2003a) Ackley, M.W.: Adsorptive separation performance improvements resulting from enhanced adsorption rate. 225th ACS National Meeting, New Orleans (2003a)
Zurück zum Zitat Ackley, M.W., Rege, S.U., Saxena, S.: Application of natural zeolites in the purification and separation of gases. Microporous Mesoporous Mater. 61, 25–42 (2003b)CrossRef Ackley, M.W., Rege, S.U., Saxena, S.: Application of natural zeolites in the purification and separation of gases. Microporous Mesoporous Mater. 61, 25–42 (2003b)CrossRef
Zurück zum Zitat Ackley, M.W., Smolarek, J., Leavitt, F.W.: Pressure swing adsorption gas separation method, using adsorbents with high intrinsic diffusivity and low pressure ratios. US Patent 6,506,234 B1 (2003c) Ackley, M.W., Smolarek, J., Leavitt, F.W.: Pressure swing adsorption gas separation method, using adsorbents with high intrinsic diffusivity and low pressure ratios. US Patent 6,506,234 B1 (2003c)
Zurück zum Zitat Ackley, M.W., Zhong, G.: Medical oxygen concentrator. US Patent 6,551,384 B1 (2003d) Ackley, M.W., Zhong, G.: Medical oxygen concentrator. US Patent 6,551,384 B1 (2003d)
Zurück zum Zitat Ackley, M.W., Barrett, P.A.: Silver-exchanged zeolites and methods of manufacturing therefor. US Patent 7,455,718 B2 (2008). Ackley, M.W., Barrett, P.A.: Silver-exchanged zeolites and methods of manufacturing therefor. US Patent 7,455,718 B2 (2008).
Zurück zum Zitat Ackley, M.W., Barrett, P.A., Stephenson, N.A., Kikkinides, E.S.: High rate compositions. US Patent 9,533,280 B2 (2017) Ackley, M.W., Barrett, P.A., Stephenson, N.A., Kikkinides, E.S.: High rate compositions. US Patent 9,533,280 B2 (2017)
Zurück zum Zitat Alpay, E., Kenney, C.N., Scott, D.M.: Adsorbent particle size effects in the separation of air by rapid pressure swing adsorption. Chem. Eng. Sci. 49, 3059–3075 (1994)CrossRef Alpay, E., Kenney, C.N., Scott, D.M.: Adsorbent particle size effects in the separation of air by rapid pressure swing adsorption. Chem. Eng. Sci. 49, 3059–3075 (1994)CrossRef
Zurück zum Zitat Appel, W.S., Winter, D.P., Sward, B.K., Sugano, M., Salter, E., Bixby, J.A.: Portable oxygen concentration system and method of using the same. US Patent 6,691,702 (2004) Appel, W.S., Winter, D.P., Sward, B.K., Sugano, M., Salter, E., Bixby, J.A.: Portable oxygen concentration system and method of using the same. US Patent 6,691,702 (2004)
Zurück zum Zitat Armond, J.W., Webber, D.A.: Adsorption system. US Patent 3,923,477 (1975) Armond, J.W., Webber, D.A.: Adsorption system. US Patent 3,923,477 (1975)
Zurück zum Zitat Babicki, M.L., Keefer, B.G., Gibbs, A.C., LaCava, A.I., Fitch, F.: PSA with adsorbents sensitive to contaminants. US Patent 7,037,358 B2 (2006) Babicki, M.L., Keefer, B.G., Gibbs, A.C., LaCava, A.I., Fitch, F.: PSA with adsorbents sensitive to contaminants. US Patent 7,037,358 B2 (2006)
Zurück zum Zitat Baksh, M.S.A., Kikkinides, E.S., Yang, R.T.: Lithium type X zeolite as a superior sorbent for air separation. Sep. Sci. Technol. 27, 277–294 (1992)CrossRef Baksh, M.S.A., Kikkinides, E.S., Yang, R.T.: Lithium type X zeolite as a superior sorbent for air separation. Sep. Sci. Technol. 27, 277–294 (1992)CrossRef
Zurück zum Zitat Baksh, M.S.A., Kibler, V. J., Schaub, H.R.: Pressure swing adsorption process. US Patent 5,518,526 (1996) Baksh, M.S.A., Kibler, V. J., Schaub, H.R.: Pressure swing adsorption process. US Patent 5,518,526 (1996)
Zurück zum Zitat Batta, L.B.: Selective adsorption gas separation process. US Patent 3,636,679 (1972) Batta, L.B.: Selective adsorption gas separation process. US Patent 3,636,679 (1972)
Zurück zum Zitat Barrett, P.A., Pontonio, S.J., Kechagia, P., Stephenson, N.A., Weston, K.C.: Adsorbent composition. US Patent 9,050,582 B2 (2015) Barrett, P.A., Pontonio, S.J., Kechagia, P., Stephenson, N.A., Weston, K.C.: Adsorbent composition. US Patent 9,050,582 B2 (2015)
Zurück zum Zitat Berlin, N.H.: Method for providing oxygen-enriched environment. US Patent 3,280,536 (1966) Berlin, N.H.: Method for providing oxygen-enriched environment. US Patent 3,280,536 (1966)
Zurück zum Zitat Berlin, N.H.: Vacuum cycle adsorption. US Patent 3,313,091 (1967) Berlin, N.H.: Vacuum cycle adsorption. US Patent 3,313,091 (1967)
Zurück zum Zitat Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport phenomena. Wiley, New York (1960) Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport phenomena. Wiley, New York (1960)
Zurück zum Zitat Bliss, P.L., McCoy, R.W., Adams, A.B.: A bench study comparison of demand oxygen delivery systems and continuous flow oxygen. Respir. Care 44, 925–931 (1999) Bliss, P.L., McCoy, R.W., Adams, A.B.: A bench study comparison of demand oxygen delivery systems and continuous flow oxygen. Respir. Care 44, 925–931 (1999)
Zurück zum Zitat Bliss, P.L., Atlas, C.R., Halperin, S.C.: Portable oxygen concentrator. US Patent 7,837,761 B2 (2010) Bliss, P.L., Atlas, C.R., Halperin, S.C.: Portable oxygen concentrator. US Patent 7,837,761 B2 (2010)
Zurück zum Zitat Boissin, J.C., Hennebel, V.: Portable home oxygen therapy medical equipment. US Patent 6,314,957 B1 (2001) Boissin, J.C., Hennebel, V.: Portable home oxygen therapy medical equipment. US Patent 6,314,957 B1 (2001)
Zurück zum Zitat Breck, D.W.: Zeolite molecular sieves: structure, chemistry and use. Wiley, New York (1974) Breck, D.W.: Zeolite molecular sieves: structure, chemistry and use. Wiley, New York (1974)
Zurück zum Zitat Campbell, M.J., Lagree, D.A., Smolarek, J.: Advances in oxygen production, by pressure swing adsorption. In: Gaden, E.L., Wenzel, L.A. (eds.), Cryogenic Processes and Machinery. AIChE Symposium Series vol 89, no. 294, pp. 104–108, AIChE, New York (1993) Campbell, M.J., Lagree, D.A., Smolarek, J.: Advances in oxygen production, by pressure swing adsorption. In: Gaden, E.L., Wenzel, L.A. (eds.), Cryogenic Processes and Machinery. AIChE Symposium Series vol 89, no. 294, pp. 104–108, AIChE, New York (1993)
Zurück zum Zitat Carlin, B.W., McCoy, R., Diesem, R.: 2 is not 2 is not 2, the fundamental flaw in perception when providing long-term oxygen therapy (LTOT) to a patient. Respir. Ther. 13, 29–32 (2018) Carlin, B.W., McCoy, R., Diesem, R.: 2 is not 2 is not 2, the fundamental flaw in perception when providing long-term oxygen therapy (LTOT) to a patient. Respir. Ther. 13, 29–32 (2018)
Zurück zum Zitat Cassidy, R.T., Holmes, E.S.: Twenty-five years of progress in “adiabatic” adsorption processes. AIChE Symp. Ser. 80 (No. 233), 68–75 (1984) Cassidy, R.T., Holmes, E.S.: Twenty-five years of progress in “adiabatic” adsorption processes. AIChE Symp. Ser. 80 (No. 233), 68–75 (1984)
Zurück zum Zitat Celik, C.E., Ackley, M.W., Smolarek, J.: Modular compact adsorption bed. US Patent 8,268,043 B2 (2012) Celik, C.E., Ackley, M.W., Smolarek, J.: Modular compact adsorption bed. US Patent 8,268,043 B2 (2012)
Zurück zum Zitat Chai, S.W., Kothare, M.V., Sircar, S.: Rapid pressure swing adsorption for reduction of bed size factor of a medical oxygen concentrator. Ind. Eng. Chem. Res. 50, 8703–8710 (2011)CrossRef Chai, S.W., Kothare, M.V., Sircar, S.: Rapid pressure swing adsorption for reduction of bed size factor of a medical oxygen concentrator. Ind. Eng. Chem. Res. 50, 8703–8710 (2011)CrossRef
Zurück zum Zitat Chai, S.W., Kothare, M.V., Sircar, S.: Numerical study of nitrogen desorption by rapid oxygen purge for a medical oxygen concentrator. Adsorption 18, 87–102 (2012)CrossRef Chai, S.W., Kothare, M.V., Sircar, S.: Numerical study of nitrogen desorption by rapid oxygen purge for a medical oxygen concentrator. Adsorption 18, 87–102 (2012)CrossRef
Zurück zum Zitat Chai, S.W., Kothare, M.V., Sircar, S.: Efficiency of nitrogen desorption from Lix zeolite by rapid oxygen purge in a pancake adsorber. AIChE J. 59, 365–368 (2013)CrossRef Chai, S.W., Kothare, M.V., Sircar, S.: Efficiency of nitrogen desorption from Lix zeolite by rapid oxygen purge in a pancake adsorber. AIChE J. 59, 365–368 (2013)CrossRef
Zurück zum Zitat Chatburn, R.L., Lewarski, J.S., McCoy, R.W.: Nocturnal oxygenation using a pulsed-dose oxygen-conserving device compared to continuous flow. Respir. Care 51, 252–256 (2006)PubMed Chatburn, R.L., Lewarski, J.S., McCoy, R.W.: Nocturnal oxygenation using a pulsed-dose oxygen-conserving device compared to continuous flow. Respir. Care 51, 252–256 (2006)PubMed
Zurück zum Zitat Chatburn, R.L., Williams, T.J.: Performance comparison of 4 portable oxygen concentrators. Respir. Care 55, 433–442 (2010)PubMed Chatburn, R.L., Williams, T.J.: Performance comparison of 4 portable oxygen concentrators. Respir. Care 55, 433–442 (2010)PubMed
Zurück zum Zitat Chao, C.C.: Process for separating nitrogen from mixtures thereof with less polar substances. US Patent 4,859,217 (1989) Chao, C.C.: Process for separating nitrogen from mixtures thereof with less polar substances. US Patent 4,859,217 (1989)
Zurück zum Zitat Chao, C.C., Pontonio, S.J.: Advanced adsorbent for PSA. US Patent 6,425,940 B1 (2002) Chao, C.C., Pontonio, S.J.: Advanced adsorbent for PSA. US Patent 6,425,940 B1 (2002)
Zurück zum Zitat Coe, C.G., S.M. Kuznicki: Polyvalent ion exchanged adsorbent for air separation. US Patent 4,481,018 (1984) Coe, C.G., S.M. Kuznicki: Polyvalent ion exchanged adsorbent for air separation. US Patent 4,481,018 (1984)
Zurück zum Zitat Collins, J.J.: The LUB/equilibrium section concept for fixed-bed adsorption. Chem. Eng. Prog. Symp. Ser. 63(74), 31–35 (1967) Collins, J.J.: The LUB/equilibrium section concept for fixed-bed adsorption. Chem. Eng. Prog. Symp. Ser. 63(74), 31–35 (1967)
Zurück zum Zitat Collins, J.J.: Air separation by adsorption. US Patent 4,026,680 (1977) Collins, J.J.: Air separation by adsorption. US Patent 4,026,680 (1977)
Zurück zum Zitat Cruz, P., Santos, J.C., Magalhães, F.D., Mendes, A.: Cyclic adsorption separation processes: analysis strategy and optimization procedure. Chem. Eng. Sci. 58, 3143–3158 (2003)CrossRef Cruz, P., Santos, J.C., Magalhães, F.D., Mendes, A.: Cyclic adsorption separation processes: analysis strategy and optimization procedure. Chem. Eng. Sci. 58, 3143–3158 (2003)CrossRef
Zurück zum Zitat Dangieri, T. J., Cassidy, R.T.: RPSA process. US Patent 4,406,675 (1983) Dangieri, T. J., Cassidy, R.T.: RPSA process. US Patent 4,406,675 (1983)
Zurück zum Zitat Deane, G.F., Taylor, B.A., Bare, R.O., Scherer, A.J.: Portable gas fractionalization system. US Patent 7,066,985 B2 (2006) Deane, G.F., Taylor, B.A., Bare, R.O., Scherer, A.J.: Portable gas fractionalization system. US Patent 7,066,985 B2 (2006)
Zurück zum Zitat Deane, G.F., Taylor, B.A., Li, C.M.: Portable gas fractionalization system. US Patent 7,753,996 B1 (2010) Deane, G.F., Taylor, B.A., Li, C.M.: Portable gas fractionalization system. US Patent 7,753,996 B1 (2010)
Zurück zum Zitat Deane, G.F., Taylor, B.A.: Portable gas fractionalization system. US Patent 7,922,789 B1 (2011) Deane, G.F., Taylor, B.A.: Portable gas fractionalization system. US Patent 7,922,789 B1 (2011)
Zurück zum Zitat de Klerk, A.: Voidage variation in packed beds at small column to particle diameter ratio. AIChE J. 49, 2022–2029 (2003)CrossRef de Klerk, A.: Voidage variation in packed beds at small column to particle diameter ratio. AIChE J. 49, 2022–2029 (2003)CrossRef
Zurück zum Zitat Dubois, A., Bodelin, P., Vigor, X.: Portable oxygen concentrator. US Patent 6,520,176 B1 (2003) Dubois, A., Bodelin, P., Vigor, X.: Portable oxygen concentrator. US Patent 6,520,176 B1 (2003)
Zurück zum Zitat Dunne, P.J.: The clinical impact of new long-term oxygen therapy technology. Respir. Care 54, 1100–1111 (2009)PubMed Dunne, P.J.: The clinical impact of new long-term oxygen therapy technology. Respir. Care 54, 1100–1111 (2009)PubMed
Zurück zum Zitat Earls, D.E., Long, G.N.: Multiple bed rapid pressure swing adsorption for oxygen. US Patent 4,194,891 (1980) Earls, D.E., Long, G.N.: Multiple bed rapid pressure swing adsorption for oxygen. US Patent 4,194,891 (1980)
Zurück zum Zitat Ergun. S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89–94 (1952) Ergun. S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89–94 (1952)
Zurück zum Zitat Federal Aviation Authority (FAA): Acceptance criteria for portable oxygen concentrators used on board aircraft; final rule. Fed. Register 81(100), 33098–33122 (2016) Federal Aviation Authority (FAA): Acceptance criteria for portable oxygen concentrators used on board aircraft; final rule. Fed. Register 81(100), 33098–33122 (2016)
Zurück zum Zitat Gaffney, T.R.: Porous solids for air separation. Curr. Opin. Solid State Mater. Sci. 1, 69–75 (1996)CrossRef Gaffney, T.R.: Porous solids for air separation. Curr. Opin. Solid State Mater. Sci. 1, 69–75 (1996)CrossRef
Zurück zum Zitat Gaita, R., Yates, S.F., Zhou, S.J., Chang, C.H.: Polymer-bound nitrogen adsorbent. US Patent 6,585,810 B1 (2003) Gaita, R., Yates, S.F., Zhou, S.J., Chang, C.H.: Polymer-bound nitrogen adsorbent. US Patent 6,585,810 B1 (2003)
Zurück zum Zitat Galbraith, S.D., McGowan, K.J., Baldauff, E.A., Galbraith, E., Walker, D.K., LaCount, R.B.: Ultra rapid cycle portable oxygen concentrator. US Patent 8,894,751 B2 (2014a) Galbraith, S.D., McGowan, K.J., Baldauff, E.A., Galbraith, E., Walker, D.K., LaCount, R.B.: Ultra rapid cycle portable oxygen concentrator. US Patent 8,894,751 B2 (2014a)
Zurück zum Zitat Galbraith, S.D., Walker, D.K., McGowan, K.J., DePetris, E.N., Galbraith, J.C.: Portable oxygen enrichment device and method of use. US Patent 8,888,902 B2 (2014b) Galbraith, S.D., Walker, D.K., McGowan, K.J., DePetris, E.N., Galbraith, J.C.: Portable oxygen enrichment device and method of use. US Patent 8,888,902 B2 (2014b)
Zurück zum Zitat German, R.M.: Particle packing characteristics. Metal Powder Industries Federation, Princeton (1999) German, R.M.: Particle packing characteristics. Metal Powder Industries Federation, Princeton (1999)
Zurück zum Zitat Goshorn, J.C., Gross, W.E.: Volume meter for granular materials. US Patent 2,332,512 (1943) Goshorn, J.C., Gross, W.E.: Volume meter for granular materials. US Patent 2,332,512 (1943)
Zurück zum Zitat Gross, W.E.: Packing granular materials. Mech. Eng. 84, 469–472 (1949) Gross, W.E.: Packing granular materials. Mech. Eng. 84, 469–472 (1949)
Zurück zum Zitat Guerin De Montgareuil, P., Domine, D.: Process for separating a binary gaseous mixture by adsorption. US Patent 3,155,468 (1964) Guerin De Montgareuil, P., Domine, D.: Process for separating a binary gaseous mixture by adsorption. US Patent 3,155,468 (1964)
Zurück zum Zitat Hay, L., Vigor, X.: Adsorber and process for the separation by adsorption. US Patent 5,176,721 (1993) Hay, L., Vigor, X.: Adsorber and process for the separation by adsorption. US Patent 5,176,721 (1993)
Zurück zum Zitat Hill, C.C., Hill, T.B.: Fluid fractionator. US Patent 5,593,478 (1997) Hill, C.C., Hill, T.B.: Fluid fractionator. US Patent 5,593,478 (1997)
Zurück zum Zitat Hirano, S., Kawamoto, T., Nishimura, T., Yoshimura, K.: Adsorbent for separating gases. US Patent 6,171,370 B1 (2001) Hirano, S., Kawamoto, T., Nishimura, T., Yoshimura, K.: Adsorbent for separating gases. US Patent 6,171,370 B1 (2001)
Zurück zum Zitat Hirooka, E., Wheatland, J.P., Doong, S.J.: Process for producing oxygen enriched product stream. US Patent 5,122,164 (1992) Hirooka, E., Wheatland, J.P., Doong, S.J.: Process for producing oxygen enriched product stream. US Patent 5,122,164 (1992)
Zurück zum Zitat Hu, X., Mangano, E., Friedrich, D., Ahn, H., Brandani, S.: Diffusion mechanism of CO2 in 13X zeolite beads. Adsorption 20, 121–135 (2014)CrossRef Hu, X., Mangano, E., Friedrich, D., Ahn, H., Brandani, S.: Diffusion mechanism of CO2 in 13X zeolite beads. Adsorption 20, 121–135 (2014)CrossRef
Zurück zum Zitat Izumi, J.: High Efficiency oxygen separation with low temperature and low pressure PSA. AIChE San Francisco, Nov. 1989 Izumi, J.: High Efficiency oxygen separation with low temperature and low pressure PSA. AIChE San Francisco, Nov. 1989
Zurück zum Zitat Jacobs, S.S., Lederer, D.J., Garvey, C.M., Hernandez, C., Lindell, K.O., McLaughlin, S., Schneidman, A.M., Casaburi, R., Chang, V., Cosgrove, G.P., Devitt, L., Erickson, K.L., Ewart, G.W., Giordano. S.P., Harbaugh, M., Kallstrom, T.J., Kroner, K., Krishnan, J.A., Lamberti, J.P., Porte, P., Prieto-Centurion, V., Sherman, S.E., Sullivan, J.L., Sward, E., Swigris, J.J., Upson, D.J.: Optimizing home oxygen therapy, An Official American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 15, 1369–1381 (2018) Jacobs, S.S., Lederer, D.J., Garvey, C.M., Hernandez, C., Lindell, K.O., McLaughlin, S., Schneidman, A.M., Casaburi, R., Chang, V., Cosgrove, G.P., Devitt, L., Erickson, K.L., Ewart, G.W., Giordano. S.P., Harbaugh, M., Kallstrom, T.J., Kroner, K., Krishnan, J.A., Lamberti, J.P., Porte, P., Prieto-Centurion, V., Sherman, S.E., Sullivan, J.L., Sward, E., Swigris, J.J., Upson, D.J.: Optimizing home oxygen therapy, An Official American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 15, 1369–1381 (2018)
Zurück zum Zitat Jagger, T.W., Van Brunt, A.E., Van Brunt, N.P.: Pressure swing adsorption gas separation method and apparatus. US Patent 6,641,644 B2 (2003) Jagger, T.W., Van Brunt, A.E., Van Brunt, N.P.: Pressure swing adsorption gas separation method and apparatus. US Patent 6,641,644 B2 (2003)
Zurück zum Zitat Jagger, T.W., Van Brunt, N.P., Kivisto, J.K., Lonnes, P.B.: Portable oxygen concentrator. US Patent 7,121,276 B2 (2006) Jagger, T.W., Van Brunt, N.P., Kivisto, J.K., Lonnes, P.B.: Portable oxygen concentrator. US Patent 7,121,276 B2 (2006)
Zurück zum Zitat Jee, J.G., Lee, J.S., Lee, C.H.: Air separation by a small-scale two-bed medical O2 pressure swing adsorption. Ind. Eng. Chem. Res. 40, 3647–3658 (2001)CrossRef Jee, J.G., Lee, J.S., Lee, C.H.: Air separation by a small-scale two-bed medical O2 pressure swing adsorption. Ind. Eng. Chem. Res. 40, 3647–3658 (2001)CrossRef
Zurück zum Zitat Jones, R.L., Keller II, G.E., Wells, R.C.: Rapid pressure swing adsorption process with high enrichment factor. US Patent 4,194,892 (1980) Jones, R.L., Keller II, G.E., Wells, R.C.: Rapid pressure swing adsorption process with high enrichment factor. US Patent 4,194,892 (1980)
Zurück zum Zitat Kaplan, R.H., Dunne, S.R., McKeon, M.J.: Advances in the design of medical oxygen concentrators. AIChE Meeting, San Francisco, 1–6, (1989) Kaplan, R.H., Dunne, S.R., McKeon, M.J.: Advances in the design of medical oxygen concentrators. AIChE Meeting, San Francisco, 1–6, (1989)
Zurück zum Zitat Keefer, B.G., McLean, C.R., Babicki, M.L.: Life support oxygen concentrator. US Patent 7,250,073 B2 (2007) Keefer, B.G., McLean, C.R., Babicki, M.L.: Life support oxygen concentrator. US Patent 7,250,073 B2 (2007)
Zurück zum Zitat Kenyon, F.D., Puckhaber, J.W.: Flow controller. US Patent 4,784,130 (1988) Kenyon, F.D., Puckhaber, J.W.: Flow controller. US Patent 4,784,130 (1988)
Zurück zum Zitat Kikkinides, E.S., Politis, M.G.: Linking pore diffusivity with macropore structure of zeolite adsorbents. Part I: three dimensional structural representation combining scanning electron microscopy with stochastic reconstruction methods. Adsorption 20, 5–20 (2014a)CrossRef Kikkinides, E.S., Politis, M.G.: Linking pore diffusivity with macropore structure of zeolite adsorbents. Part I: three dimensional structural representation combining scanning electron microscopy with stochastic reconstruction methods. Adsorption 20, 5–20 (2014a)CrossRef
Zurück zum Zitat Kikkinides, E.S., Politis, M.G.: Linking pore diffusivity with macropore structure of zeolite adsorbents. Part II: simulation of pore diffusion and mercury intrusion in stochastically reconstructed zeolite adsorbents. Adsorption 20, 21–35 (2014b)CrossRef Kikkinides, E.S., Politis, M.G.: Linking pore diffusivity with macropore structure of zeolite adsorbents. Part II: simulation of pore diffusion and mercury intrusion in stochastically reconstructed zeolite adsorbents. Adsorption 20, 21–35 (2014b)CrossRef
Zurück zum Zitat Knaebel, K.S., Kandybin, A.: Pressure swing adsorption system to purify oxygen. US Patent 5,226,933 (1993) Knaebel, K.S., Kandybin, A.: Pressure swing adsorption system to purify oxygen. US Patent 5,226,933 (1993)
Zurück zum Zitat Kopaygorodsky, E.M., Guliants, V.V., Krantz, W.B.: Predictive dynamic model of single-stage ultra-rapid pressure swing adsorption. AIChE J 50, 953–962 (2004)CrossRef Kopaygorodsky, E.M., Guliants, V.V., Krantz, W.B.: Predictive dynamic model of single-stage ultra-rapid pressure swing adsorption. AIChE J 50, 953–962 (2004)CrossRef
Zurück zum Zitat Kratz, W.C., Sircar, S.: Pressure swing adsorption process for medical oxygen generator for home use. US Patent 4,477,264 (1984) Kratz, W.C., Sircar, S.: Pressure swing adsorption process for medical oxygen generator for home use. US Patent 4,477,264 (1984)
Zurück zum Zitat Kulish, S., Swank, R.P.: Rapid cycle pressure swing adsorption oxygen concentration method and apparatus. US Patent 5,827,358 (1998) Kulish, S., Swank, R.P.: Rapid cycle pressure swing adsorption oxygen concentration method and apparatus. US Patent 5,827,358 (1998)
Zurück zum Zitat Kumar, R.: Vacuum swing adsorption process for oxygen production—a historical perspective. Sep. Sci. Technol. 31, 877–893 (1996)CrossRef Kumar, R.: Vacuum swing adsorption process for oxygen production—a historical perspective. Sep. Sci. Technol. 31, 877–893 (1996)CrossRef
Zurück zum Zitat Kuznicki, S.M., Coe, C.G., Jenkins, R.J., Butter, S.A.: Massive bodies of maximum aluminum X-type zeolite. US Patent 4,606,040, (1986) Kuznicki, S.M., Coe, C.G., Jenkins, R.J., Butter, S.A.: Massive bodies of maximum aluminum X-type zeolite. US Patent 4,606,040, (1986)
Zurück zum Zitat Langer, G., Roethe, A., Roethe, K.-P., Gelbin, D.: Heat and mass transfer in packed beds-III. Axial mass dispersion. Int. J. Heat Mass Transfer 21, 751–759 (1978) Langer, G., Roethe, A., Roethe, K.-P., Gelbin, D.: Heat and mass transfer in packed beds-III. Axial mass dispersion. Int. J. Heat Mass Transfer 21, 751–759 (1978)
Zurück zum Zitat LaSala, K.A., Schaub, H.R.: Single bed pressure swing adsorption system and process. US Patent 5,370,728 (1994) LaSala, K.A., Schaub, H.R.: Single bed pressure swing adsorption system and process. US Patent 5,370,728 (1994)
Zurück zum Zitat Leavitt, F.W.: Air separation pressure swing adsorption process. US Patent 5,074,892 (1991) Leavitt, F.W.: Air separation pressure swing adsorption process. US Patent 5,074,892 (1991)
Zurück zum Zitat Leavitt, F.W.: Low temperature pressure swing adsorption with refrigeration. US Patent 5,169,413 (1992) Leavitt, F.W.: Low temperature pressure swing adsorption with refrigeration. US Patent 5,169,413 (1992)
Zurück zum Zitat Leavitt, F.W.: Lithium recovery. US Patent 5,451,383 (1995) Leavitt, F.W.: Lithium recovery. US Patent 5,451,383 (1995)
Zurück zum Zitat Leavitt, F.W.: Thermally-driven ion-exchange process for lithium recovery. US Patent 5,681,477 (1997) Leavitt, F.W.: Thermally-driven ion-exchange process for lithium recovery. US Patent 5,681,477 (1997)
Zurück zum Zitat LeBlanc, C.J., Lavallee, L.G., King, J.A., Taylor-Sussex, R.E., Woolnough, A., McKim, D.A.: A comparative study of 3 portable oxygen concentrators during a 6-minute walk test in patients with chronic lung disease. Respir Care 58, 1598–1605 (2013)CrossRefPubMed LeBlanc, C.J., Lavallee, L.G., King, J.A., Taylor-Sussex, R.E., Woolnough, A., McKim, D.A.: A comparative study of 3 portable oxygen concentrators during a 6-minute walk test in patients with chronic lung disease. Respir Care 58, 1598–1605 (2013)CrossRefPubMed
Zurück zum Zitat Lu, Z., Rodrigues, A.E.: Intensification of sorption processes using “large-pore” materials. Ind. Eng. Chem. Res. 32, 230–235 (1993)CrossRef Lu, Z., Rodrigues, A.E.: Intensification of sorption processes using “large-pore” materials. Ind. Eng. Chem. Res. 32, 230–235 (1993)CrossRef
Zurück zum Zitat Lu, Z.P., Loureiro, J.M., LeVan, M.D., Rodrigues, A.E.: Intraparticle diffusion/convection models for pressurization and blowdown of adsorption beds with langmuir isotherm. Sep. Sci. Technol. 27, 1857–1874 (1992)CrossRef Lu, Z.P., Loureiro, J.M., LeVan, M.D., Rodrigues, A.E.: Intraparticle diffusion/convection models for pressurization and blowdown of adsorption beds with langmuir isotherm. Sep. Sci. Technol. 27, 1857–1874 (1992)CrossRef
Zurück zum Zitat Lukchis, G.M.: Adsorption systems part I: design by mass-transfer-zone concept. Chem. Eng., 111–116 (1973) Lukchis, G.M.: Adsorption systems part I: design by mass-transfer-zone concept. Chem. Eng., 111–116 (1973)
Zurück zum Zitat Maring, B.J., Webley, P.A.: A new simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications. Inter. J. Greenh. Gas Control 15, 16–31 (2013)CrossRef Maring, B.J., Webley, P.A.: A new simplified pressure/vacuum swing adsorption model for rapid adsorbent screening for CO2 capture applications. Inter. J. Greenh. Gas Control 15, 16–31 (2013)CrossRef
Zurück zum Zitat Martin, H.: Low peclet number particle-to-fluid heat and mass transfer in packed beds. Chem. Eng. Sci. 33, 913–919 (1978)CrossRef Martin, H.: Low peclet number particle-to-fluid heat and mass transfer in packed beds. Chem. Eng. Sci. 33, 913–919 (1978)CrossRef
Zurück zum Zitat McCombs, N.R.: Selective adsorption gas separation process. US Patent 3,738,087 (1973) McCombs, N.R.: Selective adsorption gas separation process. US Patent 3,738,087 (1973)
Zurück zum Zitat McCombs, N.R.: Compact oxygen concentrator. US Patent 4,378,982 (1983a) McCombs, N.R.: Compact oxygen concentrator. US Patent 4,378,982 (1983a)
Zurück zum Zitat McCombs, N.R.: Bed vessels for compact oxygen concentrator. US Patent 4,371,384 (1983b) McCombs, N.R.: Bed vessels for compact oxygen concentrator. US Patent 4,371,384 (1983b)
Zurück zum Zitat McCombs, N.R.: Portable low profile dc oxygen concentrator. US Patent 4,826,510 (1989) McCombs, N.R.: Portable low profile dc oxygen concentrator. US Patent 4,826,510 (1989)
Zurück zum Zitat McCombs, N.R.: Compact compressor. US Patent 7,491,040 B2 (2009) McCombs, N.R.: Compact compressor. US Patent 7,491,040 B2 (2009)
Zurück zum Zitat McCombs, N.R., Schlaechter, J.: Compact oxygen concentrator. US Patent 4,302,224 (1981) McCombs, N.R., Schlaechter, J.: Compact oxygen concentrator. US Patent 4,302,224 (1981)
Zurück zum Zitat McCombs, N.R., Schlaechter, J.: Compact oxygen concentrator. US Patent 4,342,573 (1982) McCombs, N.R., Schlaechter, J.: Compact oxygen concentrator. US Patent 4,342,573 (1982)
Zurück zum Zitat McCombs, N.R., Casey, R.E., Chimiak, M.A., Klimaszewski, A.: Portable oxygen concentrator. US Patent 6,764,534 (2004) McCombs, N.R., Casey, R.E., Chimiak, M.A., Klimaszewski, A.: Portable oxygen concentrator. US Patent 6,764,534 (2004)
Zurück zum Zitat McCombs, N.R., Bosinski, R., Casey, R.E., Valvo, M.R.: Mini-portable oxygen concentrator. US Patent 8,016,925 (2011) McCombs, N.R., Bosinski, R., Casey, R.E., Valvo, M.R.: Mini-portable oxygen concentrator. US Patent 8,016,925 (2011)
Zurück zum Zitat McCoy, R.W.: Oxygen-conserving techniques and devices. Respir Care 45, 95–103 (2000)PubMed McCoy, R.W.: Oxygen-conserving techniques and devices. Respir Care 45, 95–103 (2000)PubMed
Zurück zum Zitat McCoy, R.W.: Options for home oxygen therapy equipment: storage and metering of oxygen in the home. Respir. Care 58, 65–85 (2013)CrossRefPubMed McCoy, R.W.: Options for home oxygen therapy equipment: storage and metering of oxygen in the home. Respir. Care 58, 65–85 (2013)CrossRefPubMed
Zurück zum Zitat Miller, G.Q.: Multiple zone adsorption process. US Patent 4,964,888 (1990) Miller, G.Q.: Multiple zone adsorption process. US Patent 4,964,888 (1990)
Zurück zum Zitat Milton, R.M.: Molecular sieve adsorbents. US Patent 2,882,244 (1959) Milton, R.M.: Molecular sieve adsorbents. US Patent 2,882,244 (1959)
Zurück zum Zitat Moran, A., Talu, O.: Role of pressure drop on rapid pressure swing adsorption performance. Ind. Eng. Chem. Res. 56, 5715–5723 (2017)CrossRef Moran, A., Talu, O.: Role of pressure drop on rapid pressure swing adsorption performance. Ind. Eng. Chem. Res. 56, 5715–5723 (2017)CrossRef
Zurück zum Zitat Moran, A., Patel, M., Talu, O.: Axial dispersion effects with small diameter adsorbent particles. Adsorption 24, 333–344 (2018a)CrossRef Moran, A., Patel, M., Talu, O.: Axial dispersion effects with small diameter adsorbent particles. Adsorption 24, 333–344 (2018a)CrossRef
Zurück zum Zitat Moran, A., Talu, O.: Limitations of portable pressure swing adsorption processes for air separation. Ind. Eng. Chem. Res. 57, 11981–11987 (2018b)CrossRef Moran, A., Talu, O.: Limitations of portable pressure swing adsorption processes for air separation. Ind. Eng. Chem. Res. 57, 11981–11987 (2018b)CrossRef
Zurück zum Zitat Moreau, S., Barbe, C.: Process for the separation of mixtures of oxygen and of nitrogen employing an adsorbent with improved porosity. US Patent 5,672,195 (1997) Moreau, S., Barbe, C.: Process for the separation of mixtures of oxygen and of nitrogen employing an adsorbent with improved porosity. US Patent 5,672,195 (1997)
Zurück zum Zitat Notaro, F., Mullhaupt, J.T., Leavitt, F.W., Ackley, M.W.: Adsorption process and system using multilayer adsorbent beds. US Patent 5,674,311 (1997) Notaro, F., Mullhaupt, J.T., Leavitt, F.W., Ackley, M.W.: Adsorption process and system using multilayer adsorbent beds. US Patent 5,674,311 (1997)
Zurück zum Zitat Nowobilski, J.J., J. S. Schneider: Particle loader. US Patent 5,324,159 (1994) Nowobilski, J.J., J. S. Schneider: Particle loader. US Patent 5,324,159 (1994)
Zurück zum Zitat Occhialini, J.M., Whitley, R.D., Wagner, G.P., LaBuda, M.J., Steigerwalt, C.E.: Weight-optimized portable oxygen concentrator. US Patent 7,473,299 B2 (2009) Occhialini, J.M., Whitley, R.D., Wagner, G.P., LaBuda, M.J., Steigerwalt, C.E.: Weight-optimized portable oxygen concentrator. US Patent 7,473,299 B2 (2009)
Zurück zum Zitat Park, Y., Moon, D.K., Kim, Y.H., Ahn, H., Lee, C.H.: Adsorption isotherms of CO2, CO, N2, CH4, Ar, H2 on activated carbon and zeolite LiX up to 1.0 MPa. Adsorption 20, 631–647 (2014) Park, Y., Moon, D.K., Kim, Y.H., Ahn, H., Lee, C.H.: Adsorption isotherms of CO2, CO, N2, CH4, Ar, H2 on activated carbon and zeolite LiX up to 1.0 MPa. Adsorption 20, 631–647 (2014)
Zurück zum Zitat Peterson, D.: Influence of presorbed water on the sorption of nitrogen by zeolites at ambient temperatures. Zeolites 1, 105–112 (1981)CrossRef Peterson, D.: Influence of presorbed water on the sorption of nitrogen by zeolites at ambient temperatures. Zeolites 1, 105–112 (1981)CrossRef
Zurück zum Zitat Petty, T.L.: Historical highlights of long-term oxygen therapy. Respir Care 45, 29–36 (2000)PubMed Petty, T.L.: Historical highlights of long-term oxygen therapy. Respir Care 45, 29–36 (2000)PubMed
Zurück zum Zitat Plee, D.: Method for obtaining LSX zeolite bodies. US Patent 6,264,881 B1 (2001) Plee, D.: Method for obtaining LSX zeolite bodies. US Patent 6,264,881 B1 (2001)
Zurück zum Zitat Plee, D.: Agglomerated adsorbent, process for the production thereof and use thereof for the non-cryogenic separation of industrial gases. US Patent 6,652,626 B1 (2003) Plee, D.: Agglomerated adsorbent, process for the production thereof and use thereof for the non-cryogenic separation of industrial gases. US Patent 6,652,626 B1 (2003)
Zurück zum Zitat Pritchard, C.L., Simpson, G.K.: Design of an oxygen concentrator using rapid pressure-swing adsorption principle. Chem. Eng. Res. Des. 64, 467–471 (1986) Pritchard, C.L., Simpson, G.K.: Design of an oxygen concentrator using rapid pressure-swing adsorption principle. Chem. Eng. Res. Des. 64, 467–471 (1986)
Zurück zum Zitat Rama Rao, V., Farooq, S., Krantz, W.B.: Design of a two-step pulsed pressure-swing adsorption-based oxygen concentrator. AIChE J. 56, 354–370 (2010) Rama Rao, V., Farooq, S., Krantz, W.B.: Design of a two-step pulsed pressure-swing adsorption-based oxygen concentrator. AIChE J. 56, 354–370 (2010)
Zurück zum Zitat Rama Rao, V., Farooq, S.: Experimental study of a pulsed pressure-swing adsorption process with very small 5A zeolite particles for oxygen enrichment. Ind. Eng. Chem. Res. 53, 13157–13170 (2014a)CrossRef Rama Rao, V., Farooq, S.: Experimental study of a pulsed pressure-swing adsorption process with very small 5A zeolite particles for oxygen enrichment. Ind. Eng. Chem. Res. 53, 13157–13170 (2014a)CrossRef
Zurück zum Zitat Rama Rao, V., Kothare, M.V., Sircar, S.: Numerical simulation of rapid pressurization and depressurization of a zeolite column using nitrogen. Adsorption 20, 53–60 (2014b)CrossRef Rama Rao, V., Kothare, M.V., Sircar, S.: Numerical simulation of rapid pressurization and depressurization of a zeolite column using nitrogen. Adsorption 20, 53–60 (2014b)CrossRef
Zurück zum Zitat Rama Rao, V., Chai, S.W., Kothare, M.V., Sircar, S.: Highlights of non-equilibrium, non-isobaric, non-isothermal desorption of nitrogen from a LiX zeolite column by rapid pressure reduction and rapid purge by oxygen. Adsorption 20, 477–481 (2014c)CrossRef Rama Rao, V., Chai, S.W., Kothare, M.V., Sircar, S.: Highlights of non-equilibrium, non-isobaric, non-isothermal desorption of nitrogen from a LiX zeolite column by rapid pressure reduction and rapid purge by oxygen. Adsorption 20, 477–481 (2014c)CrossRef
Zurück zum Zitat Rama Rao, V., Kothare, M.V., Sircar, S.: Novel design and performance of a medical oxygen concentrator using a rapid pressure swing adsorption concept. AIChE J. 60, 3330–3335 (2014d)CrossRef Rama Rao, V., Kothare, M.V., Sircar, S.: Novel design and performance of a medical oxygen concentrator using a rapid pressure swing adsorption concept. AIChE J. 60, 3330–3335 (2014d)CrossRef
Zurück zum Zitat Rama Rao, V., Wu, C.W., Kothare, M.V., Sircar, S.: Comparative performances of two commercial samples of LiLSX zeolite for production of 90% oxygen from air by a novel rapid pressure swing adsorption system. Sep. Sci. Technol. 50, 1447–1452 (2015)CrossRef Rama Rao, V., Wu, C.W., Kothare, M.V., Sircar, S.: Comparative performances of two commercial samples of LiLSX zeolite for production of 90% oxygen from air by a novel rapid pressure swing adsorption system. Sep. Sci. Technol. 50, 1447–1452 (2015)CrossRef
Zurück zum Zitat Rama Rao, V., Kothare, M.V., Sircar, S.: Performance of a medical oxygen concentrator using rapid pressure swing adsorption process: effect of feed air pressure. AIChE J. 62, 1212–1215 (2016)CrossRef Rama Rao, V., Kothare, M.V., Sircar, S.: Performance of a medical oxygen concentrator using rapid pressure swing adsorption process: effect of feed air pressure. AIChE J. 62, 1212–1215 (2016)CrossRef
Zurück zum Zitat Rama Rao, V., Sircar, S.: Comments on reliability of model simulation of rapid pressure swing adsorption process for high-purity product. Ind. Eng. Chem. Res. 56, 8991–8994 (2017)CrossRef Rama Rao, V., Sircar, S.: Comments on reliability of model simulation of rapid pressure swing adsorption process for high-purity product. Ind. Eng. Chem. Res. 56, 8991–8994 (2017)CrossRef
Zurück zum Zitat Rege, S.U., Yang, R.T.: Limits for air separation by adsorption with LiX zeolite. Ind. Eng. Chem. Res. 36, 5358–5365 (1997)CrossRef Rege, S.U., Yang, R.T.: Limits for air separation by adsorption with LiX zeolite. Ind. Eng. Chem. Res. 36, 5358–5365 (1997)CrossRef
Zurück zum Zitat Rege, S.U., Yang, R.T.: A simple parameter for selecting an adsorbent for gas separation by pressure swing adsorption. Sep. Sci. Technol. 36, 3355–3365 (2001)CrossRef Rege, S.U., Yang, R.T.: A simple parameter for selecting an adsorbent for gas separation by pressure swing adsorption. Sep. Sci. Technol. 36, 3355–3365 (2001)CrossRef
Zurück zum Zitat Reiss, G.: Pressure swing process for the adsorptive separation of gaseous mixtures. US Patent 4,614,525 (1986) Reiss, G.: Pressure swing process for the adsorptive separation of gaseous mixtures. US Patent 4,614,525 (1986)
Zurück zum Zitat Reiss, G.: Status and development of oxygen generation processes on molecular sieve zeolites. Gas Sep. Purif. 8, 95–99 (1994)CrossRef Reiss, G.: Status and development of oxygen generation processes on molecular sieve zeolites. Gas Sep. Purif. 8, 95–99 (1994)CrossRef
Zurück zum Zitat Rezaei, F., Webley, P.: Optimum structured adsorbents for gas separation processes. Chem. Eng. Sci. 64, 5182–5191 (2009)CrossRef Rezaei, F., Webley, P.: Optimum structured adsorbents for gas separation processes. Chem. Eng. Sci. 64, 5182–5191 (2009)CrossRef
Zurück zum Zitat Rota, R., Wankat, P.C.: Intensification of pressure swing adsorption processes. AIChE J. 36, 1299–1312 (1990)CrossRef Rota, R., Wankat, P.C.: Intensification of pressure swing adsorption processes. AIChE J. 36, 1299–1312 (1990)CrossRef
Zurück zum Zitat Rowland, R.O.: Oxygen concentrator. US Patent 4,561,287 (1985) Rowland, R.O.: Oxygen concentrator. US Patent 4,561,287 (1985)
Zurück zum Zitat Ruthven, D.M.: Principles of adsorption and adsorption processes. Wiley, New York (1984) Ruthven, D.M.: Principles of adsorption and adsorption processes. Wiley, New York (1984)
Zurück zum Zitat Ruthven, D.M., Farooq, S., Knaebel, K.S.: Pressure swing adsorption. VCH, New York (1994) Ruthven, D.M., Farooq, S., Knaebel, K.S.: Pressure swing adsorption. VCH, New York (1994)
Zurück zum Zitat Santos, J.C., Portugal, A.F., Magalhães, F.D., Mendes, A.: Simulation and optimization of small oxygen pressure swing adsorption units. Ind. Eng. Chem. Res. 43, 8328–8338 (2004) Santos, J.C., Portugal, A.F., Magalhães, F.D., Mendes, A.: Simulation and optimization of small oxygen pressure swing adsorption units. Ind. Eng. Chem. Res. 43, 8328–8338 (2004)
Zurück zum Zitat Santos, J.C., Portugal, A.F., Magalhães, F.D., Mendes, A.: Optimization of medical PSA units for oxygen production. Ind. Eng. Chem. Res. 45, 1085–1096 (2006)CrossRef Santos, J.C., Portugal, A.F., Magalhães, F.D., Mendes, A.: Optimization of medical PSA units for oxygen production. Ind. Eng. Chem. Res. 45, 1085–1096 (2006)CrossRef
Zurück zum Zitat Santos, J.C., Magalhães, F.D., Mendes, A.: Contamination of zeolites used in oxygen production by PSA: effects of water and carbon dioxide. Ind. Eng. Chem. Res. 47, 6197–6203 (2008)CrossRef Santos, J.C., Magalhães, F.D., Mendes, A.: Contamination of zeolites used in oxygen production by PSA: effects of water and carbon dioxide. Ind. Eng. Chem. Res. 47, 6197–6203 (2008)CrossRef
Zurück zum Zitat Schlaechter, J.: Pressure swing cycle for the separation of oxygen from air. US Patent 4,534,346 (1985) Schlaechter, J.: Pressure swing cycle for the separation of oxygen from air. US Patent 4,534,346 (1985)
Zurück zum Zitat Shaver, P.R., Schwartz, J., Kirson, D., O-Connor, C.: Emotion knowledge: Further exploration of a prototype approach. J. Pers. Soc. Psychol. 52, 1061–1086. Shaver, P.R., Schwartz, J., Kirson, D., O-Connor, C.: Emotion knowledge: Further exploration of a prototype approach. J. Pers. Soc. Psychol. 52, 1061–1086.
Zurück zum Zitat Shin, H.S., Kim, D.H., Koo, K.K., Lee, T.S.: Performance of a two-bed pressure swing adsorption process with incomplete pressure equalization. Adsorption 6, 233–240 (2000)CrossRef Shin, H.S., Kim, D.H., Koo, K.K., Lee, T.S.: Performance of a two-bed pressure swing adsorption process with incomplete pressure equalization. Adsorption 6, 233–240 (2000)CrossRef
Zurück zum Zitat Sircar, S.: Role of adsorbent heterogeneity on mixed gas adsorption. Ind. Eng. Chem. Res. 29, 1032 (1991)CrossRef Sircar, S.: Role of adsorbent heterogeneity on mixed gas adsorption. Ind. Eng. Chem. Res. 29, 1032 (1991)CrossRef
Zurück zum Zitat Skarstrom, C.W.: Method and apparatus for fractionating gaseous mixtures by adsorption. US Patent 2,944,627 (1960) Skarstrom, C.W.: Method and apparatus for fractionating gaseous mixtures by adsorption. US Patent 2,944,627 (1960)
Zurück zum Zitat Skarstrom, C.W.: Oxygen concentration process. US Patent 3,237,377 (1966) Skarstrom, C.W.: Oxygen concentration process. US Patent 3,237,377 (1966)
Zurück zum Zitat Smolarek, J., Fassbaugh, J.H., Rogan, M.K., Schaub, H.R.: Vacuum pressure swing adsorption system and method. US Patent 6,010,555 (2000) Smolarek, J., Fassbaugh, J.H., Rogan, M.K., Schaub, H.R.: Vacuum pressure swing adsorption system and method. US Patent 6,010,555 (2000)
Zurück zum Zitat Taylor, B., Hansen, P.: Gas concentrator with improved water rejection capability. US Patent 7,780,768 B2 (2010) Taylor, B., Hansen, P.: Gas concentrator with improved water rejection capability. US Patent 7,780,768 B2 (2010)
Zurück zum Zitat Taylor, B., Burgess, P., Hansen, P., Stump, J.: Gas concentrator with removable cartridge adsorbent beds. US Patent 9,592,360 B2 (2017) Taylor, B., Burgess, P., Hansen, P., Stump, J.: Gas concentrator with removable cartridge adsorbent beds. US Patent 9,592,360 B2 (2017)
Zurück zum Zitat Todd, R.S., Webley, P.A.: Macropore diffusion dusty-gas coefficient for pelletised zeolites from breakthrough experiments in the O2/N2 system. Chem. Eng. Sci. 60, 4593–4608 (2005)CrossRef Todd, R.S., Webley, P.A.: Macropore diffusion dusty-gas coefficient for pelletised zeolites from breakthrough experiments in the O2/N2 system. Chem. Eng. Sci. 60, 4593–4608 (2005)CrossRef
Zurück zum Zitat Todd, R.S., Webley, P.A.: Pressure drop in a packed bed under nonadsorbing and adsorbing conditions. Ind. Eng. Chem. Res. 44, 7234–7241 (2005)CrossRef Todd, R.S., Webley, P.A.: Pressure drop in a packed bed under nonadsorbing and adsorbing conditions. Ind. Eng. Chem. Res. 44, 7234–7241 (2005)CrossRef
Zurück zum Zitat Wankat, P.C.: Large-scale adsorption and chromatography, vol. 1. CRC Press, Boca Raton (1986) Wankat, P.C.: Large-scale adsorption and chromatography, vol. 1. CRC Press, Boca Raton (1986)
Zurück zum Zitat Wankat, P.C.: Intensification of sorption processes. Ind. Eng. Chem. Res. 26, 1579–1585 (1987)CrossRef Wankat, P.C.: Intensification of sorption processes. Ind. Eng. Chem. Res. 26, 1579–1585 (1987)CrossRef
Zurück zum Zitat Wankat, P.C.: Rate-controlled separations. Elsevier Applied Science, London (1990)CrossRef Wankat, P.C.: Rate-controlled separations. Elsevier Applied Science, London (1990)CrossRef
Zurück zum Zitat Watson, C.F., Whitley, R.D., Meyer, M.L.: Multiple zeolite adsorbent layers in oxygen separation. US Patent 5,529,610 (1996) Watson, C.F., Whitley, R.D., Meyer, M.L.: Multiple zeolite adsorbent layers in oxygen separation. US Patent 5,529,610 (1996)
Zurück zum Zitat Weston, K., Jaussaud, D., Chiang, R.L.: Lithium exchanged zeolite X adsorbent blends. US Patent 7,300,899 B2 (2007) Weston, K., Jaussaud, D., Chiang, R.L.: Lithium exchanged zeolite X adsorbent blends. US Patent 7,300,899 B2 (2007)
Zurück zum Zitat Weston, K., Palmore, J., Jaussaud, D.: Zeolite X agglomerates with a halloysite clay binder. US Patent 10,099,201 B1 (2018) Weston, K., Palmore, J., Jaussaud, D.: Zeolite X agglomerates with a halloysite clay binder. US Patent 10,099,201 B1 (2018)
Zurück zum Zitat Whitley, R.D., Wagner, G.P., LaBuda, M.J.: Dual mode medical oxygen concentrator. US Patent 7,273,051 B2 (2007) Whitley, R.D., Wagner, G.P., LaBuda, M.J.: Dual mode medical oxygen concentrator. US Patent 7,273,051 B2 (2007)
Zurück zum Zitat Whitley, R.D., Wagner, G.P., LaBuda, M.J., Schiff, D.R., Byar, P.D., Weiman, A.M., Wyrick, S.G.: Portable medical oxygen concentrator. US Patent 7,510,601 B2 (2009) Whitley, R.D., Wagner, G.P., LaBuda, M.J., Schiff, D.R., Byar, P.D., Weiman, A.M., Wyrick, S.G.: Portable medical oxygen concentrator. US Patent 7,510,601 B2 (2009)
Zurück zum Zitat Wilson, S.J., Beh, C.C.K., Webley, P.A., Todd, R.S.: The effects of a readily adsorbed trace component (water) in a bulk separation psa process: the case of oxygen VSA. Ind. Eng. Chem. Res. 40, 2702–2713 (2001)CrossRef Wilson, S.J., Beh, C.C.K., Webley, P.A., Todd, R.S.: The effects of a readily adsorbed trace component (water) in a bulk separation psa process: the case of oxygen VSA. Ind. Eng. Chem. Res. 40, 2702–2713 (2001)CrossRef
Zurück zum Zitat Wilson, S.J., Webley, P.A.: Cyclic steady-state axial temperature profiles in multilayer, bulk gas PSA—the case of oxygen VSA. Ind. Eng. Chem. Res. 41, 2753–2765 (2002)CrossRef Wilson, S.J., Webley, P.A.: Cyclic steady-state axial temperature profiles in multilayer, bulk gas PSA—the case of oxygen VSA. Ind. Eng. Chem. Res. 41, 2753–2765 (2002)CrossRef
Zurück zum Zitat Wu, C.W., Kothare, M.V., Sircar, S.: Model analysis of equilibrium adsorption isotherms of pure N2 and O2 and their binary mixtures on LiLSX zeolite. Ind. Eng. Chem. Res. 53, 12428–12434 (2014)CrossRef Wu, C.W., Kothare, M.V., Sircar, S.: Model analysis of equilibrium adsorption isotherms of pure N2 and O2 and their binary mixtures on LiLSX zeolite. Ind. Eng. Chem. Res. 53, 12428–12434 (2014)CrossRef
Zurück zum Zitat Wu, C.W., Kothare, M.V., Sircar, S.: Equilibrium adsorption isotherms of pure N2 and O2 and their binary mixtures on LiLSX zeolite: experimental data and thermodynamic analysis. Ind. Eng. Chem. Res. 53, 7195–7201 (2014)CrossRef Wu, C.W., Kothare, M.V., Sircar, S.: Equilibrium adsorption isotherms of pure N2 and O2 and their binary mixtures on LiLSX zeolite: experimental data and thermodynamic analysis. Ind. Eng. Chem. Res. 53, 7195–7201 (2014)CrossRef
Zurück zum Zitat Wu, C.W., Kothare, M.V., Sircar, S.: Column dynamic study of mass transfer of pure N2 and O2 into small particles of pelletized LiLSX zeolite. Ind. Eng. Chem. Res. 53, 17806–17810 (2014)CrossRef Wu, C.W., Kothare, M.V., Sircar, S.: Column dynamic study of mass transfer of pure N2 and O2 into small particles of pelletized LiLSX zeolite. Ind. Eng. Chem. Res. 53, 17806–17810 (2014)CrossRef
Zurück zum Zitat Wu, C.W., Kothare, M.V., Sircar, S.: Equilibrium isotherm and mass transfer coefficient for adsorption of pure argon on small particles of pelletized lithium-exchanged low silica X zeolite. Ind. Eng. Chem. Res. 54, 2385–2390 (2015)CrossRef Wu, C.W., Kothare, M.V., Sircar, S.: Equilibrium isotherm and mass transfer coefficient for adsorption of pure argon on small particles of pelletized lithium-exchanged low silica X zeolite. Ind. Eng. Chem. Res. 54, 2385–2390 (2015)CrossRef
Zurück zum Zitat Wu, C.W., Rama Rao, V., Kothare, M.V., Sircar, S.: Experimental study of a novel rapid pressure-swing adsorption based medical oxygen concentrator: effect of the adsorbent selectivity of N2 over O2. Ind. Eng. Chem. Res. 55, 4676–4681 (2016)CrossRef Wu, C.W., Rama Rao, V., Kothare, M.V., Sircar, S.: Experimental study of a novel rapid pressure-swing adsorption based medical oxygen concentrator: effect of the adsorbent selectivity of N2 over O2. Ind. Eng. Chem. Res. 55, 4676–4681 (2016)CrossRef
Zurück zum Zitat Yang, R.T.: Gas separation by adsorption processes. Butterworths, Boston (1987) Yang, R.T.: Gas separation by adsorption processes. Butterworths, Boston (1987)
Zurück zum Zitat Yang, R.T.: Adsorbents: fundamentals and applications. Wiley, New York (2003)CrossRef Yang, R.T.: Adsorbents: fundamentals and applications. Wiley, New York (2003)CrossRef
Zurück zum Zitat Yon, C.M., Turnock, P.H.: Multicomponent adsorption equilibria on molecular sieves. In: Lee, M.N.Y., Zwiebel, I. (eds.) Adsorption Technology, AIChE Symposium Series v67, no. 117, pp. 75-83, AIChE, New York (1971) Yon, C.M., Turnock, P.H.: Multicomponent adsorption equilibria on molecular sieves. In: Lee, M.N.Y., Zwiebel, I. (eds.) Adsorption Technology, AIChE Symposium Series v67, no. 117, pp. 75-83, AIChE, New York (1971)
Zurück zum Zitat Zheng, J., Barrett, P.A., Pontonio, S.J., Stephenson, N.A., Chandra, P., Kechagia, P.: High-rate and high-density gas separation adsorbents and manufacturing method. Adsorption 20, 147–156 (2014)CrossRef Zheng, J., Barrett, P.A., Pontonio, S.J., Stephenson, N.A., Chandra, P., Kechagia, P.: High-rate and high-density gas separation adsorbents and manufacturing method. Adsorption 20, 147–156 (2014)CrossRef
Zurück zum Zitat Zheng, X., Yao, H., Huang, Y.: Orthogonal numerical simulation on multi-factor design for rapid pressure swing adsorption. Adsorption 23, 685–697 (2017)CrossRef Zheng, X., Yao, H., Huang, Y.: Orthogonal numerical simulation on multi-factor design for rapid pressure swing adsorption. Adsorption 23, 685–697 (2017)CrossRef
Zurück zum Zitat Zhong, G., Rankin, P.J., Ackley, M.W.: High frequency PSA process for gas separation. US Patent 7,828,878 B2 (2010) Zhong, G., Rankin, P.J., Ackley, M.W.: High frequency PSA process for gas separation. US Patent 7,828,878 B2 (2010)
Zurück zum Zitat Zhou, S., Chatburn, R.L.: Effect of the anatomic reservoir on low-flow oxygen delivery via nasal cannula: constant flow versus pulse flow with portable oxygen concentrator. Respir Care 59, 1199–1209 (2014)CrossRefPubMed Zhou, S., Chatburn, R.L.: Effect of the anatomic reservoir on low-flow oxygen delivery via nasal cannula: constant flow versus pulse flow with portable oxygen concentrator. Respir Care 59, 1199–1209 (2014)CrossRefPubMed
Zurück zum Zitat Zhu, X., Liu, Y., Yang, X., Liu, W.: Study of a novel rapid vacuum pressure swing adsorption process with intermediate gas pressurization for producing oxygen. Adsorption 23, 175–184 (2017)CrossRef Zhu, X., Liu, Y., Yang, X., Liu, W.: Study of a novel rapid vacuum pressure swing adsorption process with intermediate gas pressurization for producing oxygen. Adsorption 23, 175–184 (2017)CrossRef
Metadaten
Titel
Medical oxygen concentrators: a review of progress in air separation technology
verfasst von
Mark W. Ackley
Publikationsdatum
14.08.2019
Verlag
Springer US
Erschienen in
Adsorption / Ausgabe 8/2019
Print ISSN: 0929-5607
Elektronische ISSN: 1572-8757
DOI
https://doi.org/10.1007/s10450-019-00155-w

Weitere Artikel der Ausgabe 8/2019

Adsorption 8/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.