Skip to main content
Erschienen in: Journal of Engineering Thermophysics 2/2023

01.06.2023

Microchannel Surface Structures for Drag Reduction

verfasst von: D. S. Gluzdov, E. Ya. Gatapova

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There are many different designs of microchannels for fluid transport or heat transfer purposes. The most challenging problem is selecting the shape and boundary structure of the microchannel walls so that they meet all the requirements and be most optimal and efficient at high flow rates. Various studies show that applying superhydrophobic surface to the microchannel walls can significantly reduce drag forces; however, the characteristics of the best surface structure for a superhydrophobic boundary condition are still unknown. To clarify this problem, we have reviewed different possible engineering solutions for surface structure options, their effect on reducing microchannel drag, and compared them in the present paper.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Roure, O. du, Lindner, A., Nazockdast, E.N., and Shelley, M.J., Dynamics of Flexible Fibers in Viscous Flows and Fluids, 2019, DOI:10.1146/annurev-fluid-122316-045153. Roure, O. du, Lindner, A., Nazockdast, E.N., and Shelley, M.J., Dynamics of Flexible Fibers in Viscous Flows and Fluids, 2019, DOI:10.1146/annurev-fluid-122316-045153.
2.
Zurück zum Zitat Kavokine, N., Netz, R.R., and Bocquet, L., Fluids at the Nanoscale: from Continuum to Sub-Continuum Transport, 2020, DOI:10.1146/annurev-fluid-071320-095958. Kavokine, N., Netz, R.R., and Bocquet, L., Fluids at the Nanoscale: from Continuum to Sub-Continuum Transport, 2020, DOI:10.1146/annurev-fluid-071320-095958.
3.
Zurück zum Zitat Singh, J., Montesinos-Castellanos, A., and Nigam, K.D.P., Process Intensification for Compact and Micro Heat Exchangers through Innovative Technologies: A Review, Ind. Engin. Chem. Res., 2019, vol. 58, no. 31, pp. 13819–13847; DOI:10.1021/acs.iecr.9b02082.CrossRef Singh, J., Montesinos-Castellanos, A., and Nigam, K.D.P., Process Intensification for Compact and Micro Heat Exchangers through Innovative Technologies: A Review, Ind. Engin. Chem. Res., 2019, vol. 58, no. 31, pp. 13819–13847; DOI:10.1021/acs.iecr.9b02082.CrossRef
4.
Zurück zum Zitat Convery, N. and Gadegaard, N., 30 Years of Microfluidics, Micro Nano Engin., 2019, vol. 2, pp. 76–91; DOI:10.1016/j.mne.2019.01.003.CrossRef Convery, N. and Gadegaard, N., 30 Years of Microfluidics, Micro Nano Engin., 2019, vol. 2, pp. 76–91; DOI:10.1016/j.mne.2019.01.003.CrossRef
5.
Zurück zum Zitat Steinke, M.E. and Kandlikar, S.G., Single-Phase Liquid Friction Factors in Microchannels, Int. J. Thermal Sci., 2006, vol. 45, no. 11, pp. 1073–1083; DOI:10.1016/j.ijthermalsci.2006.01.016.CrossRef Steinke, M.E. and Kandlikar, S.G., Single-Phase Liquid Friction Factors in Microchannels, Int. J. Thermal Sci., 2006, vol. 45, no. 11, pp. 1073–1083; DOI:10.1016/j.ijthermalsci.2006.01.016.CrossRef
6.
Zurück zum Zitat Tuckerman, D.B. and Pease, R.F.W., High-Performance Heat Sinking for VLSI, 1981. Tuckerman, D.B. and Pease, R.F.W., High-Performance Heat Sinking for VLSI, 1981.
7.
Zurück zum Zitat Mo, J., Ding, Y., Xiang, N., Zhu, S., Zeng, J., Bi, K., et al., Fluid Release Pressure for Micro-/Nanoscale Rectangular Channels, J. Appl. Phys., 2020, vol. 127, no. 11, DOI:10.1063/1.5129411.ADSCrossRef Mo, J., Ding, Y., Xiang, N., Zhu, S., Zeng, J., Bi, K., et al., Fluid Release Pressure for Micro-/Nanoscale Rectangular Channels, J. Appl. Phys., 2020, vol. 127, no. 11, DOI:10.1063/1.5129411.ADSCrossRef
8.
Zurück zum Zitat Kandlikar, S.G., Microchannels and Minchannels-History, Terminology, Classification and Current Research Needs, Int. Conf. on Nanochannels, Microchannels, and Minichannels, 2003, vol. 36673, pp. 1–6. Kandlikar, S.G., Microchannels and Minchannels-History, Terminology, Classification and Current Research Needs, Int. Conf. on Nanochannels, Microchannels, and Minichannels, 2003, vol. 36673, pp. 1–6.
9.
Zurück zum Zitat Bocquet, L. and Lauga, E., A Smooth Future?, Nature Mater., 2011, vol. 10, no. 5, pp. 334–337; DOI:10.1038/nmat2994.ADSCrossRef Bocquet, L. and Lauga, E., A Smooth Future?, Nature Mater., 2011, vol. 10, no. 5, pp. 334–337; DOI:10.1038/nmat2994.ADSCrossRef
10.
Zurück zum Zitat Kumar, V., Paraschivoiu, M., and Nigam, K.D.P., Single-Phase Fluid Flow and Mixing in Microchannels, Chem. Engin. Sci., 2011, vol. 66, no. 7, pp. 1329–1373; DOI:10.1016/j.ces.2010.08.016.ADSCrossRef Kumar, V., Paraschivoiu, M., and Nigam, K.D.P., Single-Phase Fluid Flow and Mixing in Microchannels, Chem. Engin. Sci., 2011, vol. 66, no. 7, pp. 1329–1373; DOI:10.1016/j.ces.2010.08.016.ADSCrossRef
11.
Zurück zum Zitat Stone, H.A., Stroock, A.D., and Ajdari, A., Engineering Flows in Small Devices: Microfluidics toward a Lab-on-a-Chip, Annual Review of Fluid Mechanics, 2004, vol. 36, pp. 381–411; DOI:10.1146/ annurev.fluid.36.050802.122124.ADSCrossRefMATH Stone, H.A., Stroock, A.D., and Ajdari, A., Engineering Flows in Small Devices: Microfluidics toward a Lab-on-a-Chip, Annual Review of Fluid Mechanics, 2004, vol. 36, pp. 381–411; DOI:10.1146/ annurev.fluid.36.050802.122124.ADSCrossRefMATH
12.
Zurück zum Zitat Yager, P., Edwards, T., Fu, E., Helton, K., Nelson, K., Tam, M.R., et al., Microfluidic Diagnostic Technologies for Global Public Health, Nature, 2006, vol. 442, no. 7101, pp. 412–418; DOI:10.1038/nature05064.ADSCrossRef Yager, P., Edwards, T., Fu, E., Helton, K., Nelson, K., Tam, M.R., et al., Microfluidic Diagnostic Technologies for Global Public Health, Nature, 2006, vol. 442, no. 7101, pp. 412–418; DOI:10.1038/nature05064.ADSCrossRef
13.
Zurück zum Zitat Hussien, A.A., Abdullah, M.Z., and Al-Nimr, M.A., Single-Phase Heat Transfer Enhancement in Micro/Minichannels Using Nanofluids: Theory and Applications, Appl. Energy, 2016, vol. 164, pp. 733–755; DOI:10.1016/j.apenergy.2015.11.099.CrossRef Hussien, A.A., Abdullah, M.Z., and Al-Nimr, M.A., Single-Phase Heat Transfer Enhancement in Micro/Minichannels Using Nanofluids: Theory and Applications, Appl. Energy, 2016, vol. 164, pp. 733–755; DOI:10.1016/j.apenergy.2015.11.099.CrossRef
14.
Zurück zum Zitat Lu, S. and Vafai, K., A Comparative Analysis of Innovative Microchannel Heat Sinks for Electronic Cooling, Int. Commun. Heat Mass Transfer, 2016, vol. 76, pp. 271–284; DOI:10.1016/ j.icheatmasstransfer.2016.04.024.CrossRef Lu, S. and Vafai, K., A Comparative Analysis of Innovative Microchannel Heat Sinks for Electronic Cooling, Int. Commun. Heat Mass Transfer, 2016, vol. 76, pp. 271–284; DOI:10.1016/ j.icheatmasstransfer.2016.04.024.CrossRef
15.
Zurück zum Zitat Ghahremannezhad, A. and Vafai, K., Thermal and Hydraulic Performance Enhancement of Microchannel Heat Sinks Utilizing Porous Substrates, Int. J. Heat Mass Transfer, 2018, vol. 122, pp. 1313–1326; DOI:10.1016/j.ijheatmasstransfer.2018.02.024.CrossRef Ghahremannezhad, A. and Vafai, K., Thermal and Hydraulic Performance Enhancement of Microchannel Heat Sinks Utilizing Porous Substrates, Int. J. Heat Mass Transfer, 2018, vol. 122, pp. 1313–1326; DOI:10.1016/j.ijheatmasstransfer.2018.02.024.CrossRef
16.
Zurück zum Zitat Heydari, A., Akbari, O.A., Safaei, M.R., Derakhshani, M., Alrashed, A.A.A.A., Mashayekhi, R., et al., The Effect of Attack Angle of Triangular Ribs on Heat Transfer of Nanofluids in a Microchannel, J. Thermal An. Calorimetry, 2018, vol. 131, no. 3, pp. 2893–2912; DOI:10.1007/s10973-017-6746-x.CrossRef Heydari, A., Akbari, O.A., Safaei, M.R., Derakhshani, M., Alrashed, A.A.A.A., Mashayekhi, R., et al., The Effect of Attack Angle of Triangular Ribs on Heat Transfer of Nanofluids in a Microchannel, J. Thermal An. Calorimetry, 2018, vol. 131, no. 3, pp. 2893–2912; DOI:10.1007/s10973-017-6746-x.CrossRef
17.
Zurück zum Zitat Kandlikar, S.G., Colin, S., Peles, Y., Garimella, S., Pease, R.F., Brandner, J.J., et al., Heat Transfer in Microchannels—2012 Status and Research Needs, J. Heat Transfer, 2013, vol. 135, no. 9, DOI:10.1115/ 1.4024354. Kandlikar, S.G., Colin, S., Peles, Y., Garimella, S., Pease, R.F., Brandner, J.J., et al., Heat Transfer in Microchannels—2012 Status and Research Needs, J. Heat Transfer, 2013, vol. 135, no. 9, DOI:10.1115/ 1.4024354.
18.
Zurück zum Zitat Leng, C., Wang, X.D., Wang, T.H., and Yan, W.M., Multi-Parameter Optimization of Flow and Heat Transfer for a Novel Double-Layered Microchannel Heat Sink, Int. J. Heat Mass Transfer, 2015, vol. 84, pp. 359–369; DOI:10.1016/j.ijheatmasstransfer.2015.01.040.CrossRef Leng, C., Wang, X.D., Wang, T.H., and Yan, W.M., Multi-Parameter Optimization of Flow and Heat Transfer for a Novel Double-Layered Microchannel Heat Sink, Int. J. Heat Mass Transfer, 2015, vol. 84, pp. 359–369; DOI:10.1016/j.ijheatmasstransfer.2015.01.040.CrossRef
19.
Zurück zum Zitat Wei, X., Joshi, Y., and Patterson, M.K., Experimental and Numerical Study of a Stacked Microchannel Heat Sink for Liquid Cooling of Microelectronic Devices, J. Heat Transfer, 2007, vol. 129, no. 10, pp. 1432–1444; DOI:10.1115/1.2754781.CrossRef Wei, X., Joshi, Y., and Patterson, M.K., Experimental and Numerical Study of a Stacked Microchannel Heat Sink for Liquid Cooling of Microelectronic Devices, J. Heat Transfer, 2007, vol. 129, no. 10, pp. 1432–1444; DOI:10.1115/1.2754781.CrossRef
20.
Zurück zum Zitat Mohebbi, R., Rashidi, M.M., Izadi, M., Sidik, N.A.C., and Xian, H.W., Forced Convection of Nanofluids in an Extended Surfaces Channel Using Lattice Boltzmann Method, Int. J. Heat Mass Transfer, 2018, vol. 117, pp. 1291–1303; DOI:10.1016/j.ijheatmasstransfer.2017.10.063.CrossRef Mohebbi, R., Rashidi, M.M., Izadi, M., Sidik, N.A.C., and Xian, H.W., Forced Convection of Nanofluids in an Extended Surfaces Channel Using Lattice Boltzmann Method, Int. J. Heat Mass Transfer, 2018, vol. 117, pp. 1291–1303; DOI:10.1016/j.ijheatmasstransfer.2017.10.063.CrossRef
21.
Zurück zum Zitat Fedorov, A.G. and Viskanta, R., Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging, Int. J. Heat Mass Transfer, 2000, vol. 43, no. 3, pp. 399–415.CrossRefMATH Fedorov, A.G. and Viskanta, R., Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging, Int. J. Heat Mass Transfer, 2000, vol. 43, no. 3, pp. 399–415.CrossRefMATH
22.
Zurück zum Zitat Gilmore, N., Timchenko, V., and Menictas, C., Microchannel Cooling of Concentrator Photovoltaics: A Review, Renew. Sustain. Energy Rev., 2018, vol. 90, pp. 1041–1059; DOI:10.1016/j.rser.2018.04.010.CrossRef Gilmore, N., Timchenko, V., and Menictas, C., Microchannel Cooling of Concentrator Photovoltaics: A Review, Renew. Sustain. Energy Rev., 2018, vol. 90, pp. 1041–1059; DOI:10.1016/j.rser.2018.04.010.CrossRef
23.
Zurück zum Zitat Hossain, M.Z. and Floryan, J.M., On the Role of Surface Grooves in the Reduction of Pressure Losses in Heated Channels, Phys Fluids, 2020, vol. 32, no. 8, DOI:10.1063/5.0018416.ADSCrossRef Hossain, M.Z. and Floryan, J.M., On the Role of Surface Grooves in the Reduction of Pressure Losses in Heated Channels, Phys Fluids, 2020, vol. 32, no. 8, DOI:10.1063/5.0018416.ADSCrossRef
24.
Zurück zum Zitat Kandlikar, S.G., Joshi, S., and Tian, S., Effect of Surface Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes, Heat Transfer Engin., 2003, vol. 24, no. 3, pp. 4–16; DOI:10.1080/01457630304069.ADSCrossRef Kandlikar, S.G., Joshi, S., and Tian, S., Effect of Surface Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes, Heat Transfer Engin., 2003, vol. 24, no. 3, pp. 4–16; DOI:10.1080/01457630304069.ADSCrossRef
25.
Zurück zum Zitat Li, Z., He, Y.L., Tang, G.H., and Tao, W.Q., Experimental and Numerical Studies of Liquid Flow and Heat Transfer in Microtubes, Int. J. Heat Mass Transfer, 2007, vol. 50, no. 17–18, pp. 3447–3460; DOI:10.1016/j.ijheatmasstransfer.2007.01.016.CrossRefMATH Li, Z., He, Y.L., Tang, G.H., and Tao, W.Q., Experimental and Numerical Studies of Liquid Flow and Heat Transfer in Microtubes, Int. J. Heat Mass Transfer, 2007, vol. 50, no. 17–18, pp. 3447–3460; DOI:10.1016/j.ijheatmasstransfer.2007.01.016.CrossRefMATH
26.
Zurück zum Zitat Thiangtham, P., Mondal, P.K., and Wongwises, S., Flow Boiling Pressure Drop Characteristics in a Multi-Microchannel Heat Sink, Phys. Fluids, 2021, vol. 33, no. 1, DOI:10.1063/5.0036615.ADSCrossRef Thiangtham, P., Mondal, P.K., and Wongwises, S., Flow Boiling Pressure Drop Characteristics in a Multi-Microchannel Heat Sink, Phys. Fluids, 2021, vol. 33, no. 1, DOI:10.1063/5.0036615.ADSCrossRef
27.
Zurück zum Zitat Ellinas, K., Dimitrakellis, P., Sarkiris, P., and Gogolides, E., A Review of Fabrication Methods, Properties and Applications of Superhydrophobic Metals, Processes, 2021, vol. 9, no. 4, DOI:10.3390/pr9040666.CrossRef Ellinas, K., Dimitrakellis, P., Sarkiris, P., and Gogolides, E., A Review of Fabrication Methods, Properties and Applications of Superhydrophobic Metals, Processes, 2021, vol. 9, no. 4, DOI:10.3390/pr9040666.CrossRef
28.
Zurück zum Zitat Akbari, O.A., Safaei, M.R., Goodarzi, M., Akbar, N.S., Zarringhalam, M., Shabani, G.A.S., et al., A Modified Two-Phase Mixture Model of Nanofluid Flow and Heat Transfer in a 3-D Curved Microtube, Adv. Powder Technol., 2016, vol. 27, no. 5, pp. 2175–2185; DOI:10.1016/j.apt.2016.08.002.CrossRef Akbari, O.A., Safaei, M.R., Goodarzi, M., Akbar, N.S., Zarringhalam, M., Shabani, G.A.S., et al., A Modified Two-Phase Mixture Model of Nanofluid Flow and Heat Transfer in a 3-D Curved Microtube, Adv. Powder Technol., 2016, vol. 27, no. 5, pp. 2175–2185; DOI:10.1016/j.apt.2016.08.002.CrossRef
29.
Zurück zum Zitat He, J., Ju, Y., Kulasinski, K., Zheng, L., and Lammers, L., Molecular Dynamics Simulation of Methane Transport in Confined Organic Nanopores with High Relative Roughness, J. Natural Gas Sci. Engin., 2019, vol. 62, pp. 202–213; DOI:10.1016/j.jngse.2018.12.010.CrossRef He, J., Ju, Y., Kulasinski, K., Zheng, L., and Lammers, L., Molecular Dynamics Simulation of Methane Transport in Confined Organic Nanopores with High Relative Roughness, J. Natural Gas Sci. Engin., 2019, vol. 62, pp. 202–213; DOI:10.1016/j.jngse.2018.12.010.CrossRef
30.
Zurück zum Zitat Shadloo-Jahromi, A., Kharati-Koopaee, M., and Bavi, O., Friction Factor Calculation in Nanochannels Comprising Different Wall Hydrophobicities and Superhydrophobic Structures: Molecular Dynamic Simulations, Int. Commun. Heat Mass Transfer, 2020, vol. 117, DOI:10.1016/ j.icheatmasstransfer.2020.104763.CrossRef Shadloo-Jahromi, A., Kharati-Koopaee, M., and Bavi, O., Friction Factor Calculation in Nanochannels Comprising Different Wall Hydrophobicities and Superhydrophobic Structures: Molecular Dynamic Simulations, Int. Commun. Heat Mass Transfer, 2020, vol. 117, DOI:10.1016/ j.icheatmasstransfer.2020.104763.CrossRef
31.
Zurück zum Zitat Xie, J.F. and Cao, B.Y., Effect of Various Surface Conditions on Nanochannel Flows past Permeable Walls, Molec. Simul., 2017, vol. 43, no. 1, pp. 65–75; DOI:10.1080/08927022.2016.1233547.CrossRef Xie, J.F. and Cao, B.Y., Effect of Various Surface Conditions on Nanochannel Flows past Permeable Walls, Molec. Simul., 2017, vol. 43, no. 1, pp. 65–75; DOI:10.1080/08927022.2016.1233547.CrossRef
32.
Zurück zum Zitat Xu, H.Y., Yu, H., Fan, J.C., Zhu, Y.B., Wang, F.C., and Wu, H.A., Two-Phase Transport Characteristic of Shale Gas and Water through Hydrophilic and Hydrophobic Nanopores, Energy Fuels, 2020, vol. 34, no. 4, pp. 4407–4420; DOI:10.1021/acs.energyfuels.0c00212.CrossRef Xu, H.Y., Yu, H., Fan, J.C., Zhu, Y.B., Wang, F.C., and Wu, H.A., Two-Phase Transport Characteristic of Shale Gas and Water through Hydrophilic and Hydrophobic Nanopores, Energy Fuels, 2020, vol. 34, no. 4, pp. 4407–4420; DOI:10.1021/acs.energyfuels.0c00212.CrossRef
33.
Zurück zum Zitat Zhang, C. and Chen, Y., Slip Behavior of Liquid Flow in Rough Nanochannels, Chem. Engin. Proc.: Proc. Intensif., 2014, vol. 85, pp. 203–208; DOI:10.1016/j.cep.2014.09.003.CrossRef Zhang, C. and Chen, Y., Slip Behavior of Liquid Flow in Rough Nanochannels, Chem. Engin. Proc.: Proc. Intensif., 2014, vol. 85, pp. 203–208; DOI:10.1016/j.cep.2014.09.003.CrossRef
34.
Zurück zum Zitat Malkin, A.Y. and Patlazhan, S.A., Wall Slip for Complex Liquids—Phenomenon and Its Causes, Adv. Colloid Interface Sci., 2018, vol. 257, pp. 42–57; DOI:10.1016/j.cis.2018.05.008.CrossRef Malkin, A.Y. and Patlazhan, S.A., Wall Slip for Complex Liquids—Phenomenon and Its Causes, Adv. Colloid Interface Sci., 2018, vol. 257, pp. 42–57; DOI:10.1016/j.cis.2018.05.008.CrossRef
35.
Zurück zum Zitat Rothstein, J.P., Slip on Superhydrophobic Surfaces, Ann. Review Fluid Mech., 2010, vol. 42, pp. 89–109; DOI:10.1146/annurev-fluid-121108-145558.ADSCrossRef Rothstein, J.P., Slip on Superhydrophobic Surfaces, Ann. Review Fluid Mech., 2010, vol. 42, pp. 89–109; DOI:10.1146/annurev-fluid-121108-145558.ADSCrossRef
36.
Zurück zum Zitat Gose, J.W., Golovin, K., Boban, M., Mabry, J.M., Tuteja, A., Perlin, M., et al., Characterization of Superhydrophobic Surfaces for Drag Reduction in Turbulent Flow, J. Fluid Mech., 2018, vol. 845, pp. 560–580; DOI:10.1017/jfm.2018.210.ADSMathSciNetCrossRefMATH Gose, J.W., Golovin, K., Boban, M., Mabry, J.M., Tuteja, A., Perlin, M., et al., Characterization of Superhydrophobic Surfaces for Drag Reduction in Turbulent Flow, J. Fluid Mech., 2018, vol. 845, pp. 560–580; DOI:10.1017/jfm.2018.210.ADSMathSciNetCrossRefMATH
37.
Zurück zum Zitat Lauga, E., Brenner, M.P., and Stone, H.A., Microfluidics: The No-Slip Boundary Condition, Springer Handbooks, Springer, 2007, pp. 1219–1240. Lauga, E., Brenner, M.P., and Stone, H.A., Microfluidics: The No-Slip Boundary Condition, Springer Handbooks, Springer, 2007, pp. 1219–1240.
38.
Zurück zum Zitat Gatapova, E.Y., Ajaev, V.S., and Kabov, O.A., On Drag Reduction in a Two-Phase Flow, JETP Lett., 2015, vol. 101, no. 3, pp. 160–163; DOI:10.1134/S0021364015030042.ADSCrossRef Gatapova, E.Y., Ajaev, V.S., and Kabov, O.A., On Drag Reduction in a Two-Phase Flow, JETP Lett., 2015, vol. 101, no. 3, pp. 160–163; DOI:10.1134/S0021364015030042.ADSCrossRef
39.
Zurück zum Zitat Wen, L., Weaver, J.C., and Lauder, G.V., Biomimetic Shark Skin: Design, Fabrication and Hydrodynamic Function, J. Exp. Biol., 2014, vol. 217, no. 10, pp. 1656–1666; DOI:10.1242/jeb.097097.CrossRef Wen, L., Weaver, J.C., and Lauder, G.V., Biomimetic Shark Skin: Design, Fabrication and Hydrodynamic Function, J. Exp. Biol., 2014, vol. 217, no. 10, pp. 1656–1666; DOI:10.1242/jeb.097097.CrossRef
40.
Zurück zum Zitat Lee, C., Choi, C.H., and Kim, C.J., Superhydrophobic Drag Reduction in Laminar Flows: A Critical Review, Exp. Fluids, 2016, vol. 57, no. 12, DOI:10.1007/s00348-016-2264-z. Lee, C., Choi, C.H., and Kim, C.J., Superhydrophobic Drag Reduction in Laminar Flows: A Critical Review, Exp. Fluids, 2016, vol. 57, no. 12, DOI:10.1007/s00348-016-2264-z.
41.
Zurück zum Zitat Song, D., Daniello, R.J., and Rothstein, J.P., Drag Reduction Using Superhydrophobic Sanded Teflon Surfaces, Exp. Fluids, 2014, vol. 55, no. 8, DOI:10.1007/s00348-014-1783-8. Song, D., Daniello, R.J., and Rothstein, J.P., Drag Reduction Using Superhydrophobic Sanded Teflon Surfaces, Exp. Fluids, 2014, vol. 55, no. 8, DOI:10.1007/s00348-014-1783-8.
42.
Zurück zum Zitat Aljallis, E., Sarshar, M.A., Datla, R., Sikka, V., Jones, A., and Choi, C.H., Experimental Study of Skin Friction Drag Reduction on Superhydrophobic Flat Plates in High Reynolds Number Boundary Layer Flow, Phys. Fluids, 2013, vol. 25, no. 2, DOI:10.1063/1.4791602.ADSCrossRef Aljallis, E., Sarshar, M.A., Datla, R., Sikka, V., Jones, A., and Choi, C.H., Experimental Study of Skin Friction Drag Reduction on Superhydrophobic Flat Plates in High Reynolds Number Boundary Layer Flow, Phys. Fluids, 2013, vol. 25, no. 2, DOI:10.1063/1.4791602.ADSCrossRef
43.
Zurück zum Zitat Barthlott, W., Schimmel, T., Wiersch, S., Koch, K., Brede, M., Barczewski, M., et al., The Salvmia Paradox: Superhydrophobic Surfaces with Hydrophilic Pins for Air Retention under Water, Adv. Mat., 2010, vol. 22, no. 21, pp. 2325–2328; DOI:10.1002/adma.200904411.CrossRef Barthlott, W., Schimmel, T., Wiersch, S., Koch, K., Brede, M., Barczewski, M., et al., The Salvmia Paradox: Superhydrophobic Surfaces with Hydrophilic Pins for Air Retention under Water, Adv. Mat., 2010, vol. 22, no. 21, pp. 2325–2328; DOI:10.1002/adma.200904411.CrossRef
44.
Zurück zum Zitat Choi, C.H., Ulmanella, U., Kim, J., Ho, C.M., and Kim, C.J., Effective Slip and Friction Reduction in Nanograted Superhydrophobic Microchannels, Phys. Fluids, 2006, vol. 18, no. 8, DOI:10.1063/1.2337669.ADSCrossRef Choi, C.H., Ulmanella, U., Kim, J., Ho, C.M., and Kim, C.J., Effective Slip and Friction Reduction in Nanograted Superhydrophobic Microchannels, Phys. Fluids, 2006, vol. 18, no. 8, DOI:10.1063/1.2337669.ADSCrossRef
45.
Zurück zum Zitat Choi, C.H. and Kim, C.J., Large Slip of Aqueous Liquid Flow over a Nanoengineered Superhydrophobic Surface, Phys. Rev. Lett., 2006, vol. 96, no. 6, DOI:10.1103/PhysRevLett.96.066001.ADSCrossRef Choi, C.H. and Kim, C.J., Large Slip of Aqueous Liquid Flow over a Nanoengineered Superhydrophobic Surface, Phys. Rev. Lett., 2006, vol. 96, no. 6, DOI:10.1103/PhysRevLett.96.066001.ADSCrossRef
46.
Zurück zum Zitat Solomon, B.R., Khalil, K.S., and Varanasi, K.K., Drag Reduction Using Lubricant-Impregnated Surfaces in Viscous Laminar Flow, Langmuir, 2014, vol. 30, no. 36, pp. 10970–10976; DOI:10.1021/la5021143.CrossRef Solomon, B.R., Khalil, K.S., and Varanasi, K.K., Drag Reduction Using Lubricant-Impregnated Surfaces in Viscous Laminar Flow, Langmuir, 2014, vol. 30, no. 36, pp. 10970–10976; DOI:10.1021/la5021143.CrossRef
47.
Zurück zum Zitat Tian, Y., Su, B., and Jiang, L., Interfacial Material System Exhibiting Superwettability, Adv. Mat., 2014, vol. 26, no. 40, pp. 6872–6897; DOI:10.1002/adma.201400883.CrossRef Tian, Y., Su, B., and Jiang, L., Interfacial Material System Exhibiting Superwettability, Adv. Mat., 2014, vol. 26, no. 40, pp. 6872–6897; DOI:10.1002/adma.201400883.CrossRef
48.
Zurück zum Zitat Voronov, R.S., Papavassiliou, D.V., and Lee, L.L., Review of Fluid Slip over Superhydrophobic Surfaces and Its Dependence on the Contact Angle, Industr. Engin. Chem. Res., 2008, vol. 47, no. 8, pp. 2455–2477; DOI:10.1021/ie0712941.CrossRef Voronov, R.S., Papavassiliou, D.V., and Lee, L.L., Review of Fluid Slip over Superhydrophobic Surfaces and Its Dependence on the Contact Angle, Industr. Engin. Chem. Res., 2008, vol. 47, no. 8, pp. 2455–2477; DOI:10.1021/ie0712941.CrossRef
49.
Zurück zum Zitat Wang, S., Liu, K., Yao, X., and Jiang, L., Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications, Chem. Rev., 2015, vol. 115, no. 16, pp. 8230–8293; DOI:10.1021/cr400083y.CrossRef Wang, S., Liu, K., Yao, X., and Jiang, L., Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications, Chem. Rev., 2015, vol. 115, no. 16, pp. 8230–8293; DOI:10.1021/cr400083y.CrossRef
50.
Zurück zum Zitat Zhang, X., Shi, F., Niu, J., Jiang, Y., and Wang, Z., Superhydrophobic Surfaces: From Structural Control to Functional Application, J. Mat. Chem., 2008, vol. 18, no. 6, pp. 621–633; DOI:10.1039/b711226b.CrossRef Zhang, X., Shi, F., Niu, J., Jiang, Y., and Wang, Z., Superhydrophobic Surfaces: From Structural Control to Functional Application, J. Mat. Chem., 2008, vol. 18, no. 6, pp. 621–633; DOI:10.1039/b711226b.CrossRef
51.
Zurück zum Zitat Zhang, Y.L., Xia, H., Kim, E., and Sun, H.B., Recent Developments in Superhydrophobic Surfaces with Unique Structural and Functional Properties, Soft Matt., 2012, vol. 8, no. 44, pp. 11217–11231; DOI:10.1039/c2sm26517f.ADSCrossRef Zhang, Y.L., Xia, H., Kim, E., and Sun, H.B., Recent Developments in Superhydrophobic Surfaces with Unique Structural and Functional Properties, Soft Matt., 2012, vol. 8, no. 44, pp. 11217–11231; DOI:10.1039/c2sm26517f.ADSCrossRef
52.
Zurück zum Zitat Azese, M.N., Measurement and Characterization of Slippage and Slip-Law Using a Rigorous Analysis in Dynamics of Oscillating Rheometer: Newtonian Fluid, Phys. Fluids, 2018, vol. 30, no. 2, DOI:10.1063/1.5016885.ADSCrossRef Azese, M.N., Measurement and Characterization of Slippage and Slip-Law Using a Rigorous Analysis in Dynamics of Oscillating Rheometer: Newtonian Fluid, Phys. Fluids, 2018, vol. 30, no. 2, DOI:10.1063/1.5016885.ADSCrossRef
53.
Zurück zum Zitat Belyaev, A.V. and Vinogradova, O.I., Effective Slip in Pressure-Driven Flow past Super-Hydrophobic Stripes, J. Fluid Mech., 2010, vol. 652, pp. 489–499; DOI:10.1017/S0022112010000741.ADSCrossRefMATH Belyaev, A.V. and Vinogradova, O.I., Effective Slip in Pressure-Driven Flow past Super-Hydrophobic Stripes, J. Fluid Mech., 2010, vol. 652, pp. 489–499; DOI:10.1017/S0022112010000741.ADSCrossRefMATH
54.
Zurück zum Zitat Mei, C.C. and Guo, X.Y., Numerical Study of Laminar Boundary-Layer Flows over a Superhydrophobic Plate, Phys. Fluids, 2018, vol. 30, no. 7, DOI:10.1063/1.5039605.ADSCrossRef Mei, C.C. and Guo, X.Y., Numerical Study of Laminar Boundary-Layer Flows over a Superhydrophobic Plate, Phys. Fluids, 2018, vol. 30, no. 7, DOI:10.1063/1.5039605.ADSCrossRef
55.
Zurück zum Zitat Picella, F., Robinet, J.C., and Cherubini, S., On the Influence of the Modelling of Superhydrophobic Surfaces on Laminar-Turbulent Transition, J. Fluid Mech., 2020, vol. 901, DOI:10.1017/jfm.2020.516. Picella, F., Robinet, J.C., and Cherubini, S., On the Influence of the Modelling of Superhydrophobic Surfaces on Laminar-Turbulent Transition, J. Fluid Mech., 2020, vol. 901, DOI:10.1017/jfm.2020.516.
56.
Zurück zum Zitat Picella, F., Robinet, J.C., and Cherubini, S., Laminar-Turbulent Transition in Channel Flow with Superhydrophobic Surfaces Modelled as a Partial Slip Wall, J. Fluid Mech., 2019, vol. 881, pp. 462–497; DOI:10.1017/jfm.2019.740.ADSMathSciNetCrossRefMATH Picella, F., Robinet, J.C., and Cherubini, S., Laminar-Turbulent Transition in Channel Flow with Superhydrophobic Surfaces Modelled as a Partial Slip Wall, J. Fluid Mech., 2019, vol. 881, pp. 462–497; DOI:10.1017/jfm.2019.740.ADSMathSciNetCrossRefMATH
57.
Zurück zum Zitat Gatapova, E.Y., and Gatapova, K.B., Bubble Dynamics in Thin Liquid Films and Breakup at Drop Impact, Soft Matter, 2020, vol. 16, no. 46, pp. 10397–10404; DOI:10.1039/d0sm01882a.ADSCrossRef Gatapova, E.Y., and Gatapova, K.B., Bubble Dynamics in Thin Liquid Films and Breakup at Drop Impact, Soft Matter, 2020, vol. 16, no. 46, pp. 10397–10404; DOI:10.1039/d0sm01882a.ADSCrossRef
58.
Zurück zum Zitat Liakopoulos, A., Sofos, F., and Karakasidis, T.E., Darcy–Weisbach Friction Factor at the Nanoscale: From Atomistic Calculations to Continuum Models, Phys. Fluids, 2017, vol. 29, no. 5, DOI:10.1063/1.4982667.ADSCrossRef Liakopoulos, A., Sofos, F., and Karakasidis, T.E., Darcy–Weisbach Friction Factor at the Nanoscale: From Atomistic Calculations to Continuum Models, Phys. Fluids, 2017, vol. 29, no. 5, DOI:10.1063/1.4982667.ADSCrossRef
59.
Zurück zum Zitat Bocquet, L. and Barrat, J.L., Flow Boundary Conditions from Nano-To Micro-Scales, Soft Matter, 2007, vol. 3, no. 6, pp. 685–693.ADSCrossRef Bocquet, L. and Barrat, J.L., Flow Boundary Conditions from Nano-To Micro-Scales, Soft Matter, 2007, vol. 3, no. 6, pp. 685–693.ADSCrossRef
60.
Zurück zum Zitat Cottin-Bizonne, C., Barrat, J.L., Bocquet, L., and Charlaix, E., Low-Friction Flows of Liquid at Nanopatterned Interfaces, Nature Mat., 2003, vol. 2, no. 4, pp. 237–240; DOI:10.1038/nmat857.ADSCrossRef Cottin-Bizonne, C., Barrat, J.L., Bocquet, L., and Charlaix, E., Low-Friction Flows of Liquid at Nanopatterned Interfaces, Nature Mat., 2003, vol. 2, no. 4, pp. 237–240; DOI:10.1038/nmat857.ADSCrossRef
61.
Zurück zum Zitat Meyer, E.E., Rosenberg, K.J., and Israelachvili, J., Recent Progress in Understanding Hydrophobic Interactions, 2006. Meyer, E.E., Rosenberg, K.J., and Israelachvili, J., Recent Progress in Understanding Hydrophobic Interactions, 2006.
62.
Zurück zum Zitat Neto, C., Evans, D.R., Bonaccurso, E., Butt, H.J., and Craig, V.S.J., Boundary Slip in Newtonian Liquids: A Review of Experimental Studies, Rep. Progress Phys., 2005, vol. 68, no. 12, pp. 2859–2897; DOI:10.1088/0034-4885/68/12/R05.ADSCrossRef Neto, C., Evans, D.R., Bonaccurso, E., Butt, H.J., and Craig, V.S.J., Boundary Slip in Newtonian Liquids: A Review of Experimental Studies, Rep. Progress Phys., 2005, vol. 68, no. 12, pp. 2859–2897; DOI:10.1088/0034-4885/68/12/R05.ADSCrossRef
63.
Zurück zum Zitat Ybert, C., Barentin, C., Cottin-Bizonne, C., Joseph, P., and Bocquet, L., Achieving Large Slip with Superhydrophobic Surfaces: Scaling Laws for Generic Geometries, Phys. Fluids, 2007, vol. 19, no. 12, DOI:10.1063/1.2815730.ADSCrossRefMATH Ybert, C., Barentin, C., Cottin-Bizonne, C., Joseph, P., and Bocquet, L., Achieving Large Slip with Superhydrophobic Surfaces: Scaling Laws for Generic Geometries, Phys. Fluids, 2007, vol. 19, no. 12, DOI:10.1063/1.2815730.ADSCrossRefMATH
64.
Zurück zum Zitat Stratakis, E., Bonse, J., Heitz, J., Siegel, J., Tsibidis, G.D., Skoulas, E., et al., Laser Engineering of Biomimetic Surfaces, Mat. Sci. Engin.: R: Reports 141, 2020, vol. 100562. Stratakis, E., Bonse, J., Heitz, J., Siegel, J., Tsibidis, G.D., Skoulas, E., et al., Laser Engineering of Biomimetic Surfaces, Mat. Sci. Engin.: R: Reports 141, 2020, vol. 100562.
65.
Zurück zum Zitat Liravi, M., Pakzad, H., Moosavi, A., and Nouri-Borujerdi, A., A Comprehensive Review on Recent Advances in Superhydrophobic Surfaces and Their Applications for Drag Reduction, Progr. Organic Coat., 2020, vol. 140, DOI:10.1016/j.porgcoat.2019.105537.CrossRef Liravi, M., Pakzad, H., Moosavi, A., and Nouri-Borujerdi, A., A Comprehensive Review on Recent Advances in Superhydrophobic Surfaces and Their Applications for Drag Reduction, Progr. Organic Coat., 2020, vol. 140, DOI:10.1016/j.porgcoat.2019.105537.CrossRef
66.
Zurück zum Zitat Lin, Y.T., Ting, Y.S., Chen, B.Y., Cheng, Y.W., and Liu, T.Y., Bionic Shark Skin Replica and Zwitterionic Polymer Brushes Functionalized PDMS Membrane for Anti-Fouling and Wound Dressing Applications, Surf. Coat. Technol., 2020, vol. 391, DOI:10.1016/j.surfcoat.2020.125663.CrossRef Lin, Y.T., Ting, Y.S., Chen, B.Y., Cheng, Y.W., and Liu, T.Y., Bionic Shark Skin Replica and Zwitterionic Polymer Brushes Functionalized PDMS Membrane for Anti-Fouling and Wound Dressing Applications, Surf. Coat. Technol., 2020, vol. 391, DOI:10.1016/j.surfcoat.2020.125663.CrossRef
67.
Zurück zum Zitat Liu, Z., Yin, W., Tao, D., and Tian, Y., A Glimpse of Superb Tribological Designs in Nature, Biotribology, 2015, vols. 1/2, pp. 11–23; DOI:10.1016/j.biotri.2015.02.002.CrossRef Liu, Z., Yin, W., Tao, D., and Tian, Y., A Glimpse of Superb Tribological Designs in Nature, Biotribology, 2015, vols. 1/2, pp. 11–23; DOI:10.1016/j.biotri.2015.02.002.CrossRef
68.
Zurück zum Zitat Park, K.C., Kim, P., Grinthal, A., He, N., Fox, D., Weaver, J.C., et al., Condensation on Slippery Asymmetric Bumps, Nature, 2016, vol. 531, no. 7592, pp. 78–82; DOI:10.1038/nature16956.ADSCrossRef Park, K.C., Kim, P., Grinthal, A., He, N., Fox, D., Weaver, J.C., et al., Condensation on Slippery Asymmetric Bumps, Nature, 2016, vol. 531, no. 7592, pp. 78–82; DOI:10.1038/nature16956.ADSCrossRef
69.
Zurück zum Zitat Dou, S., Xu, H., Zhao, J., Zhang, K., Li, N., Lin, Y., et al., Bioinspired Microstructured Materials for Optical and Thermal Regulation, Adv.Mat., 2021, vol. 33, no. 6, DOI:10.1002/adma.202000697.CrossRef Dou, S., Xu, H., Zhao, J., Zhang, K., Li, N., Lin, Y., et al., Bioinspired Microstructured Materials for Optical and Thermal Regulation, Adv.Mat., 2021, vol. 33, no. 6, DOI:10.1002/adma.202000697.CrossRef
70.
Zurück zum Zitat Dean, B. and Bhushan, B., Shark-Skin Surfaces for Fluid-Drag Reduction in Turbulent Flow: A Review, Philos. Trans. Royal Soc. A: Math., Phys. Engin. Sci., 2010, vol. 368, no. 1929, pp. 4775–4806; DOI:10.1098/rsta.2010.0201.ADSCrossRef Dean, B. and Bhushan, B., Shark-Skin Surfaces for Fluid-Drag Reduction in Turbulent Flow: A Review, Philos. Trans. Royal Soc. A: Math., Phys. Engin. Sci., 2010, vol. 368, no. 1929, pp. 4775–4806; DOI:10.1098/rsta.2010.0201.ADSCrossRef
71.
Zurück zum Zitat Miyazaki, M., Hirai, Y., Moriya, H., Shimomura, M., Miyauchi, A., and Liu, H., Biomimetic Riblets Inspired by Sharkskin Denticles: Digitizing, Modeling and Flow Simulation, J. Bionic Engin., 2018, vol. 15, no. 6, pp. 999–1011; DOI:10.1007/s42235-018-0088-7.CrossRef Miyazaki, M., Hirai, Y., Moriya, H., Shimomura, M., Miyauchi, A., and Liu, H., Biomimetic Riblets Inspired by Sharkskin Denticles: Digitizing, Modeling and Flow Simulation, J. Bionic Engin., 2018, vol. 15, no. 6, pp. 999–1011; DOI:10.1007/s42235-018-0088-7.CrossRef
72.
Zurück zum Zitat Luo, Y., Yuan, L., Li, J., and Wang, J., Boundary Layer Drag Reduction Research Hypotheses Derived from Bio-Inspired Surface and Recent Advanced Applications, Micron, 2015, vol. 79, pp. 59–73; DOI:10.1016/j.micron.2015.07.006.CrossRef Luo, Y., Yuan, L., Li, J., and Wang, J., Boundary Layer Drag Reduction Research Hypotheses Derived from Bio-Inspired Surface and Recent Advanced Applications, Micron, 2015, vol. 79, pp. 59–73; DOI:10.1016/j.micron.2015.07.006.CrossRef
73.
Zurück zum Zitat Lu, Y., Superior Lubrication Properties of Biomimetic Surfaces with Hierarchical Structure, Tribology Int., 2018, vol. 119, pp. 131–142; DOI:10.1016/j.triboint.2017.10.021.ADSCrossRef Lu, Y., Superior Lubrication Properties of Biomimetic Surfaces with Hierarchical Structure, Tribology Int., 2018, vol. 119, pp. 131–142; DOI:10.1016/j.triboint.2017.10.021.ADSCrossRef
74.
Zurück zum Zitat Bhushan, B., Biomimetics Inspired Surfaces for Drag Reduction and Oleophobicity/Philicity, Beilstein J. Nanotechn., 2011, vol. 2, no. 1, pp. 66–84; DOI:10.3762/bjnano.2.9.ADSCrossRef Bhushan, B., Biomimetics Inspired Surfaces for Drag Reduction and Oleophobicity/Philicity, Beilstein J. Nanotechn., 2011, vol. 2, no. 1, pp. 66–84; DOI:10.3762/bjnano.2.9.ADSCrossRef
75.
Zurück zum Zitat Darmanin, T. and Guittard, F., Recent Advances in the Potential Applications of Bioinspired Superhydrophobic Materials, J. Mat. Chem. A, 2014, vol. 2, no. 39, pp. 16319–16359; DOI:10.1039/c4ta02071e.CrossRef Darmanin, T. and Guittard, F., Recent Advances in the Potential Applications of Bioinspired Superhydrophobic Materials, J. Mat. Chem. A, 2014, vol. 2, no. 39, pp. 16319–16359; DOI:10.1039/c4ta02071e.CrossRef
76.
Zurück zum Zitat Falde, E.J., Yohe, S.T., Colson, Y.L., and Grinstaff, M.W., Superhydrophobic Materials for Biomedical Applications, Biomat., 2016, vol. 104, pp. 87–103; DOI:10.1016/j.biomaterials.2016.06.050.CrossRef Falde, E.J., Yohe, S.T., Colson, Y.L., and Grinstaff, M.W., Superhydrophobic Materials for Biomedical Applications, Biomat., 2016, vol. 104, pp. 87–103; DOI:10.1016/j.biomaterials.2016.06.050.CrossRef
77.
Zurück zum Zitat Feng, L., Song, Y., Zhai, J., Liu, B., Xu, J., Jiang, L., and Zhu, D., Creation of a Superhydrophobic Surface from an Amphiphilic Polymer, Angewandte Chemie, 2003, vol. 115, no. 7, pp. 824–826.ADSCrossRef Feng, L., Song, Y., Zhai, J., Liu, B., Xu, J., Jiang, L., and Zhu, D., Creation of a Superhydrophobic Surface from an Amphiphilic Polymer, Angewandte Chemie, 2003, vol. 115, no. 7, pp. 824–826.ADSCrossRef
78.
Zurück zum Zitat Joseph, P., Cottin-Bizonne, C., Benoı̂t, J.M., Ybert, C., Journet, C., Tabeling, P., et al., Slippage of Water past Superhydrophobic Carbon Nanotube Forests in Microchannels, Phys. Rev. Lett., 2006, vol. 97, no. 15, DOI:10.1103/PhysRevLett.97.156104.ADSCrossRef Joseph, P., Cottin-Bizonne, C., Benoı̂t, J.M., Ybert, C., Journet, C., Tabeling, P., et al., Slippage of Water past Superhydrophobic Carbon Nanotube Forests in Microchannels, Phys. Rev. Lett., 2006, vol. 97, no. 15, DOI:10.1103/PhysRevLett.97.156104.ADSCrossRef
79.
Zurück zum Zitat Krupenkin, T.N., Taylor, J.A., Schneider, T.M., and Yang, S., From Rolling Ball to Complete Wetting: The Dynamic Tuning of Liquids on Nanostructured Surfaces, Langmuir, 2004, vol. 20, no. 10, pp. 3824–3827; DOI:10.1021/la036093q.CrossRef Krupenkin, T.N., Taylor, J.A., Schneider, T.M., and Yang, S., From Rolling Ball to Complete Wetting: The Dynamic Tuning of Liquids on Nanostructured Surfaces, Langmuir, 2004, vol. 20, no. 10, pp. 3824–3827; DOI:10.1021/la036093q.CrossRef
80.
Zurück zum Zitat Solga, A., Cerman, Z., Striffler, B.F., Spaeth, M., and Barthlott, W., The Dream of Staying Clean: Lotus and Biomimetic Surfaces. Bioinspiration Biomimetics, vol. 2, 2007, DOI:10.1088/1748-3182/2/4/S02.ADSCrossRef Solga, A., Cerman, Z., Striffler, B.F., Spaeth, M., and Barthlott, W., The Dream of Staying Clean: Lotus and Biomimetic Surfaces. Bioinspiration Biomimetics, vol. 2, 2007, DOI:10.1088/1748-3182/2/4/S02.ADSCrossRef
81.
Zurück zum Zitat Tsai, P., Peters, A.M., Pirat, C., Wessling, M., Lammertink, R.G.H., and Lohse, D., Quantifying Effective Slip Length over Micropatterned Hydrophobic Surfaces, Phys. Fluids, 2009, vol. 21, no. 11, pp. 1–8; DOI:10.1063/1.3266505.CrossRefMATH Tsai, P., Peters, A.M., Pirat, C., Wessling, M., Lammertink, R.G.H., and Lohse, D., Quantifying Effective Slip Length over Micropatterned Hydrophobic Surfaces, Phys. Fluids, 2009, vol. 21, no. 11, pp. 1–8; DOI:10.1063/1.3266505.CrossRefMATH
82.
Zurück zum Zitat Yan, Y.Y., Gao, N., and Barthlott, W., Mimicking Natural Superhydrophobic Surfaces and Grasping the Wetting Process: A Review on Recent Progress in Preparing Superhydrophobic Surfaces, Adv. Colloid Interface Sci., 2011, vol. 169, no. 2, pp. 80–105; DOI:10.1016/j.cis.2011.08.005.CrossRef Yan, Y.Y., Gao, N., and Barthlott, W., Mimicking Natural Superhydrophobic Surfaces and Grasping the Wetting Process: A Review on Recent Progress in Preparing Superhydrophobic Surfaces, Adv. Colloid Interface Sci., 2011, vol. 169, no. 2, pp. 80–105; DOI:10.1016/j.cis.2011.08.005.CrossRef
83.
Zurück zum Zitat Tian, G., Zhang, Y., Feng, X., and Hu, Y., Focus on Bioinspired Textured Surfaces toward Fluid Drag Reduction: Recent Progresses and Challenges, Adv. Engin. Mat., 2022, vol. 24, no. 1, p. 2100696.CrossRef Tian, G., Zhang, Y., Feng, X., and Hu, Y., Focus on Bioinspired Textured Surfaces toward Fluid Drag Reduction: Recent Progresses and Challenges, Adv. Engin. Mat., 2022, vol. 24, no. 1, p. 2100696.CrossRef
84.
Zurück zum Zitat Zhu, Y., Yang, F., and Guo, Z., Bioinspired Surfaces with Special Micro-Structures and Wettability for Drag Reduction: Which Surface Design will be a Better Choice?, Nanoscale, 2021, vol. 13, no. 6, pp. 3463–3482; DOI:10.1039/d0nr07664c.CrossRef Zhu, Y., Yang, F., and Guo, Z., Bioinspired Surfaces with Special Micro-Structures and Wettability for Drag Reduction: Which Surface Design will be a Better Choice?, Nanoscale, 2021, vol. 13, no. 6, pp. 3463–3482; DOI:10.1039/d0nr07664c.CrossRef
85.
Zurück zum Zitat Asadi, M., Xie, G., and Sunden, B., A Review of Heat Transfer and Pressure Drop Characteristics of Single and Two-Phase Microchannels, Int. J. Heat Mass Transfer, 2014, vol. 79, pp. 34–53; DOI:10.1016/ j.ijheatmasstransfer.2014.07.090.CrossRef Asadi, M., Xie, G., and Sunden, B., A Review of Heat Transfer and Pressure Drop Characteristics of Single and Two-Phase Microchannels, Int. J. Heat Mass Transfer, 2014, vol. 79, pp. 34–53; DOI:10.1016/ j.ijheatmasstransfer.2014.07.090.CrossRef
86.
Zurück zum Zitat Bahrami, M., Yovanovich, M.M., and Culham, J.R., Pressure Drop of Fully-Developed, Laminar Flow in Microchannels of Arbitrary Cross-Section, Int. Conf. on Nanochannels, Microchannels, and Minichannels, 2005, vol. 41855, DOI:https://doi.org/10.1115/ICMM2005-75109 Bahrami, M., Yovanovich, M.M., and Culham, J.R., Pressure Drop of Fully-Developed, Laminar Flow in Microchannels of Arbitrary Cross-Section, Int. Conf. on Nanochannels, Microchannels, and Minichannels, 2005, vol. 41855, DOI:https://​doi.​org/​10.​1115/​ICMM2005-75109
87.
Zurück zum Zitat Chamkha, A.J., Molana, M., Rahnama, A., and Ghadami, F., On the Nanofluids Applications in Microchannels: A Comprehensive Review, Powder Technol., 2018, vol. 332, pp. 287–322; DOI:10.1016/ j.powtec.2018.03.044.CrossRef Chamkha, A.J., Molana, M., Rahnama, A., and Ghadami, F., On the Nanofluids Applications in Microchannels: A Comprehensive Review, Powder Technol., 2018, vol. 332, pp. 287–322; DOI:10.1016/ j.powtec.2018.03.044.CrossRef
88.
Zurück zum Zitat El-Genk, M.S. and Pourghasemi, M., Analytical and Numerical Investigations of Friction Number for Laminar Flow in Microchannels, J. Fluids Engin., Trans. ASME, 2019, vol. 141, no. 3, DOI:10.1115/ 1.4041112. El-Genk, M.S. and Pourghasemi, M., Analytical and Numerical Investigations of Friction Number for Laminar Flow in Microchannels, J. Fluids Engin., Trans. ASME, 2019, vol. 141, no. 3, DOI:10.1115/ 1.4041112.
89.
Zurück zum Zitat Gluzdov, D.S. and Gatapova, E.Y., Friction Reduction by Inlet Temperature Variation in Microchannel Flow, Phys. Fluids, 2021, vol. 33, no. 6, DOI:10.1063/5.0051998.ADSCrossRef Gluzdov, D.S. and Gatapova, E.Y., Friction Reduction by Inlet Temperature Variation in Microchannel Flow, Phys. Fluids, 2021, vol. 33, no. 6, DOI:10.1063/5.0051998.ADSCrossRef
90.
Zurück zum Zitat Kohl, M.J., Abdel-Khalik, S.I., Jeter, S.M., and Sadowski, D.L., An Experimental Investigation of Microchannel Flow with Internal Pressure Measurements, Int. J. Heat Mass Transfer, 2005, vol. 48, no. 8, pp. 1518–1533; DOI:10.1016/j.ijheatmasstransfer.2004.10.030.CrossRef Kohl, M.J., Abdel-Khalik, S.I., Jeter, S.M., and Sadowski, D.L., An Experimental Investigation of Microchannel Flow with Internal Pressure Measurements, Int. J. Heat Mass Transfer, 2005, vol. 48, no. 8, pp. 1518–1533; DOI:10.1016/j.ijheatmasstransfer.2004.10.030.CrossRef
91.
Zurück zum Zitat Nazridoust, K., Ahmadi, G., and Smith, D.H., A New Friction Factor Correlation for Laminar, Single-Phase Flows through Rock Fractures, J. Hydrol., 2006, vol. 329, nos. 1/2, pp. 315–328; DOI:10.1016/ j.jhydrol.2006.02.032.ADSCrossRef Nazridoust, K., Ahmadi, G., and Smith, D.H., A New Friction Factor Correlation for Laminar, Single-Phase Flows through Rock Fractures, J. Hydrol., 2006, vol. 329, nos. 1/2, pp. 315–328; DOI:10.1016/ j.jhydrol.2006.02.032.ADSCrossRef
92.
Zurück zum Zitat Salman, B.H., Mohammed, H.A., Munisamy, K.M., and Kherbeet, A.S., Characteristics of Heat Transfer and Fluid Flow in Microtube and Microchannel Using Conventional Fluids and Nanofluids: A Review, Renew. Sustain. Energy Rev., 2013, vol. 28, pp. 848–880; DOI:10.1016/j.rser.2013.08.012.CrossRef Salman, B.H., Mohammed, H.A., Munisamy, K.M., and Kherbeet, A.S., Characteristics of Heat Transfer and Fluid Flow in Microtube and Microchannel Using Conventional Fluids and Nanofluids: A Review, Renew. Sustain. Energy Rev., 2013, vol. 28, pp. 848–880; DOI:10.1016/j.rser.2013.08.012.CrossRef
93.
Zurück zum Zitat Sharma, J.P., Sharma, A., Jilte, R.D., Kumar, R., and Ahmadi, M.H., A Study on Thermohydraulic Characteristics of Fluid Flow through Microchannels, J. Thermal An. Calorim., 2020, vol. 140, no. 1, DOI:10.1007/s10973-019-08741-4.CrossRef Sharma, J.P., Sharma, A., Jilte, R.D., Kumar, R., and Ahmadi, M.H., A Study on Thermohydraulic Characteristics of Fluid Flow through Microchannels, J. Thermal An. Calorim., 2020, vol. 140, no. 1, DOI:10.1007/s10973-019-08741-4.CrossRef
94.
Zurück zum Zitat Xu, Z., Song, S., Xin, F., and Lu, T.J., Mathematical Modeling of Stokes Flow in Petal Shaped Pipes, Phys. Fluids, 2019, vol. 31, no. 1, DOI:10.1063/1.5067291.ADSCrossRef Xu, Z., Song, S., Xin, F., and Lu, T.J., Mathematical Modeling of Stokes Flow in Petal Shaped Pipes, Phys. Fluids, 2019, vol. 31, no. 1, DOI:10.1063/1.5067291.ADSCrossRef
95.
Zurück zum Zitat Ichikawa, Y., Yamamoto, K., Yamamoto, M., and Motosuke, M., Near-Hydrophobic-Surface Flow Measurement by Micro-3D PTV for Evaluation of Drag Reduction, Phys. Fluids, 2017, vol. 29, no. 9, DOI:10.1063/1.5001345.ADSCrossRef Ichikawa, Y., Yamamoto, K., Yamamoto, M., and Motosuke, M., Near-Hydrophobic-Surface Flow Measurement by Micro-3D PTV for Evaluation of Drag Reduction, Phys. Fluids, 2017, vol. 29, no. 9, DOI:10.1063/1.5001345.ADSCrossRef
96.
Zurück zum Zitat Gupta, R., Fletcher, D.F., and Haynes, B.S., Taylor Flow in Microchannels: A Review of Experimental and Computational Work, J. Comput. Multiphase Flows 21, 2010, pp. 1–31. Gupta, R., Fletcher, D.F., and Haynes, B.S., Taylor Flow in Microchannels: A Review of Experimental and Computational Work, J. Comput. Multiphase Flows 21, 2010, pp. 1–31.
97.
Zurück zum Zitat Ho, H.Q. and Asai, M., Experimental Study on the Stability of Laminar Flow in a Channel with Streamwise and Oblique Riblets, Phys Fluids, 2018, vol. 30, no. 2, DOI:10.1063/1.5009039.ADSCrossRef Ho, H.Q. and Asai, M., Experimental Study on the Stability of Laminar Flow in a Channel with Streamwise and Oblique Riblets, Phys Fluids, 2018, vol. 30, no. 2, DOI:10.1063/1.5009039.ADSCrossRef
98.
Zurück zum Zitat Tao, R., Jin, Y., Gao, X., and Li, Z., Flow Characterization in Converging-Diverging Microchannels, Phys. Fluids, 2018, vol. 30, no. 11, DOI:10.1063/1.5048322.ADSCrossRef Tao, R., Jin, Y., Gao, X., and Li, Z., Flow Characterization in Converging-Diverging Microchannels, Phys. Fluids, 2018, vol. 30, no. 11, DOI:10.1063/1.5048322.ADSCrossRef
99.
Zurück zum Zitat Ajaev, V.S., Gatapova, E.Y., and Kabov, O.A., Application of Floquet Theory to the Stability of Liquid Films on Structured Surfaces, Phys. Fluids, 2013, vol. 25, no. 12, DOI:10.1063/1.4834376.ADSCrossRefMATH Ajaev, V.S., Gatapova, E.Y., and Kabov, O.A., Application of Floquet Theory to the Stability of Liquid Films on Structured Surfaces, Phys. Fluids, 2013, vol. 25, no. 12, DOI:10.1063/1.4834376.ADSCrossRefMATH
100.
Zurück zum Zitat Ajaev, V.S., Gatapova, E.Y., and Kabov, O.A., Stability and Break-Up of Thin Liquid Films on Patterned and Structured Surfaces, Adv. Colloid Interface Sci., 2016, vol. 228, pp. 92–104; DOI:10.1016/ j.cis.2015.11.011.CrossRef Ajaev, V.S., Gatapova, E.Y., and Kabov, O.A., Stability and Break-Up of Thin Liquid Films on Patterned and Structured Surfaces, Adv. Colloid Interface Sci., 2016, vol. 228, pp. 92–104; DOI:10.1016/ j.cis.2015.11.011.CrossRef
101.
Zurück zum Zitat Asmolov, E.S., Belyaev, A.V., and Vinogradova, O.I., Drag Force on a Sphere Moving toward an Anisotropic Superhydrophobic Plane, Phys. Rev. E—Stat., Nonlin., Soft Matter Phys., 2011, vol. 84, no. 2, DOI:10.1103/PhysRevE.84.026330.ADSCrossRef Asmolov, E.S., Belyaev, A.V., and Vinogradova, O.I., Drag Force on a Sphere Moving toward an Anisotropic Superhydrophobic Plane, Phys. Rev. E—Stat., Nonlin., Soft Matter Phys., 2011, vol. 84, no. 2, DOI:10.1103/PhysRevE.84.026330.ADSCrossRef
102.
Zurück zum Zitat Chen, H., Gao, Y., Stone, H.A., and Li, J., “Fluid Bearing” Effect of Enclosed Liquids in Grooves on Drag Reduction in Microchannels, Phys. Rev. Fluids, 2016, vol. 1, no. 8, DOI:10.1103/ PhysRevFluids.1.083904. Chen, H., Gao, Y., Stone, H.A., and Li, J., “Fluid Bearing” Effect of Enclosed Liquids in Grooves on Drag Reduction in Microchannels, Phys. Rev. Fluids, 2016, vol. 1, no. 8, DOI:10.1103/ PhysRevFluids.1.083904.
103.
Zurück zum Zitat Feuillebois, F., Bazant, M.Z., and Vinogradova, O.I., Effective Slip over Superhydrophobic Surfaces in Thin Channels, Phys. Rev. Lett., 2009, vol. 102, no. 2, DOI:10.1103/PhysRevLett.102.026001.ADSCrossRef Feuillebois, F., Bazant, M.Z., and Vinogradova, O.I., Effective Slip over Superhydrophobic Surfaces in Thin Channels, Phys. Rev. Lett., 2009, vol. 102, no. 2, DOI:10.1103/PhysRevLett.102.026001.ADSCrossRef
104.
Zurück zum Zitat Marusic, I., Chandran, D., Rouhi, A., Fu, M.K., Wine, D., Holloway, B., et al., An Energy-Efficient Pathway to Turbulent Drag Reduction, Nature Commun., 2021, vol. 12, no. 1, DOI:10.1038/s41467-021-26128-8. Marusic, I., Chandran, D., Rouhi, A., Fu, M.K., Wine, D., Holloway, B., et al., An Energy-Efficient Pathway to Turbulent Drag Reduction, Nature Commun., 2021, vol. 12, no. 1, DOI:10.1038/s41467-021-26128-8.
105.
Zurück zum Zitat Marusic, I., McKeon, B.J., Monkewitz, P.A., Nagib, H.M., Smits, A.J., and Sreenivasan, K.R., Wall-Bounded Turbulent Flows at High Reynolds Numbers: Recent Advances and Key Issues, Phys. Fluids, 2010, vol. 22, no. 6, pp. 1–24; DOI:10.1063/1.3453711.ADSCrossRefMATH Marusic, I., McKeon, B.J., Monkewitz, P.A., Nagib, H.M., Smits, A.J., and Sreenivasan, K.R., Wall-Bounded Turbulent Flows at High Reynolds Numbers: Recent Advances and Key Issues, Phys. Fluids, 2010, vol. 22, no. 6, pp. 1–24; DOI:10.1063/1.3453711.ADSCrossRefMATH
106.
Zurück zum Zitat Costantini, R., Mollicone, J.P., and Battista, F., Drag Reduction Induced by Superhydrophobic Surfaces in Turbulent Pipe Flow, Phys. Fluids, 2018, vol. 30, no. 2, DOI:10.1063/1.5011805.ADSCrossRef Costantini, R., Mollicone, J.P., and Battista, F., Drag Reduction Induced by Superhydrophobic Surfaces in Turbulent Pipe Flow, Phys. Fluids, 2018, vol. 30, no. 2, DOI:10.1063/1.5011805.ADSCrossRef
107.
Zurück zum Zitat Daniello, R.J., Waterhouse, N.E., and Rothstein, J.P., Drag Reduction in Turbulent Flows over Superhydrophobic Surfaces, Phys. Fluids, 2009, vol. 21, no. 8, DOI:10.1063/1.3207885.ADSCrossRefMATH Daniello, R.J., Waterhouse, N.E., and Rothstein, J.P., Drag Reduction in Turbulent Flows over Superhydrophobic Surfaces, Phys. Fluids, 2009, vol. 21, no. 8, DOI:10.1063/1.3207885.ADSCrossRefMATH
108.
Zurück zum Zitat Henoch, C., Krupenkin, T.N., Kolodner, P., Taylor, J.A., Hodes, M.S., Lyons, A.M., et al., Turbulent Drag Reduction Using Superhydrophobic Surfaces, 2006. Henoch, C., Krupenkin, T.N., Kolodner, P., Taylor, J.A., Hodes, M.S., Lyons, A.M., et al., Turbulent Drag Reduction Using Superhydrophobic Surfaces, 2006.
109.
Zurück zum Zitat Martell, M.B., Perot, J.B., and Rothstein, J.P., Direct Numerical Simulations of Turbulent Flows over Superhydrophobic Surfaces, J. Fluid Mech., 2009, vol. 620, pp. 31–41; DOI:10.1017/S0022112008004916.ADSCrossRefMATH Martell, M.B., Perot, J.B., and Rothstein, J.P., Direct Numerical Simulations of Turbulent Flows over Superhydrophobic Surfaces, J. Fluid Mech., 2009, vol. 620, pp. 31–41; DOI:10.1017/S0022112008004916.ADSCrossRefMATH
110.
Zurück zum Zitat Park, H., Park, H., and Kim, J., A Numerical Study of the Effects of Superhydrophobic Surface on Skin-Friction Drag in Turbulent Channel Flow, Phys. Fluids, 2013, vol. 25, no. 11, DOI:10.1063/1.4819144.ADSCrossRef Park, H., Park, H., and Kim, J., A Numerical Study of the Effects of Superhydrophobic Surface on Skin-Friction Drag in Turbulent Channel Flow, Phys. Fluids, 2013, vol. 25, no. 11, DOI:10.1063/1.4819144.ADSCrossRef
111.
Zurück zum Zitat Mehboudi, A. and Yeom, J., A One-Dimensional Model for Compressible Fluid Flows through Deformable Microchannels, Phys. Fluids, 2018, vol. 30, no. 9, DOI:10.1063/1.5043202.ADSCrossRef Mehboudi, A. and Yeom, J., A One-Dimensional Model for Compressible Fluid Flows through Deformable Microchannels, Phys. Fluids, 2018, vol. 30, no. 9, DOI:10.1063/1.5043202.ADSCrossRef
112.
Zurück zum Zitat Tang, G.H., Li, Z., He, Y.L., and Tao, W.Q., Experimental Study of Compressibility, Roughness and Rarefaction Influences on Microchannel Flow, Int. J. Heat Mass Transfer, 2007, vol. 50, nos. 11/12, pp. 2282–2295; DOI:10.1016/j.ijheatmasstransfer.2006.10.034.CrossRef Tang, G.H., Li, Z., He, Y.L., and Tao, W.Q., Experimental Study of Compressibility, Roughness and Rarefaction Influences on Microchannel Flow, Int. J. Heat Mass Transfer, 2007, vol. 50, nos. 11/12, pp. 2282–2295; DOI:10.1016/j.ijheatmasstransfer.2006.10.034.CrossRef
113.
Zurück zum Zitat Kim, T.J. and Hidrovo, C., Pressure and Partial Wetting Effects on Superhydrophobic Friction Reduction in Microchannel Flow, Phys. Fluids, 2012, vol. 24, no. 11, DOI:10.1063/1.4767469.ADSCrossRef Kim, T.J. and Hidrovo, C., Pressure and Partial Wetting Effects on Superhydrophobic Friction Reduction in Microchannel Flow, Phys. Fluids, 2012, vol. 24, no. 11, DOI:10.1063/1.4767469.ADSCrossRef
114.
Zurück zum Zitat Choi, C.H., Westin, K.J.A., and Breuer, K.S., Apparent Slip Flows in Hydrophilic and Hydrophobic Microchannels, Phys. Fluids, 2003, vol. 15, no. 10, pp. 2897–2902; DOI:10.1063/1.1605425.ADSCrossRefMATH Choi, C.H., Westin, K.J.A., and Breuer, K.S., Apparent Slip Flows in Hydrophilic and Hydrophobic Microchannels, Phys. Fluids, 2003, vol. 15, no. 10, pp. 2897–2902; DOI:10.1063/1.1605425.ADSCrossRefMATH
115.
Zurück zum Zitat Haustein, H.D. and Kashi, B., Distortion of Pipe-Flow Development by Boundary Layer Growth and Unconstrained Inlet Conditions, Phys. Fluids, 2019, vol. 31, no. 6, DOI:10.1063/1.5091602.ADSCrossRef Haustein, H.D. and Kashi, B., Distortion of Pipe-Flow Development by Boundary Layer Growth and Unconstrained Inlet Conditions, Phys. Fluids, 2019, vol. 31, no. 6, DOI:10.1063/1.5091602.ADSCrossRef
116.
Zurück zum Zitat Lobo, O.J. and Chatterjee, D., Development of Flow in a Square Mini-Channel: Effect of Flow Oscillation, Phys. Fluids, 2018, vol. 30, no. 4, DOI:10.1063/1.5018160.ADSCrossRef Lobo, O.J. and Chatterjee, D., Development of Flow in a Square Mini-Channel: Effect of Flow Oscillation, Phys. Fluids, 2018, vol. 30, no. 4, DOI:10.1063/1.5018160.ADSCrossRef
117.
Zurück zum Zitat Sun, Q., Choi, K.S., Zhao, Y., and Mao, X., Resistance of Velocity Slip Flow in Pipe/Channel with a Sudden Contraction, Phys. Fluids, 2020, vol. 32, no. 6, DOI:10.1063/5.0009415.ADSCrossRef Sun, Q., Choi, K.S., Zhao, Y., and Mao, X., Resistance of Velocity Slip Flow in Pipe/Channel with a Sudden Contraction, Phys. Fluids, 2020, vol. 32, no. 6, DOI:10.1063/5.0009415.ADSCrossRef
118.
Zurück zum Zitat Zhang, G., Huang, H., Sun, T., Li, N., Zhou, B., and Sun, Z., Analysis of the Performance of a New Developed Shear Stress Transport Model in a Turbulent Impinging Jet Flow, Phys. Fluids, 2019, vol. 31, no. 11, DOI:10.1063/1.5118675.ADSCrossRef Zhang, G., Huang, H., Sun, T., Li, N., Zhou, B., and Sun, Z., Analysis of the Performance of a New Developed Shear Stress Transport Model in a Turbulent Impinging Jet Flow, Phys. Fluids, 2019, vol. 31, no. 11, DOI:10.1063/1.5118675.ADSCrossRef
119.
Zurück zum Zitat Gaddam, A., Agrawal, A., Joshi, S.S., and Thompson, M.C., Slippage on a Particle-Laden Liquid-Gas Interface in Textured Microchannels, Phys. Fluids, 2018, vol. 30, no. 3, DOI:10.1063/1.5017011.ADSCrossRef Gaddam, A., Agrawal, A., Joshi, S.S., and Thompson, M.C., Slippage on a Particle-Laden Liquid-Gas Interface in Textured Microchannels, Phys. Fluids, 2018, vol. 30, no. 3, DOI:10.1063/1.5017011.ADSCrossRef
120.
Zurück zum Zitat Lu, Y., Liu, H., Liu, Z., and Yan, C., Investigation and Parameterization of Transition Shielding in Roughness-Disturbed Boundary Layer with Direct Numerical Simulations, Phys. Fluids, 2020, vol. 32, no. 7, DOI:10.1063/5.0012464.ADSCrossRef Lu, Y., Liu, H., Liu, Z., and Yan, C., Investigation and Parameterization of Transition Shielding in Roughness-Disturbed Boundary Layer with Direct Numerical Simulations, Phys. Fluids, 2020, vol. 32, no. 7, DOI:10.1063/5.0012464.ADSCrossRef
121.
Zurück zum Zitat Vaquero, J., Renard, N., and Deck, S., Effects of Upstream Perturbations on the Solution of the Laminar and Fully Turbulent Boundary Layer Equations with Pressure Gradients, Phys. Fluids, 2019, vol. 31, no. 12, DOI:10.1063/1.5125496.ADSCrossRef Vaquero, J., Renard, N., and Deck, S., Effects of Upstream Perturbations on the Solution of the Laminar and Fully Turbulent Boundary Layer Equations with Pressure Gradients, Phys. Fluids, 2019, vol. 31, no. 12, DOI:10.1063/1.5125496.ADSCrossRef
122.
Zurück zum Zitat Wollborn, T., Luhede, L., and Fritsching, U., Evaluating Interfacial Shear and Strain Stress during Droplet Deformation in Micro-Pores, Phys. Fluids, 2019, vol. 31, no. 1, DOI:10.1063/1.5064858.ADSCrossRef Wollborn, T., Luhede, L., and Fritsching, U., Evaluating Interfacial Shear and Strain Stress during Droplet Deformation in Micro-Pores, Phys. Fluids, 2019, vol. 31, no. 1, DOI:10.1063/1.5064858.ADSCrossRef
123.
Zurück zum Zitat Zaripov, D., Ivashchenko, V., Mullyadzhanov, R., Li, R., Mikheev, N., and Kähler, C.J., On a Mechanism of Near-Wall Reverse Flow Formation in a Turbulent Duct Flow, J. Fluid Mech., 2021, vol. 923, DOI:10.1017/jfm.2021.526. Zaripov, D., Ivashchenko, V., Mullyadzhanov, R., Li, R., Mikheev, N., and Kähler, C.J., On a Mechanism of Near-Wall Reverse Flow Formation in a Turbulent Duct Flow, J. Fluid Mech., 2021, vol. 923, DOI:10.1017/jfm.2021.526.
124.
Zurück zum Zitat Zaripov, D., Ivashchenko, V., Mullyadzhanov, R., Li, R., Markovich, D., and Kähler, C.J., Reverse Flow Phenomenon in Duct Corners at a Low Reynolds Number, Phys. Fluids, 2021, vol. 33, no. 8, DOI:10.1063/5.0055859.ADSCrossRef Zaripov, D., Ivashchenko, V., Mullyadzhanov, R., Li, R., Markovich, D., and Kähler, C.J., Reverse Flow Phenomenon in Duct Corners at a Low Reynolds Number, Phys. Fluids, 2021, vol. 33, no. 8, DOI:10.1063/5.0055859.ADSCrossRef
125.
Zurück zum Zitat Karatay, E., Tsai, P.A., and Lammertink, R.G.H., Rate of Gas Absorption on a Slippery Bubble Mattress, Soft Matter., 2013, vol. 9, no. 46, pp. 11098–11106; DOI:10.1039/c3sm51928g.ADSCrossRef Karatay, E., Tsai, P.A., and Lammertink, R.G.H., Rate of Gas Absorption on a Slippery Bubble Mattress, Soft Matter., 2013, vol. 9, no. 46, pp. 11098–11106; DOI:10.1039/c3sm51928g.ADSCrossRef
126.
Zurück zum Zitat Ng, C.O. and Sun, R., Pressure Loss in Channel Flow Resulting from a Sudden Change in Boundary Condition from No-Slip to Partial-Slip, Phys. Fluids, 2017, vol. 29, no. 10, DOI:10.1063/1.4986268.ADSCrossRef Ng, C.O. and Sun, R., Pressure Loss in Channel Flow Resulting from a Sudden Change in Boundary Condition from No-Slip to Partial-Slip, Phys. Fluids, 2017, vol. 29, no. 10, DOI:10.1063/1.4986268.ADSCrossRef
127.
Zurück zum Zitat Rasoulzadeh, M., Yekta, A., Deng, H., and Ghahfarokhi, R.B., Semi-Analytical Models of Mineral Dissolution in Rough Fractures with Permeable Walls, Phys. Fluids, 2020, vol. 32, no. 5, DOI:10.1063/5.0005878.CrossRef Rasoulzadeh, M., Yekta, A., Deng, H., and Ghahfarokhi, R.B., Semi-Analytical Models of Mineral Dissolution in Rough Fractures with Permeable Walls, Phys. Fluids, 2020, vol. 32, no. 5, DOI:10.1063/5.0005878.CrossRef
128.
Zurück zum Zitat Terzis, A., Zarikos, I., Weishaupt, K., Yang, G., Chu, X., Helmig, R., et al., Microscopic Velocity Field Measurements Inside a Regular Porous Medium Adjacent to a Low Reynolds Number Channel Flow, Phys. Fluids, 2019, vol. 31, no. 4, DOI:10.1063/1.5092169.ADSCrossRef Terzis, A., Zarikos, I., Weishaupt, K., Yang, G., Chu, X., Helmig, R., et al., Microscopic Velocity Field Measurements Inside a Regular Porous Medium Adjacent to a Low Reynolds Number Channel Flow, Phys. Fluids, 2019, vol. 31, no. 4, DOI:10.1063/1.5092169.ADSCrossRef
129.
Zurück zum Zitat Ryu, J., Byeon, H., Lee, S.J., and Sung, H.J., Flapping Dynamics of a Flexible Plate with Navier Slip, Phys. Fluids, 2019, vol. 31, no. 9, DOI:10.1063/1.5109456.ADSCrossRef Ryu, J., Byeon, H., Lee, S.J., and Sung, H.J., Flapping Dynamics of a Flexible Plate with Navier Slip, Phys. Fluids, 2019, vol. 31, no. 9, DOI:10.1063/1.5109456.ADSCrossRef
130.
Zurück zum Zitat Sun, J., Wang, W., and Wang, H.S., Dependence of Nanoconfined Liquid Behavior on Boundary and Bulk Factors, Phys. Rev. E–Stat., Nonlin., Soft Matter Phys., 2013, vol. 87, no. 2, DOI:10.1103/ PhysRevE.87.023020.ADSCrossRef Sun, J., Wang, W., and Wang, H.S., Dependence of Nanoconfined Liquid Behavior on Boundary and Bulk Factors, Phys. Rev. E–Stat., Nonlin., Soft Matter Phys., 2013, vol. 87, no. 2, DOI:10.1103/ PhysRevE.87.023020.ADSCrossRef
131.
Zurück zum Zitat Wang, N., Xiong, D., Deng, Y., Shi, Y., and Wang, K., Mechanically Robust Superhydrophobic Steel Surface with Anti-Icing, UV-Durability, and Corrosion Resistance Properties, ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 11, pp. 6260–6272; DOI:10.1021/acsami.5b00558.CrossRef Wang, N., Xiong, D., Deng, Y., Shi, Y., and Wang, K., Mechanically Robust Superhydrophobic Steel Surface with Anti-Icing, UV-Durability, and Corrosion Resistance Properties, ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 11, pp. 6260–6272; DOI:10.1021/acsami.5b00558.CrossRef
132.
Zurück zum Zitat Lee, C. and Kim, C.J., Maximizing the Giant Liquid Slip on Superhydrophobic Microstructures by Nanostructuring Their Sidewalls, Langmuir, 2009, vol. 25, no. 21, pp. 12812–12818; DOI:10.1021/la901824d.CrossRef Lee, C. and Kim, C.J., Maximizing the Giant Liquid Slip on Superhydrophobic Microstructures by Nanostructuring Their Sidewalls, Langmuir, 2009, vol. 25, no. 21, pp. 12812–12818; DOI:10.1021/la901824d.CrossRef
133.
Zurück zum Zitat Lee, C. and Kim, C.J., Underwater Restoration and Retention of Gases on Superhydrophobic Surfaces for Drag Reduction, Phys. Rev. Lett., 2011, vol. 106, no. 1, DOI:10.1103/PhysRevLett.106.014502.ADSCrossRef Lee, C. and Kim, C.J., Underwater Restoration and Retention of Gases on Superhydrophobic Surfaces for Drag Reduction, Phys. Rev. Lett., 2011, vol. 106, no. 1, DOI:10.1103/PhysRevLett.106.014502.ADSCrossRef
134.
Zurück zum Zitat Wong, T.S., Kang, S.H., Tang, S.K.Y., Smythe, E.J., Hatton, B.D., Grinthal, A., et al., Bioinspired Self-Repairing Slippery Surfaces with Pressure-Stable Omniphobicity, Nature, 2011, vol. 477, no. 7365, pp. 443–447; DOI:10.1038/nature10447.ADSCrossRef Wong, T.S., Kang, S.H., Tang, S.K.Y., Smythe, E.J., Hatton, B.D., Grinthal, A., et al., Bioinspired Self-Repairing Slippery Surfaces with Pressure-Stable Omniphobicity, Nature, 2011, vol. 477, no. 7365, pp. 443–447; DOI:10.1038/nature10447.ADSCrossRef
135.
Zurück zum Zitat Min, T. and Kim, J., Effects of Hydrophobic Surface on Skin-Friction Drag, Phys. Fluids, 2004, vol. 16, no. 7, DOI:10.1063/1.1755723.ADSCrossRefMATH Min, T. and Kim, J., Effects of Hydrophobic Surface on Skin-Friction Drag, Phys. Fluids, 2004, vol. 16, no. 7, DOI:10.1063/1.1755723.ADSCrossRefMATH
136.
Zurück zum Zitat Fukagata, K., Kasagi, N., and Koumoutsakos, P., A Theoretical Prediction of Friction Drag Reduction in Turbulent Flow by Superhydrophobic Surfaces, Phys. Fluids, 2006, vol. 18, no. 5, DOI:10.1063/1.2205307.ADSCrossRef Fukagata, K., Kasagi, N., and Koumoutsakos, P., A Theoretical Prediction of Friction Drag Reduction in Turbulent Flow by Superhydrophobic Surfaces, Phys. Fluids, 2006, vol. 18, no. 5, DOI:10.1063/1.2205307.ADSCrossRef
137.
Zurück zum Zitat Attalla, M., Maghrabie, H.M., and Specht, E., An Experimental Investigation on Fluid Flow and Heat Transfer of Rough Mini-Channel with Rectangular Cross Section, Exp. Thermal Fluid Sci., 2016, vol. 75, pp. 199–210; DOI:10.1016/j.expthermflusci.2016.01.019.CrossRef Attalla, M., Maghrabie, H.M., and Specht, E., An Experimental Investigation on Fluid Flow and Heat Transfer of Rough Mini-Channel with Rectangular Cross Section, Exp. Thermal Fluid Sci., 2016, vol. 75, pp. 199–210; DOI:10.1016/j.expthermflusci.2016.01.019.CrossRef
138.
Zurück zum Zitat Chang, J., Jung, T., Choi, H., and Kim, J., Predictions of the Effective Slip Length and Drag Reduction with a Lubricated Micro-Groove Surface in a Turbulent Channel Flow, J. Fluid Mech., 2019, vol. 874, pp. 797–820; DOI:10.1017/jfm.2019.468.ADSMathSciNetCrossRefMATH Chang, J., Jung, T., Choi, H., and Kim, J., Predictions of the Effective Slip Length and Drag Reduction with a Lubricated Micro-Groove Surface in a Turbulent Channel Flow, J. Fluid Mech., 2019, vol. 874, pp. 797–820; DOI:10.1017/jfm.2019.468.ADSMathSciNetCrossRefMATH
139.
Zurück zum Zitat Chuan, L., Wang, X.D., Wang, T.H., and Yan, W.M., Fluid Flow and Heat Transfer in Microchannel Heat Sink Based on Porous Fin Design Concept, Int. Comm. Heat Mass Transfer, 2015, vol. 65, pp. 52–57; DOI:10.1016/j.icheatmasstransfer.2015.04.005.CrossRef Chuan, L., Wang, X.D., Wang, T.H., and Yan, W.M., Fluid Flow and Heat Transfer in Microchannel Heat Sink Based on Porous Fin Design Concept, Int. Comm. Heat Mass Transfer, 2015, vol. 65, pp. 52–57; DOI:10.1016/j.icheatmasstransfer.2015.04.005.CrossRef
140.
Zurück zum Zitat Davies, J., Maynes, D., Webb, B.W., and Woolford, B., Laminar Flow in a Microchannel with Superhydrophobic Walls Exhibiting Transverse Ribs, Phys. Fluids, 2006, vol. 18, no. 8, DOI:10.1063/1.2336453.ADSCrossRef Davies, J., Maynes, D., Webb, B.W., and Woolford, B., Laminar Flow in a Microchannel with Superhydrophobic Walls Exhibiting Transverse Ribs, Phys. Fluids, 2006, vol. 18, no. 8, DOI:10.1063/1.2336453.ADSCrossRef
141.
Zurück zum Zitat DeGroot, C.T., Wang, C., and Floryan, J.M., Drag Reduction Due to Streamwise Grooves in Turbulent Channel Flow, J. Fluids Engin., Trans. ASME, 2016, vol. 138, no. 12, DOI:10.1115/1.4034098. DeGroot, C.T., Wang, C., and Floryan, J.M., Drag Reduction Due to Streamwise Grooves in Turbulent Channel Flow, J. Fluids Engin., Trans. ASME, 2016, vol. 138, no. 12, DOI:10.1115/1.4034098.
142.
Zurück zum Zitat Dey, P., Saha, S.K., and Chakraborty, S., Microgroove Geometry Dictates Slippery Hydrodynamics on Superhydrophobic Substrates, Phys. Fluids, 2018, vol. 30, no. 12, DOI:10.1063/1.5063630.ADSCrossRef Dey, P., Saha, S.K., and Chakraborty, S., Microgroove Geometry Dictates Slippery Hydrodynamics on Superhydrophobic Substrates, Phys. Fluids, 2018, vol. 30, no. 12, DOI:10.1063/1.5063630.ADSCrossRef
143.
Zurück zum Zitat Gamrat, G., Favre-Marinet, M., le Person, S., Bavière, R., and Ayela, F., An Experimental Study and Modelling of Roughness Effects on Laminar Flow in Microchannels, J. Fluid Mech., 2008, vol. 594, pp. 399–423; DOI:10.1017/S0022112007009111.ADSCrossRefMATH Gamrat, G., Favre-Marinet, M., le Person, S., Bavière, R., and Ayela, F., An Experimental Study and Modelling of Roughness Effects on Laminar Flow in Microchannels, J. Fluid Mech., 2008, vol. 594, pp. 399–423; DOI:10.1017/S0022112007009111.ADSCrossRefMATH
144.
Zurück zum Zitat Gao, Y., Li, J., Shum, H.C., and Chen, H., Drag Reduction by Bubble-Covered Surfaces Found in PDMS Microchannel through Depressurization, Langmuir, 2016, vol. 32, no. 19, pp. 4815–4819; DOI:10.1021/ acs.langmuir.6b01186.CrossRef Gao, Y., Li, J., Shum, H.C., and Chen, H., Drag Reduction by Bubble-Covered Surfaces Found in PDMS Microchannel through Depressurization, Langmuir, 2016, vol. 32, no. 19, pp. 4815–4819; DOI:10.1021/ acs.langmuir.6b01186.CrossRef
145.
Zurück zum Zitat Guo, L., Xu, H., and Gong, L., Influence of Wall Roughness Models on Fluid Flow and Heat Transfer in Microchannels, Appl. Thermal Engin., 2015, vol. 84, pp. 399–408; DOI:10.1016/ j.applthermaleng.2015.04.001.CrossRef Guo, L., Xu, H., and Gong, L., Influence of Wall Roughness Models on Fluid Flow and Heat Transfer in Microchannels, Appl. Thermal Engin., 2015, vol. 84, pp. 399–408; DOI:10.1016/ j.applthermaleng.2015.04.001.CrossRef
146.
Zurück zum Zitat Hao, P.F., Wong, C., Yao, Z.H., and Zhu, K.Q., Laminar Drag Reduction in Hydrophobic Microchannels, Chem. Engin. Technol., 2009, vol. 32, no. 6, pp. 912–918; DOI:10.1002/ceat.200900001.CrossRef Hao, P.F., Wong, C., Yao, Z.H., and Zhu, K.Q., Laminar Drag Reduction in Hydrophobic Microchannels, Chem. Engin. Technol., 2009, vol. 32, no. 6, pp. 912–918; DOI:10.1002/ceat.200900001.CrossRef
147.
Zurück zum Zitat Javaherchian, J. and Moosavi, A., Pressure Drop Reduction of Power-Law Fluids in Hydrophobic Microgrooved Channels, Phys. Fluids, 2019, vol. 31, no. 7, DOI:10.1063/1.5115820.ADSCrossRef Javaherchian, J. and Moosavi, A., Pressure Drop Reduction of Power-Law Fluids in Hydrophobic Microgrooved Channels, Phys. Fluids, 2019, vol. 31, no. 7, DOI:10.1063/1.5115820.ADSCrossRef
148.
Zurück zum Zitat Karatay, E., Haase, A.S., Visser, C.W., Sun, C., Lohse, D., Tsai, P.A., et al., Control of Slippage with Tunable Bubble Mattresses, Proc. of the National Academy of Sciences of the United States of America, 2013, vol. 110, no. 21, pp. 8422–8426; DOI:10.1073/pnas.1304403110.ADSCrossRef Karatay, E., Haase, A.S., Visser, C.W., Sun, C., Lohse, D., Tsai, P.A., et al., Control of Slippage with Tunable Bubble Mattresses, Proc. of the National Academy of Sciences of the United States of America, 2013, vol. 110, no. 21, pp. 8422–8426; DOI:10.1073/pnas.1304403110.ADSCrossRef
149.
Zurück zum Zitat Kasiteropoulou, D., Karakasidis, T.E., and Liakopoulos, A., Mesoscopic Simulation of Fluid Flow in Periodically Grooved Microchannels, Comput. Fluids, 2013, vol. 74, pp. 91–101; DOI:10.1016/ j.compfluid.2013.01.010.CrossRefMATH Kasiteropoulou, D., Karakasidis, T.E., and Liakopoulos, A., Mesoscopic Simulation of Fluid Flow in Periodically Grooved Microchannels, Comput. Fluids, 2013, vol. 74, pp. 91–101; DOI:10.1016/ j.compfluid.2013.01.010.CrossRefMATH
150.
Zurück zum Zitat Kunert, C. and Harting, J., Roughness Induced Boundary Slip in Microchannel Flows, Phys. Rev. Lett., 2007, vol. 99, no. 17, DOI:10.1103/PhysRevLett.99.176001.ADSCrossRef Kunert, C. and Harting, J., Roughness Induced Boundary Slip in Microchannel Flows, Phys. Rev. Lett., 2007, vol. 99, no. 17, DOI:10.1103/PhysRevLett.99.176001.ADSCrossRef
151.
Zurück zum Zitat Lee, C., Choi, C.H., and Kim, C.J., Structured Surfaces for a Giant Liquid Slip, Phys. Rev. Lett., 2008, vol. 101, no. 6, DOI:10.1103/PhysRevLett.101.064501.ADSCrossRef Lee, C., Choi, C.H., and Kim, C.J., Structured Surfaces for a Giant Liquid Slip, Phys. Rev. Lett., 2008, vol. 101, no. 6, DOI:10.1103/PhysRevLett.101.064501.ADSCrossRef
152.
Zurück zum Zitat Lee, Y.J., Singh, P.K., and Lee, P.S., Fluid Flow and Heat Transfer Investigations on Enhanced Microchannel Heat Sink Using Oblique Fins with Parametric Study, Int. J. Heat Mass Transfer, 2015, vol. 81, pp. 325–336; DOI:10.1016/j.ijheatmasstransfer.2014.10.018.CrossRef Lee, Y.J., Singh, P.K., and Lee, P.S., Fluid Flow and Heat Transfer Investigations on Enhanced Microchannel Heat Sink Using Oblique Fins with Parametric Study, Int. J. Heat Mass Transfer, 2015, vol. 81, pp. 325–336; DOI:10.1016/j.ijheatmasstransfer.2014.10.018.CrossRef
153.
Zurück zum Zitat Li, F., Ma, Q., Xin, G., Zhang, J., and Wang, X., Heat Transfer and Flow Characteristics of Microchannels with Solid and Porous Ribs, Appl. Thermal Engin., 2020, vol. 178, DOI:10.1016/ j.applthermaleng.2020.115639.CrossRef Li, F., Ma, Q., Xin, G., Zhang, J., and Wang, X., Heat Transfer and Flow Characteristics of Microchannels with Solid and Porous Ribs, Appl. Thermal Engin., 2020, vol. 178, DOI:10.1016/ j.applthermaleng.2020.115639.CrossRef
154.
Zurück zum Zitat Liu, Y., Gu, H., Jia, Y., Liu, J., Zhang, H., Wang, R., et al., Design and Preparation of Biomimetic Polydimethylsiloxane (PDMS) Films with Superhydrophobic, Self-Healing and Drag Reduction Properties via Replication of Shark Skin and SI-ATRP, Chem. Engin. J., 2019, vol. 356, pp. 318–328; DOI:10.1016/j.cej.2018.09.022.CrossRef Liu, Y., Gu, H., Jia, Y., Liu, J., Zhang, H., Wang, R., et al., Design and Preparation of Biomimetic Polydimethylsiloxane (PDMS) Films with Superhydrophobic, Self-Healing and Drag Reduction Properties via Replication of Shark Skin and SI-ATRP, Chem. Engin. J., 2019, vol. 356, pp. 318–328; DOI:10.1016/j.cej.2018.09.022.CrossRef
155.
Zurück zum Zitat Taghvaei, E., Moosavi, A., Nouri-Borujerdi, A., Daeian, M.A., and Vafaeinejad, S., Superhydrophobic Surfaces with a Dual-Layer Micro- and Nanoparticle Coating for Drag Reduction, Energy, 2017, vol. 125, pp. 1–10; DOI:10.1016/j.energy.2017.02.117.CrossRef Taghvaei, E., Moosavi, A., Nouri-Borujerdi, A., Daeian, M.A., and Vafaeinejad, S., Superhydrophobic Surfaces with a Dual-Layer Micro- and Nanoparticle Coating for Drag Reduction, Energy, 2017, vol. 125, pp. 1–10; DOI:10.1016/j.energy.2017.02.117.CrossRef
156.
Zurück zum Zitat Liu, Y., Li, J., and Smits, A.J., Roughness Effects in Laminar Channel Flow, J. Fluid Mech., 2019, vol. 876, pp. 1129–1145; DOI:10.1017/jfm.2019.603.ADSCrossRef Liu, Y., Li, J., and Smits, A.J., Roughness Effects in Laminar Channel Flow, J. Fluid Mech., 2019, vol. 876, pp. 1129–1145; DOI:10.1017/jfm.2019.603.ADSCrossRef
157.
Zurück zum Zitat Lu, G., Zhao, J., Lin, L., Wang, X.D., and Yan, W.M., A New Scheme for Reducing Pressure Drop and Thermal Resistance Simultaneously in Microchannel Heat Sinks with Wavy Porous Fins, Int. J. Heat Mass Transfer, 2017, vol. 111, pp. 1071–1078; DOI:10.1016/j.ijheatmasstransfer.2017.04.086.CrossRef Lu, G., Zhao, J., Lin, L., Wang, X.D., and Yan, W.M., A New Scheme for Reducing Pressure Drop and Thermal Resistance Simultaneously in Microchannel Heat Sinks with Wavy Porous Fins, Int. J. Heat Mass Transfer, 2017, vol. 111, pp. 1071–1078; DOI:10.1016/j.ijheatmasstransfer.2017.04.086.CrossRef
158.
Zurück zum Zitat Lyu, S., Nguyen, D.C., Kim, D., Hwang, W., and Yoon, B., Experimental Drag Reduction Study of Super-Hydrophobic Surface with Dual-Scale Structures, Appl. Surface Sci., 2013, vol. 286, pp. 206–211; DOI:10.1016/j.apsusc.2013.09.048.ADSCrossRef Lyu, S., Nguyen, D.C., Kim, D., Hwang, W., and Yoon, B., Experimental Drag Reduction Study of Super-Hydrophobic Surface with Dual-Scale Structures, Appl. Surface Sci., 2013, vol. 286, pp. 206–211; DOI:10.1016/j.apsusc.2013.09.048.ADSCrossRef
159.
Zurück zum Zitat Martin, S. and Bhushan, B., Modeling and Optimization of Shark-Inspired Riblet Geometries for Low Drag Applications, J. Colloid Interface Sci., 2016, vol. 474, pp. 206–215; DOI:10.1016/j.jcis.2016.04.019.ADSCrossRef Martin, S. and Bhushan, B., Modeling and Optimization of Shark-Inspired Riblet Geometries for Low Drag Applications, J. Colloid Interface Sci., 2016, vol. 474, pp. 206–215; DOI:10.1016/j.jcis.2016.04.019.ADSCrossRef
160.
Zurück zum Zitat Maynes, D., Jeffs, K., Woolford, B., and Webb, B.W., Laminar Flow in a Microchannel with Hydrophobic Surface Patterned Microribs Oriented Parallel to the Flow Direction, Phys. Fluids, 2007, vol. 19, no. 9, DOI:10.1063/1.2772880.ADSCrossRefMATH Maynes, D., Jeffs, K., Woolford, B., and Webb, B.W., Laminar Flow in a Microchannel with Hydrophobic Surface Patterned Microribs Oriented Parallel to the Flow Direction, Phys. Fluids, 2007, vol. 19, no. 9, DOI:10.1063/1.2772880.ADSCrossRefMATH
161.
Zurück zum Zitat Mohammadi, A. and Floryan, J.M., Groove Optimization for Drag Reduction, Phys. Fluids, 2013, vol. 25, no. 11, DOI:10.1063/1.4826983.ADSCrossRef Mohammadi, A. and Floryan, J.M., Groove Optimization for Drag Reduction, Phys. Fluids, 2013, vol. 25, no. 11, DOI:10.1063/1.4826983.ADSCrossRef
162.
Zurück zum Zitat Ou, J. and Rothstein, J.P., Direct Velocity Measurements of the Flow Past Drag-Reducing Ultrahydrophobic Surfaces, Phys. Fluids, 2005, vol. 17, no. 10, DOI:10.1063/1.2109867.ADSCrossRefMATH Ou, J. and Rothstein, J.P., Direct Velocity Measurements of the Flow Past Drag-Reducing Ultrahydrophobic Surfaces, Phys. Fluids, 2005, vol. 17, no. 10, DOI:10.1063/1.2109867.ADSCrossRefMATH
163.
Zurück zum Zitat Ou, J., Perot, B., and Rothstein, J.P., Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces, Phys. Fluids, 2004, vol. 16, no. 12, pp. 4635–4643; DOI:10.1063/1.1812011.ADSCrossRefMATH Ou, J., Perot, B., and Rothstein, J.P., Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces, Phys. Fluids, 2004, vol. 16, no. 12, pp. 4635–4643; DOI:10.1063/1.1812011.ADSCrossRefMATH
164.
Zurück zum Zitat Qiu, H., Chauhan, K., and Lei, C., A Numerical Study of Drag Reduction Performance of Simplified Shell Surface Microstructures, Ocean Engin., 2020, vol. 217, DOI:10.1016/j.oceaneng.2020.107916.CrossRef Qiu, H., Chauhan, K., and Lei, C., A Numerical Study of Drag Reduction Performance of Simplified Shell Surface Microstructures, Ocean Engin., 2020, vol. 217, DOI:10.1016/j.oceaneng.2020.107916.CrossRef
165.
Zurück zum Zitat Raayai-Ardakani, S. and McKinley, G.H., Geometric Optimization of Riblet-Textured Surfaces for Drag Reduction in Laminar Boundary Layer Flows, Phys. Fluids, 2019, vol. 31, no. 5, DOI:10.1063/1.5090881.ADSCrossRef Raayai-Ardakani, S. and McKinley, G.H., Geometric Optimization of Riblet-Textured Surfaces for Drag Reduction in Laminar Boundary Layer Flows, Phys. Fluids, 2019, vol. 31, no. 5, DOI:10.1063/1.5090881.ADSCrossRef
166.
Zurück zum Zitat Rastegari, A. and Akhavan, R., On Drag Reduction Scaling and Sustainability Bounds of Superhydrophobic Surfaces in High Reynolds Number Turbulent Flows, J. Fluid Mech., 2019, vol. 864, pp. 327–347; DOI:10.1017/jfm.2018.1027.ADSMathSciNetCrossRefMATH Rastegari, A. and Akhavan, R., On Drag Reduction Scaling and Sustainability Bounds of Superhydrophobic Surfaces in High Reynolds Number Turbulent Flows, J. Fluid Mech., 2019, vol. 864, pp. 327–347; DOI:10.1017/jfm.2018.1027.ADSMathSciNetCrossRefMATH
167.
Zurück zum Zitat Rawool, A.S., Mitra, S.K., and Kandlikar, S.G., Numerical Simulation of Flow through Microchannels with Designed Roughness, Microfluidics Nanofluidics, 2006, vol. 2, no. 3, pp. 215–221; DOI:10.1007/s10404-005-0064-5.CrossRef Rawool, A.S., Mitra, S.K., and Kandlikar, S.G., Numerical Simulation of Flow through Microchannels with Designed Roughness, Microfluidics Nanofluidics, 2006, vol. 2, no. 3, pp. 215–221; DOI:10.1007/s10404-005-0064-5.CrossRef
168.
Zurück zum Zitat Rehman, D., Morini, G.L., and Hong, C., A Comparison of Data Reduction Methods for Average Friction Factor Calculation of Adiabatic Gas Flows in Microchannels, Micromachines, 2019, vol. 10, no. 3, DOI:10.3390/mi10030171.CrossRef Rehman, D., Morini, G.L., and Hong, C., A Comparison of Data Reduction Methods for Average Friction Factor Calculation of Adiabatic Gas Flows in Microchannels, Micromachines, 2019, vol. 10, no. 3, DOI:10.3390/mi10030171.CrossRef
169.
Zurück zum Zitat Sbragaglia, M. and Prosperetti, A., A Note on the Effective Slip Properties for Microchannel Flows with Ultrahydrophobic Surfaces, Phys. Fluids, 2007, vol. 19, no. 4, DOI:10.1063/1.2716438.ADSCrossRefMATH Sbragaglia, M. and Prosperetti, A., A Note on the Effective Slip Properties for Microchannel Flows with Ultrahydrophobic Surfaces, Phys. Fluids, 2007, vol. 19, no. 4, DOI:10.1063/1.2716438.ADSCrossRefMATH
170.
Zurück zum Zitat Seo, J., Garcı́a-Mayoral, R., and Mani, A., Turbulent Flows over Superhydrophobic Surfaces: Flow-Induced Capillary Waves, and Robustness of Air–Water Interfaces, J. Fluid Mech., 2018, vol. 835, pp. 45–85; DOI:doi:10.1017/jfm.2017.733.ADSMathSciNetCrossRefMATH Seo, J., Garcı́a-Mayoral, R., and Mani, A., Turbulent Flows over Superhydrophobic Surfaces: Flow-Induced Capillary Waves, and Robustness of Air–Water Interfaces, J. Fluid Mech., 2018, vol. 835, pp. 45–85; DOI:doi:10.1017/jfm.2017.733.ADSMathSciNetCrossRefMATH
171.
Zurück zum Zitat Sun, J., He, Y.L., Tao, W.Q., Rose, J.W., and Wang, H.S., Multi-Scale Study of Liquid Flow in Micro/Nanochannels: Effects of Surface Wettability and Topology, Microfluidics Nanofluidics, 2012, vol. 12, no. 6, pp. 991–1008; DOI:10.1007/s10404-012-0933-7.CrossRef Sun, J., He, Y.L., Tao, W.Q., Rose, J.W., and Wang, H.S., Multi-Scale Study of Liquid Flow in Micro/Nanochannels: Effects of Surface Wettability and Topology, Microfluidics Nanofluidics, 2012, vol. 12, no. 6, pp. 991–1008; DOI:10.1007/s10404-012-0933-7.CrossRef
172.
Zurück zum Zitat Xu, M., Lu, H., Gong, L., Chai, J.C., and Duan, X., Parametric Numerical Study of the Flow and Heat Transfer in Microchannel with Dimples, Int. Comm Heat Mass Transfer, 2016, vol. 76, pp. 348–357; DOI:10.1016/j.icheatmasstransfer.2016.06.002.CrossRef Xu, M., Lu, H., Gong, L., Chai, J.C., and Duan, X., Parametric Numerical Study of the Flow and Heat Transfer in Microchannel with Dimples, Int. Comm Heat Mass Transfer, 2016, vol. 76, pp. 348–357; DOI:10.1016/j.icheatmasstransfer.2016.06.002.CrossRef
173.
Zurück zum Zitat Yadav, V., Baghel, K., Kumar, R., and Kadam, S.T., Numerical Investigation of Heat Transfer in Extended Surface Microchannels, Int. J. Heat Mass Transfer, 2016, vol. 93, pp. 612–622; DOI:10.1016/ j.ijheatmasstransfer.2015.10.023.CrossRef Yadav, V., Baghel, K., Kumar, R., and Kadam, S.T., Numerical Investigation of Heat Transfer in Extended Surface Microchannels, Int. J. Heat Mass Transfer, 2016, vol. 93, pp. 612–622; DOI:10.1016/ j.ijheatmasstransfer.2015.10.023.CrossRef
174.
Zurück zum Zitat Zhang, J., Yao, Z., and Hao, P., Drag Reductions and the Air-Water Interface Stability of Superhydrophobic Surfaces in Rectangular Channel Flow, Phys. Rev. E, 2016, vol. 94, no. 5, DOI:10.1103/ PhysRevE.94.053117.ADSCrossRef Zhang, J., Yao, Z., and Hao, P., Drag Reductions and the Air-Water Interface Stability of Superhydrophobic Surfaces in Rectangular Channel Flow, Phys. Rev. E, 2016, vol. 94, no. 5, DOI:10.1103/ PhysRevE.94.053117.ADSCrossRef
175.
Zurück zum Zitat Zhang, J., Yao, Z., and Hao, P., Formation and Evolution of Air–Water Interfaces between Hydrophilic Structures in a Microchannel, Microfluidics Nanofluidics, 2017, vol.21, no. 8, DOI:10.1007/s10404-017-1968-6. Zhang, J., Yao, Z., and Hao, P., Formation and Evolution of Air–Water Interfaces between Hydrophilic Structures in a Microchannel, Microfluidics Nanofluidics, 2017, vol.21, no. 8, DOI:10.1007/s10404-017-1968-6.
176.
Zurück zum Zitat Zhao, H., Liu, Z., Zhang, C., Guan, N., and Zhao, H., Pressure Drop and Friction Factor of a Rectangular Channel with Staggered Mini Pin Fins of Different Shapes, Exp. Thermal Fluid Sci., 2016, vol. 71, pp. 57–69; DOI:10.1016/j.expthermflusci.2015.10.010.CrossRef Zhao, H., Liu, Z., Zhang, C., Guan, N., and Zhao, H., Pressure Drop and Friction Factor of a Rectangular Channel with Staggered Mini Pin Fins of Different Shapes, Exp. Thermal Fluid Sci., 2016, vol. 71, pp. 57–69; DOI:10.1016/j.expthermflusci.2015.10.010.CrossRef
177.
Zurück zum Zitat Zuo, H., Javadpour, F., Deng, S., and Li, H., Liquid Slippage on Rough Hydrophobic Surfaces with and without Entrapped Bubbles, Phys. Fluids, 2020, vol. 32, no. 8, DOI:10.1063/5.0015193.ADSCrossRef Zuo, H., Javadpour, F., Deng, S., and Li, H., Liquid Slippage on Rough Hydrophobic Surfaces with and without Entrapped Bubbles, Phys. Fluids, 2020, vol. 32, no. 8, DOI:10.1063/5.0015193.ADSCrossRef
178.
Zurück zum Zitat Wang, L., Wang, C., Wang, S., Sun, G., and You, B., Design and Analysis of Micro-Nano Scale Nested-Grooved Surface Structure for Drag Reduction Based on ‘Vortex-Driven Design,’ European J. Mech., B/Fluids, 2021, vol. 85, pp. 335–350; DOI:10.1016/j.euromechflu.2020.10.007.ADSMathSciNetCrossRefMATH Wang, L., Wang, C., Wang, S., Sun, G., and You, B., Design and Analysis of Micro-Nano Scale Nested-Grooved Surface Structure for Drag Reduction Based on ‘Vortex-Driven Design,’ European J. Mech., B/Fluids, 2021, vol. 85, pp. 335–350; DOI:10.1016/j.euromechflu.2020.10.007.ADSMathSciNetCrossRefMATH
179.
Zurück zum Zitat Bechert, D.W., Bruse, M., Hage, W., van der Hoeven, J.G.T., and Hoppe, G., Experiments on Drag-Reducing Surfaces and Their Optimization with an Adjustable Geometry, J. Fluid Mech., 1997, vol. 338, pp. 59–87; DOI:doi:10.1017/S0022112096004673.ADSCrossRef Bechert, D.W., Bruse, M., Hage, W., van der Hoeven, J.G.T., and Hoppe, G., Experiments on Drag-Reducing Surfaces and Their Optimization with an Adjustable Geometry, J. Fluid Mech., 1997, vol. 338, pp. 59–87; DOI:doi:10.1017/S0022112096004673.ADSCrossRef
180.
Zurück zum Zitat Ao, M., Wang, M., and Zhu, F., Investigation of the Turbulent Drag Reduction Mechanism of a Kind of Microstructure on Riblet Surface, Micromachines, 2021, vol. 12, no. 1, DOI:10.3390/mi12010059.CrossRef Ao, M., Wang, M., and Zhu, F., Investigation of the Turbulent Drag Reduction Mechanism of a Kind of Microstructure on Riblet Surface, Micromachines, 2021, vol. 12, no. 1, DOI:10.3390/mi12010059.CrossRef
181.
Zurück zum Zitat Qin, L., Hafezi, M., Yang, H., Dong, G., and Zhang, Y., Constructing a Dual-Function Surface by Microcasting and Nanospraying for Efficient Drag Reduction and Potential Antifouling Capabilities, Micromachines, 2019, vol. 10, no. 7, DOI:10.3390/mi10070490.CrossRef Qin, L., Hafezi, M., Yang, H., Dong, G., and Zhang, Y., Constructing a Dual-Function Surface by Microcasting and Nanospraying for Efficient Drag Reduction and Potential Antifouling Capabilities, Micromachines, 2019, vol. 10, no. 7, DOI:10.3390/mi10070490.CrossRef
182.
Zurück zum Zitat Li, L., Zhu, J., Li, J., Song, H., Zeng, Z., Wang, G., et al., Effect of Vortex Frictional Drag Reduction on Ordered Microstructures, Surface Topography: Metrology Prop., 2019, vol. 7, no. 2, DOI:10.1088/2051-672X/ab1671.ADSCrossRef Li, L., Zhu, J., Li, J., Song, H., Zeng, Z., Wang, G., et al., Effect of Vortex Frictional Drag Reduction on Ordered Microstructures, Surface Topography: Metrology Prop., 2019, vol. 7, no. 2, DOI:10.1088/2051-672X/ab1671.ADSCrossRef
183.
Zurück zum Zitat Saadatbakhsh, M., Jamali Asl, S., Kiani, M.J., and Nouri, N.M., Slip Length Measurement of Pdms/Hydrophobic Silica Superhydrophobic Coating for Drag Reduction Application, Surface Coatings Technol., 2020, vol. 404, DOI:10.1016/j.surfcoat.2020.126428.CrossRef Saadatbakhsh, M., Jamali Asl, S., Kiani, M.J., and Nouri, N.M., Slip Length Measurement of Pdms/Hydrophobic Silica Superhydrophobic Coating for Drag Reduction Application, Surface Coatings Technol., 2020, vol. 404, DOI:10.1016/j.surfcoat.2020.126428.CrossRef
184.
Zurück zum Zitat Wang, Z., Xu, L., Wu, X., and Chen, J., A Designable Surface via the Micro-Molding Process, Microsyst. Nanoengin., 2018, vol. 4, no. 1, DOI:10.1038/micronano.2017.99. Wang, Z., Xu, L., Wu, X., and Chen, J., A Designable Surface via the Micro-Molding Process, Microsyst. Nanoengin., 2018, vol. 4, no. 1, DOI:10.1038/micronano.2017.99.
185.
Zurück zum Zitat van Buren, T. and Smits, A.J., Substantial Drag Reduction in Turbulent Flow Using Liquid-Infused Surfaces, J. Fluid Mech., 2017, vol. 827, pp. 448–456; DOI:10.1017/jfm.2017.503.ADSCrossRef van Buren, T. and Smits, A.J., Substantial Drag Reduction in Turbulent Flow Using Liquid-Infused Surfaces, J. Fluid Mech., 2017, vol. 827, pp. 448–456; DOI:10.1017/jfm.2017.503.ADSCrossRef
186.
Zurück zum Zitat Mala, G.M. and Li, D., Flow Characteristics of Water in Microtubes, Int. J. Heat Fluid Flow, 1999, vol. 20, no. 2, pp. 142–148.CrossRef Mala, G.M. and Li, D., Flow Characteristics of Water in Microtubes, Int. J. Heat Fluid Flow, 1999, vol. 20, no. 2, pp. 142–148.CrossRef
187.
Zurück zum Zitat Li, Z.X., Experimental Study on Flow Characteristics of Liquid in Circular Microtubes, Microscale Thermophys. Engin., 2003, vol. 7, no. 3, pp. 253–265; DOI:10.1080/10893950390219083.CrossRef Li, Z.X., Experimental Study on Flow Characteristics of Liquid in Circular Microtubes, Microscale Thermophys. Engin., 2003, vol. 7, no. 3, pp. 253–265; DOI:10.1080/10893950390219083.CrossRef
188.
Zurück zum Zitat Bolaños, S.J. and Vernescu, B., Derivation of the Navier Slip and Slip Length for Viscous Flows over a Rough Boundary, Phys. Fluids, 2017, vol. 29, no. 5, DOI:10.1063/1.4982899.ADSCrossRef Bolaños, S.J. and Vernescu, B., Derivation of the Navier Slip and Slip Length for Viscous Flows over a Rough Boundary, Phys. Fluids, 2017, vol. 29, no. 5, DOI:10.1063/1.4982899.ADSCrossRef
189.
Zurück zum Zitat Song, S., Yang, X., Xin, F., and Lu, T.J., Modeling of Surface Roughness Effects on Stokes Flow in Circular Pipes, Phys. Fluids, 2018, vol. 30, no. 2, DOI:10.1063/1.5017876.ADSCrossRef Song, S., Yang, X., Xin, F., and Lu, T.J., Modeling of Surface Roughness Effects on Stokes Flow in Circular Pipes, Phys. Fluids, 2018, vol. 30, no. 2, DOI:10.1063/1.5017876.ADSCrossRef
190.
Zurück zum Zitat Brackbill, T.P. and Kandlikar, S.G., Effect of Sawtooth Roughness on Pressure Drop and Turbulent Transition in Microchannels, Heat Transfer Engin., 2007, vol. 28, nos. 8/9, pp. 662–669; DOI:10.1080/ 01457630701326290.ADSCrossRef Brackbill, T.P. and Kandlikar, S.G., Effect of Sawtooth Roughness on Pressure Drop and Turbulent Transition in Microchannels, Heat Transfer Engin., 2007, vol. 28, nos. 8/9, pp. 662–669; DOI:10.1080/ 01457630701326290.ADSCrossRef
191.
Zurück zum Zitat Brackbill, T.P. and Kandlikar, S.G., Effect of Triangular Roughness Elements on Pressure Drop and Laminar-Turbulent Transition in Microchannels and Minichannels, Int. Conf. Nanochannels, Microchannels, and Minichannels, 2006, vol. 47608, pp. 747–755. Brackbill, T.P. and Kandlikar, S.G., Effect of Triangular Roughness Elements on Pressure Drop and Laminar-Turbulent Transition in Microchannels and Minichannels, Int. Conf. Nanochannels, Microchannels, and Minichannels, 2006, vol. 47608, pp. 747–755.
192.
Zurück zum Zitat Morini, G.L., Laminar-to-Turbulent Flow Transition in Microchannels, Microscale Thermophys. Engin., 2004, vol. 8, no. 1, pp. 15–30; DOI:10.1080/10893950490272902.CrossRef Morini, G.L., Laminar-to-Turbulent Flow Transition in Microchannels, Microscale Thermophys. Engin., 2004, vol. 8, no. 1, pp. 15–30; DOI:10.1080/10893950490272902.CrossRef
193.
Zurück zum Zitat Natrajan, V.K. and Christensen, K.T., The Impact of Surface Roughness on Flow through a Rectangular Microchannel from the Laminar to Turbulent Regimes, Microfluidics Nanofluidics, 2010, vol. 9, no. 1, pp. 95–121; DOI:10.1007/s10404-009-0526-2.CrossRef Natrajan, V.K. and Christensen, K.T., The Impact of Surface Roughness on Flow through a Rectangular Microchannel from the Laminar to Turbulent Regimes, Microfluidics Nanofluidics, 2010, vol. 9, no. 1, pp. 95–121; DOI:10.1007/s10404-009-0526-2.CrossRef
194.
Zurück zum Zitat Rands, C., Webb, B.W., and Maynes, D., Characterization of Transition to Turbulence in Microchannels, Int. J. Heat Mass Transfer, 2006, vol. 49, nos. 17/18, pp. 2924–2930; DOI:10.1016/ j.ijheatmasstransfer.2006.02.032.CrossRef Rands, C., Webb, B.W., and Maynes, D., Characterization of Transition to Turbulence in Microchannels, Int. J. Heat Mass Transfer, 2006, vol. 49, nos. 17/18, pp. 2924–2930; DOI:10.1016/ j.ijheatmasstransfer.2006.02.032.CrossRef
195.
Zurück zum Zitat Wibel, W. and Ehrhard, P., Experiments on the Laminar/Turbulent Transition of Liquid Flows in Rectangular Microchannels, Heat Transfer Engin., vol. 30, 2009, DOI:10.1080/01457630802293449.ADSCrossRef Wibel, W. and Ehrhard, P., Experiments on the Laminar/Turbulent Transition of Liquid Flows in Rectangular Microchannels, Heat Transfer Engin., vol. 30, 2009, DOI:10.1080/01457630802293449.ADSCrossRef
196.
Zurück zum Zitat Zhou, G. and Yao, S.C., Effect of Surface Roughness on Laminar Liquid Flow in Micro-Channels, Appl. Thermal Engin., 2011, vol. 31, nos. 2/3, pp. 228–234; DOI:10.1016/j.applthermaleng.2010.09.002.CrossRef Zhou, G. and Yao, S.C., Effect of Surface Roughness on Laminar Liquid Flow in Micro-Channels, Appl. Thermal Engin., 2011, vol. 31, nos. 2/3, pp. 228–234; DOI:10.1016/j.applthermaleng.2010.09.002.CrossRef
197.
Zurück zum Zitat Peng, X.F. and Peterson, G.P., Forced Convection Heat Transfer of Single-Phase Binary Mixtures through Microchannels, Exp. Thermal Fluid Sci., 1996, vol. 12.1, pp. 98–104; DOI:https://doi.org/10.1016/0894-1777(95)00079-8.CrossRef Peng, X.F. and Peterson, G.P., Forced Convection Heat Transfer of Single-Phase Binary Mixtures through Microchannels, Exp. Thermal Fluid Sci., 1996, vol. 12.1, pp. 98–104; DOI:https://​doi.​org/​10.​1016/​0894-1777(95)00079-8.CrossRef
198.
Zurück zum Zitat Wang, B.X. and Peterson, G.P., Frictional Flow Characteristics of Water Flowing through Rectangular Microchannels, Exp. Heat Transfer, 1994, vol. 7, no. 4, pp. 249–264; DOI:10.1080/08916159408946484.ADSCrossRef Wang, B.X. and Peterson, G.P., Frictional Flow Characteristics of Water Flowing through Rectangular Microchannels, Exp. Heat Transfer, 1994, vol. 7, no. 4, pp. 249–264; DOI:10.1080/08916159408946484.ADSCrossRef
199.
Zurück zum Zitat Nikuradse, J., Law of Flow in Rough Pipes, Technical Memorandum 1292 (National Advisory Committee for Aeronautics, 1950); [Stromungsgesetze in rauhen Rohren, VDIForschungsheft 361, Beilage zu Forschung auf dem Gebiete des Ingenieurwesens Ausgabe B Band 4 (1933) (in German)]. Nikuradse, J., Law of Flow in Rough Pipes, Technical Memorandum 1292 (National Advisory Committee for Aeronautics, 1950); [Stromungsgesetze in rauhen Rohren, VDIForschungsheft 361, Beilage zu Forschung auf dem Gebiete des Ingenieurwesens Ausgabe B Band 4 (1933) (in German)].
200.
Zurück zum Zitat Lea, F.C. and Tadros, A.G., CVI. Flow of Water through a Circular Tube with a Central Core and through Rectangular Tubes, London, Edinburgh, Dublin Philos. Mag. J. Sci., 1931, vol. 11, no. 74, pp. 1235–1247; DOI:10.1080/14786443109461773.CrossRef Lea, F.C. and Tadros, A.G., CVI. Flow of Water through a Circular Tube with a Central Core and through Rectangular Tubes, London, Edinburgh, Dublin Philos. Mag. J. Sci., 1931, vol. 11, no. 74, pp. 1235–1247; DOI:10.1080/14786443109461773.CrossRef
201.
Zurück zum Zitat Celata, G.P., Cumo, M., McPhail, S., and Zummo, G., Characterization of Fluid Dynamic Behaviour and Channel Wall Effects in Microtube, Int. J. Heat Fluid Flow, 2006, vol. 27, no. 1, pp. 135–143; DOI:10.1016/j.ijheatfluidflow.2005.03.012.CrossRef Celata, G.P., Cumo, M., McPhail, S., and Zummo, G., Characterization of Fluid Dynamic Behaviour and Channel Wall Effects in Microtube, Int. J. Heat Fluid Flow, 2006, vol. 27, no. 1, pp. 135–143; DOI:10.1016/j.ijheatfluidflow.2005.03.012.CrossRef
202.
Zurück zum Zitat Barlak, S., Yapc, S., and Sara, O.N., Experimental Investigation of Pressure Drop and Friction Factor for Water Flow in Microtubes, Int. J. Thermal Sci., 2011, vol. 50, no. 3, pp. 361–368; DOI:10.1016/ j.ijthermalsci.2010.08.018.CrossRef Barlak, S., Yapc, S., and Sara, O.N., Experimental Investigation of Pressure Drop and Friction Factor for Water Flow in Microtubes, Int. J. Thermal Sci., 2011, vol. 50, no. 3, pp. 361–368; DOI:10.1016/ j.ijthermalsci.2010.08.018.CrossRef
203.
Zurück zum Zitat Hanks, R.W. and Ruo, H.C., Laminar-Turbulent Transition in Ducts of Rectangular Cross Section, IEC Fundamentals, 1966, vol. 5, no. 4, pp. 558–561.CrossRef Hanks, R.W. and Ruo, H.C., Laminar-Turbulent Transition in Ducts of Rectangular Cross Section, IEC Fundamentals, 1966, vol. 5, no. 4, pp. 558–561.CrossRef
204.
Zurück zum Zitat Hao, P.F., Yao, Z.H., He, F., and Zhu, K.Q., Experimental Investigation of Water Flow in Smooth and Rough Silicon Microchannels, J. Micromech. Microengin., 2006, vol. 16, no. 7, pp. 1397–1402; DOI:10.1088/0960-1317/16/7/037.ADSCrossRef Hao, P.F., Yao, Z.H., He, F., and Zhu, K.Q., Experimental Investigation of Water Flow in Smooth and Rough Silicon Microchannels, J. Micromech. Microengin., 2006, vol. 16, no. 7, pp. 1397–1402; DOI:10.1088/0960-1317/16/7/037.ADSCrossRef
205.
Zurück zum Zitat Mishra, P. and Tripathi, G., Transition from Laminar to Turbulent Flow of Purely Viscous Non-Newtonian Fluids in Tubes, Chem. Engin. Sci., 1971, vol. 26, no. 6, pp. 915–921.ADSCrossRef Mishra, P. and Tripathi, G., Transition from Laminar to Turbulent Flow of Purely Viscous Non-Newtonian Fluids in Tubes, Chem. Engin. Sci., 1971, vol. 26, no. 6, pp. 915–921.ADSCrossRef
206.
Zurück zum Zitat Barlak, S., Yapc, S., and Sara, O.N., Experimental Investigation of Pressure Drop and Friction Factor for Water Flow in Microtubes, Int. J. Thermal Sci., 2011, vol. 50, no. 3, pp. 361–368; DOI:10.1016/ j.ijthermalsci.2010.08.018. Barlak, S., Yapc, S., and Sara, O.N., Experimental Investigation of Pressure Drop and Friction Factor for Water Flow in Microtubes, Int. J. Thermal Sci., 2011, vol. 50, no. 3, pp. 361–368; DOI:10.1016/ j.ijthermalsci.2010.08.018.
207.
Zurück zum Zitat Im, H.J. and Lee, J.H., Comparison of Superhydrophobic Drag Reduction between Turbulent Pipe and Channel Flows, Phys. Fluids, 2017, vol. 29, no. 9, DOI:10.1063/1.5000729.ADSCrossRef Im, H.J. and Lee, J.H., Comparison of Superhydrophobic Drag Reduction between Turbulent Pipe and Channel Flows, Phys. Fluids, 2017, vol. 29, no. 9, DOI:10.1063/1.5000729.ADSCrossRef
208.
Zurück zum Zitat Wu, H.Y. and Cheng, P., Friction Factors in Smooth Trapezoidal Silicon Microchannels with Different Aspect Ratios, Int. J. Heat Mass Transfer, 2003, vol. 46, no. 14, pp. 2519–2525; DOI:10.1016/S0017-9310(03)00106-6.CrossRef Wu, H.Y. and Cheng, P., Friction Factors in Smooth Trapezoidal Silicon Microchannels with Different Aspect Ratios, Int. J. Heat Mass Transfer, 2003, vol. 46, no. 14, pp. 2519–2525; DOI:10.1016/S0017-9310(03)00106-6.CrossRef
209.
Zurück zum Zitat Abu Rowin, W., Hou, J., and Ghaemia, S., Inner and outer Layer Turbulence over a Superhydrophobic Surface with Low Roughness Level at Low Reynolds Number, Phys. Fluids, 2017, vol. 29, no. 9, DOI:10.1063/1.5004398.ADSCrossRef Abu Rowin, W., Hou, J., and Ghaemia, S., Inner and outer Layer Turbulence over a Superhydrophobic Surface with Low Roughness Level at Low Reynolds Number, Phys. Fluids, 2017, vol. 29, no. 9, DOI:10.1063/1.5004398.ADSCrossRef
210.
Zurück zum Zitat Wang, G., Cheng, P., and Bergles, A.E., Effects of Inlet/Outlet Configurations on Flow Boiling Instability in Parallel Microchannels, Int. J. Heat Mass Transfer, 2008, vol. 51, nos. 9/10, pp. 2267–2281; DOI:10.1016/j.ijheatmasstransfer.2007.08.027.CrossRef Wang, G., Cheng, P., and Bergles, A.E., Effects of Inlet/Outlet Configurations on Flow Boiling Instability in Parallel Microchannels, Int. J. Heat Mass Transfer, 2008, vol. 51, nos. 9/10, pp. 2267–2281; DOI:10.1016/j.ijheatmasstransfer.2007.08.027.CrossRef
Metadaten
Titel
Microchannel Surface Structures for Drag Reduction
verfasst von
D. S. Gluzdov
E. Ya. Gatapova
Publikationsdatum
01.06.2023
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 2/2023
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232823020042

Weitere Artikel der Ausgabe 2/2023

Journal of Engineering Thermophysics 2/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.