Skip to main content

2019 | OriginalPaper | Buchkapitel

Micro-machining Performance Assessment of Ti-Based Biomedical Alloy: A Finite Element Case Study

verfasst von : Swastik Pradhan, Kalipada Maity, Sunpreet Singh, Chander Prakash

Erschienen in: Biomanufacturing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Titanium alloy is one of the most abundantly used materials in the field of biomedical application due to its good physical and mechanical characteristics. But the machining of titanium alloy, to achieve the precise shape and dimension as per the tolerance, is extremely difficult, particularly due to the low thermal conductivity and high chemical reactivity properties. Since these materials product and components are to be used inside the human body, hence the machining of titanium alloy is of utmost importance. Therefore, in the present investigation, FEA modeling has been carried out at dry conditions in order to investigate the performance of microgroove-textured cutting tools in three-dimensional machining of titanium alloy grade 5 (Ti-6Al-4 V) using SNMG120408 carbide insert. Various types of microgroove were designed in the rake face of cutting tool using SolidWorks 2012 and Stereolithography file format. The lower cutting forces, temperature, effective stress, and strain are obtained during the FEM simulation of microgroove-textured cutting tool compared to a non-textured cutting tool. Furthermore, variation in the geometry of microgroove on the machinability criteria has been analyzed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Prakash C, Kansal HK, Pabla BS, Puri S, Aggarwal A (2016) Electric discharge machining–A potential choice for surface modification of metallic implants for orthopedic applications: a review. Proc Inst Mech Eng B J Eng Manuf 230(2):331–353 Prakash C, Kansal HK, Pabla BS, Puri S, Aggarwal A (2016) Electric discharge machining–A potential choice for surface modification of metallic implants for orthopedic applications: a review. Proc Inst Mech Eng B J Eng Manuf 230(2):331–353
2.
Zurück zum Zitat Prakash C, Kansal HK, Pabla BS, Puri S (2015) Processing and characterization of novel biomimetic nanoporous bioceramic surface on β-Ti implant by powder mixed electric discharge machining. J Mater Eng Perform 24(9):3622–3633CrossRef Prakash C, Kansal HK, Pabla BS, Puri S (2015) Processing and characterization of novel biomimetic nanoporous bioceramic surface on β-Ti implant by powder mixed electric discharge machining. J Mater Eng Perform 24(9):3622–3633CrossRef
3.
Zurück zum Zitat Aliyu AA, Abdul-Rani AM, Ginta TL, Prakash C, Axinte E, Razak MA, Ali S (2017) A review of additive mixed-electric discharge machining: current status and future perspectives for surface modification of biomedical implants. Adv Mater Sci Eng 1–23CrossRef Aliyu AA, Abdul-Rani AM, Ginta TL, Prakash C, Axinte E, Razak MA, Ali S (2017) A review of additive mixed-electric discharge machining: current status and future perspectives for surface modification of biomedical implants. Adv Mater Sci Eng 1–23CrossRef
4.
Zurück zum Zitat Ezugwu EO, Wang ZM (1997) Titanium alloys and their machinability—a review. J Mater Process Technol 68(3):262–274CrossRef Ezugwu EO, Wang ZM (1997) Titanium alloys and their machinability—a review. J Mater Process Technol 68(3):262–274CrossRef
5.
Zurück zum Zitat Arrazola PJ, Garay A, Iriarte LM, Armendia M, Marya S, Le Maitre F (2009) Machinability of titanium alloys (Ti6Al4 V and Ti555. 3). J Mater Process Technol 209(5):2223–2230 Arrazola PJ, Garay A, Iriarte LM, Armendia M, Marya S, Le Maitre F (2009) Machinability of titanium alloys (Ti6Al4 V and Ti555. 3). J Mater Process Technol 209(5):2223–2230
6.
Zurück zum Zitat Cui C, Hu B, Zhao L, Liu S (2011) Titanium alloy production technology, market prospects and industry development. Mater Des 32(3):1684–1691CrossRef Cui C, Hu B, Zhao L, Liu S (2011) Titanium alloy production technology, market prospects and industry development. Mater Des 32(3):1684–1691CrossRef
7.
Zurück zum Zitat Bruschi S, Bertolini R, Ghiotti A (2017) Coupling machining and heat treatment to enhance the wear behaviour of an additive manufactured Ti6Al4 V titanium alloy. Tribol Int 116:58–68CrossRef Bruschi S, Bertolini R, Ghiotti A (2017) Coupling machining and heat treatment to enhance the wear behaviour of an additive manufactured Ti6Al4 V titanium alloy. Tribol Int 116:58–68CrossRef
8.
Zurück zum Zitat Soro N, Brassart L, Chen Y, Veidt M, Attar H, Dargusch MS (2018) Finite element analysis of porous commercially pure titanium for biomedical implant application. Mater Sci Eng A 725:43–50CrossRef Soro N, Brassart L, Chen Y, Veidt M, Attar H, Dargusch MS (2018) Finite element analysis of porous commercially pure titanium for biomedical implant application. Mater Sci Eng A 725:43–50CrossRef
9.
Zurück zum Zitat Barthes J, Ciftci S, Ponzio F, Knopf-Marques H, Pelyhe L, Gudima A, Kientzl I, Bognár E, Weszl M, Kzhyshkowska J (2018) The potential impact of surface crystalline states of titanium for biomedical applications. Crit Rev Biotechnol 38(3):423–437CrossRef Barthes J, Ciftci S, Ponzio F, Knopf-Marques H, Pelyhe L, Gudima A, Kientzl I, Bognár E, Weszl M, Kzhyshkowska J (2018) The potential impact of surface crystalline states of titanium for biomedical applications. Crit Rev Biotechnol 38(3):423–437CrossRef
10.
Zurück zum Zitat Besinis A, Hadi SD, Le H, Tredwin C, Handy R (2017) Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings. Nanotoxicology 11(3):327–338CrossRef Besinis A, Hadi SD, Le H, Tredwin C, Handy R (2017) Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings. Nanotoxicology 11(3):327–338CrossRef
11.
Zurück zum Zitat Campanelli LC, Bortolan CC, da Silva PSCP, Bolfarini C, Oliveira NTC (2017) Effect of an amorphous titania nanotubes coating on the fatigue and corrosion behaviors of the biomedical Ti-6Al-4 V and Ti-6Al-7Nb alloys. J Mech Behav Biomed Mater 65:542–551CrossRef Campanelli LC, Bortolan CC, da Silva PSCP, Bolfarini C, Oliveira NTC (2017) Effect of an amorphous titania nanotubes coating on the fatigue and corrosion behaviors of the biomedical Ti-6Al-4 V and Ti-6Al-7Nb alloys. J Mech Behav Biomed Mater 65:542–551CrossRef
12.
Zurück zum Zitat Cheng A, Goodwin WB, Deglee BM, Gittens RA, Vernon JP, Hyzy SL, Schwartz Z, Sandhage KH, Boyan BD (2018) Surface modification of bulk titanium substrates for biomedical applications via low-temperature microwave hydrothermal oxidation. J Biomed Mater Res Part A 106(3):782–796CrossRef Cheng A, Goodwin WB, Deglee BM, Gittens RA, Vernon JP, Hyzy SL, Schwartz Z, Sandhage KH, Boyan BD (2018) Surface modification of bulk titanium substrates for biomedical applications via low-temperature microwave hydrothermal oxidation. J Biomed Mater Res Part A 106(3):782–796CrossRef
13.
Zurück zum Zitat Liu H, Niinomi M, Nakai M, Obara S, Fujii H (2017) Improved fatigue properties with maintaining low Young’s modulus achieved in biomedical beta-type titanium alloy by oxygen addition. Mater Sci Eng, A 704:10–17CrossRef Liu H, Niinomi M, Nakai M, Obara S, Fujii H (2017) Improved fatigue properties with maintaining low Young’s modulus achieved in biomedical beta-type titanium alloy by oxygen addition. Mater Sci Eng, A 704:10–17CrossRef
14.
Zurück zum Zitat Mohammed MT, Diwan AA, Ali OI (2018) Study the formation of porous surface layer for a new biomedical titanium alloy. Mater Res Express 5(3):036526CrossRef Mohammed MT, Diwan AA, Ali OI (2018) Study the formation of porous surface layer for a new biomedical titanium alloy. Mater Res Express 5(3):036526CrossRef
15.
Zurück zum Zitat Prakash C, Kansal H, Pabla B, Puri S (2017) Experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zrβ-titanium alloy. Mater Manuf Processes 32(3):274–285CrossRef Prakash C, Kansal H, Pabla B, Puri S (2017) Experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zrβ-titanium alloy. Mater Manuf Processes 32(3):274–285CrossRef
16.
Zurück zum Zitat Richard C (2017) Innovative surface treatments of titanium alloys for biomedical applications. In: Materials science forum. Trans Tech Publ, pp 1570–1575 Richard C (2017) Innovative surface treatments of titanium alloys for biomedical applications. In: Materials science forum. Trans Tech Publ, pp 1570–1575
17.
Zurück zum Zitat Rifai A, Tran N, Lau DW, Elbourne A, Zhan H, Stacey AD, Mayes EL, Sarker A, Ivanova EP, Crawford RJ (2018) Polycrystalline diamond coating of additively manufactured titanium for biomedical applications. ACS Appl Mater Interfaces 10(10):8474–8484CrossRef Rifai A, Tran N, Lau DW, Elbourne A, Zhan H, Stacey AD, Mayes EL, Sarker A, Ivanova EP, Crawford RJ (2018) Polycrystalline diamond coating of additively manufactured titanium for biomedical applications. ACS Appl Mater Interfaces 10(10):8474–8484CrossRef
18.
Zurück zum Zitat Trevisan F, Calignano F, Aversa A, Marchese G, Lombardi M, Biamino S, Ugues D, Manfredi D (2018) Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. J Appl Biomater Funct Mater 16(2):57–67PubMed Trevisan F, Calignano F, Aversa A, Marchese G, Lombardi M, Biamino S, Ugues D, Manfredi D (2018) Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. J Appl Biomater Funct Mater 16(2):57–67PubMed
19.
Zurück zum Zitat Valiev R, Sabirov I, Zemtsova E, Parfenov E, Dluhoš L, Lowe T (2018) Nanostructured commercially pure titanium for development of miniaturized biomedical implants. In: Titanium in medical and dental applications. Elsevier, pp 393–417 Valiev R, Sabirov I, Zemtsova E, Parfenov E, Dluhoš L, Lowe T (2018) Nanostructured commercially pure titanium for development of miniaturized biomedical implants. In: Titanium in medical and dental applications. Elsevier, pp 393–417
20.
Zurück zum Zitat Obikawa T, Kamio A, Takaoka H, Osada A (2011) Micro-texture at the coated tool face for high performance cutting. Int J Mach Tools Manuf 51(12):966–972CrossRef Obikawa T, Kamio A, Takaoka H, Osada A (2011) Micro-texture at the coated tool face for high performance cutting. Int J Mach Tools Manuf 51(12):966–972CrossRef
21.
Zurück zum Zitat Enomoto T, Sugihara T (2011) Improvement of anti-adhesive properties of cutting tool by nano/micro textures and its mechanism. Procedia Eng 19:100–105CrossRef Enomoto T, Sugihara T (2011) Improvement of anti-adhesive properties of cutting tool by nano/micro textures and its mechanism. Procedia Eng 19:100–105CrossRef
22.
Zurück zum Zitat Lei S, Devarajan S, Chang Z (2009) A study of micropool lubricated cutting tool in machining of mild steel. J Mater Process Technol 209(3):1612–1620CrossRef Lei S, Devarajan S, Chang Z (2009) A study of micropool lubricated cutting tool in machining of mild steel. J Mater Process Technol 209(3):1612–1620CrossRef
23.
Zurück zum Zitat Yang Y, Su Y, Li L, He N, Zhao W (2015) Performance of cemented carbide tools with micro-grooves in Ti-6Al-4 V titanium alloy cutting. Int J Adv Manuf Technol 76(9–12):1731–1738CrossRef Yang Y, Su Y, Li L, He N, Zhao W (2015) Performance of cemented carbide tools with micro-grooves in Ti-6Al-4 V titanium alloy cutting. Int J Adv Manuf Technol 76(9–12):1731–1738CrossRef
24.
Zurück zum Zitat Ma J, Duong NH, Lei S (2015) 3D numerical investigation of the performance of micro-groove textured cutting tool in dry machining of Ti-6Al-4 V. Int J Adv Manuf Technol 79(5–8):1313–1323CrossRef Ma J, Duong NH, Lei S (2015) 3D numerical investigation of the performance of micro-groove textured cutting tool in dry machining of Ti-6Al-4 V. Int J Adv Manuf Technol 79(5–8):1313–1323CrossRef
25.
Zurück zum Zitat Sharma V, Pandey PM (2016) Geometrical design optimization of hybrid textured self-lubricating cutting inserts for turning 4340 hardened steel. Int J Adv Manuf Technol 1–15 Sharma V, Pandey PM (2016) Geometrical design optimization of hybrid textured self-lubricating cutting inserts for turning 4340 hardened steel. Int J Adv Manuf Technol 1–15
26.
Zurück zum Zitat Xie J, Luo M-J, He J-L, Liu X-R, Tan T-W (2012) Micro-grinding of micro-groove array on tool rake surface for dry cutting of titanium alloy. Int J Precis Eng Manuf 13(10):1845–1852CrossRef Xie J, Luo M-J, He J-L, Liu X-R, Tan T-W (2012) Micro-grinding of micro-groove array on tool rake surface for dry cutting of titanium alloy. Int J Precis Eng Manuf 13(10):1845–1852CrossRef
27.
Zurück zum Zitat Maity K, Pradhan S (2018) Investigation of FEM simulation of machining of titanium alloy using micro-groove cutting insert. Silicon 1–11 Maity K, Pradhan S (2018) Investigation of FEM simulation of machining of titanium alloy using micro-groove cutting insert. Silicon 1–11
28.
Zurück zum Zitat Fluhrer J (2006) Deform 3D User’s manual version 6.0. Scientific Forming Technologies Corporation, Columbus, OH Fluhrer J (2006) Deform 3D User’s manual version 6.0. Scientific Forming Technologies Corporation, Columbus, OH
29.
Zurück zum Zitat Rahman M, San WONGY, Zareena AR (2003) Machinability of titanium alloys. JSME Int J Ser C 46(1):107–115CrossRef Rahman M, San WONGY, Zareena AR (2003) Machinability of titanium alloys. JSME Int J Ser C 46(1):107–115CrossRef
30.
Zurück zum Zitat Rahman M, Wang ZG, Wong Y-S (2006) A review on high-speed machining of titanium alloys. JSME Int J Series C 49(1):11–20CrossRef Rahman M, Wang ZG, Wong Y-S (2006) A review on high-speed machining of titanium alloys. JSME Int J Series C 49(1):11–20CrossRef
Metadaten
Titel
Micro-machining Performance Assessment of Ti-Based Biomedical Alloy: A Finite Element Case Study
verfasst von
Swastik Pradhan
Kalipada Maity
Sunpreet Singh
Chander Prakash
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-13951-3_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.