Skip to main content

2018 | OriginalPaper | Buchkapitel

Microelectrode Array

verfasst von : Renxin Wang, Huaiqiang Yu, Zhihong Li

Erschienen in: Micro Electro Mechanical Systems

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microelectrode arrays (MEAs) have been applied as chronical interface with the neural system and play important roles in neural prosthesis for various diseases, including sensory and motion injuries such as blind, deaf, and paralyzed, and also mental diseases like depression, Parkinson’s disease, and epilepsy. Thanks the inherent merits of microfabrication, MEAs show the advantages of low cost, mass production, high density, flexibility (optional), small footprint, integratability with ICs (integrated circuits), etc. In this chapter, we discuss about the general requirements and consideration of materials, design, and fabrication of MEAs in details. Then the various devices and their applications in the central nervous system and the peripheral nervous system are overviewed, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agnew WF, McCreery DB, Yuen TGH (1989) Histologic and physiologic evaluation of electrically stimulated peripheral nerve: considerations for the selection of parameters. Ann Biomed Eng 17(1):39–60CrossRef Agnew WF, McCreery DB, Yuen TGH (1989) Histologic and physiologic evaluation of electrically stimulated peripheral nerve: considerations for the selection of parameters. Ann Biomed Eng 17(1):39–60CrossRef
Zurück zum Zitat Bhandari R et al (2008) A novel method of fabricating convoluted shaped electrode arrays for neural and retinal prostheses. Sens Actuators A Phys 145–146(1–2):123–130CrossRef Bhandari R et al (2008) A novel method of fabricating convoluted shaped electrode arrays for neural and retinal prostheses. Sens Actuators A Phys 145–146(1–2):123–130CrossRef
Zurück zum Zitat Boretius T (2010) A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens Bioelectron 26(1):62–69CrossRef Boretius T (2010) A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens Bioelectron 26(1):62–69CrossRef
Zurück zum Zitat Branner A, Normann RA (2000) A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats. Brain Res Bull 51(4):293–306CrossRef Branner A, Normann RA (2000) A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats. Brain Res Bull 51(4):293–306CrossRef
Zurück zum Zitat Branner A, Stein RB, Normann RA (2001) Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes. J Neurophysiol 85(4):1585–1594CrossRef Branner A, Stein RB, Normann RA (2001) Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes. J Neurophysiol 85(4):1585–1594CrossRef
Zurück zum Zitat Carp JS et al (2005) Long-term spinal reflex studies in awake behaving mice. J Neurosci Methods 149(2):134–143CrossRef Carp JS et al (2005) Long-term spinal reflex studies in awake behaving mice. J Neurosci Methods 149(2):134–143CrossRef
Zurück zum Zitat Castoro MA (2011) Excitation properties of the right cervical vagus nerve in adult dogs. Exp Neurol 227(1):62–68CrossRef Castoro MA (2011) Excitation properties of the right cervical vagus nerve in adult dogs. Exp Neurol 227(1):62–68CrossRef
Zurück zum Zitat Cheung KC, Renaud P, Tanila H (2007) Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosens Bioelectron 22(8):1783–1790CrossRef Cheung KC, Renaud P, Tanila H (2007) Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosens Bioelectron 22(8):1783–1790CrossRef
Zurück zum Zitat Chow AY et al (2004) The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 122:460–469CrossRef Chow AY et al (2004) The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 122:460–469CrossRef
Zurück zum Zitat Chu JU (2012) Improvement of signal-to-interference ratio and signal to noise ratio in nerve cuff electrode systems. Physiol Meas 33(6):943–967CrossRef Chu JU (2012) Improvement of signal-to-interference ratio and signal to noise ratio in nerve cuff electrode systems. Physiol Meas 33(6):943–967CrossRef
Zurück zum Zitat Cobo AM et al (2017) A parylene cuff electrode for peripheral nerve recording and drug delivery. In: IEEE MEMS, pp 506–509 Cobo AM et al (2017) A parylene cuff electrode for peripheral nerve recording and drug delivery. In: IEEE MEMS, pp 506–509
Zurück zum Zitat Cogan SF (2008) Neural stimulation and recording electrodes. Annu Rev Biomed Eng 10:275–309CrossRef Cogan SF (2008) Neural stimulation and recording electrodes. Annu Rev Biomed Eng 10:275–309CrossRef
Zurück zum Zitat Crago PE, Peckham PH, Thrope GB (1980) Modulation of muscle force by recruitment during intramuscular stimulation. IEEE Trans Biomed Eng 12:679–684CrossRef Crago PE, Peckham PH, Thrope GB (1980) Modulation of muscle force by recruitment during intramuscular stimulation. IEEE Trans Biomed Eng 12:679–684CrossRef
Zurück zum Zitat De Ferrari GM (2011) Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J 32(7):847–855CrossRef De Ferrari GM (2011) Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J 32(7):847–855CrossRef
Zurück zum Zitat Eastwood PR (2011) Treating obstructive sleep apnea with hypoglossal nerve stimulation. Sleep 34(11):1479–1486CrossRef Eastwood PR (2011) Treating obstructive sleep apnea with hypoglossal nerve stimulation. Sleep 34(11):1479–1486CrossRef
Zurück zum Zitat Egert D, Peterson RL, Najafi K (2011) Parylene microprobes with engineered stiffness and shape for improved insertion. In: Solid-state sensors, actuators and microsystems conference (Transducers), pp 198–201 Egert D, Peterson RL, Najafi K (2011) Parylene microprobes with engineered stiffness and shape for improved insertion. In: Solid-state sensors, actuators and microsystems conference (Transducers), pp 198–201
Zurück zum Zitat Engineer ND et al (2011) Reversing pathological neural activity using targeted plasticity. Nature 470(7332):101–104CrossRef Engineer ND et al (2011) Reversing pathological neural activity using targeted plasticity. Nature 470(7332):101–104CrossRef
Zurück zum Zitat Ethier C et al (2012) Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485:368–371CrossRef Ethier C et al (2012) Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485:368–371CrossRef
Zurück zum Zitat Fomani AA, Mansour RR (2010) Flexible neural microelectrode arrays reinforced with embedded metallic micro-needles. In: 2010 I.E. sensors, pp 1601–1604 Fomani AA, Mansour RR (2010) Flexible neural microelectrode arrays reinforced with embedded metallic micro-needles. In: 2010 I.E. sensors, pp 1601–1604
Zurück zum Zitat Gekeler F et al (2004) Subretinal electrical stimulation of the rabbit retina with acutely implanted electrode arrays. Graefes Arch Clin Exp Ophthalmol 242:587–596CrossRef Gekeler F et al (2004) Subretinal electrical stimulation of the rabbit retina with acutely implanted electrode arrays. Graefes Arch Clin Exp Ophthalmol 242:587–596CrossRef
Zurück zum Zitat Gekeler F et al (2007) Compound subretinal prostheses with extra-ocular parts designed for human trials: successful long-term implantation in pigs. Graefes Arch Clin Exp Ophthalmol 245:230–241CrossRef Gekeler F et al (2007) Compound subretinal prostheses with extra-ocular parts designed for human trials: successful long-term implantation in pigs. Graefes Arch Clin Exp Ophthalmol 245:230–241CrossRef
Zurück zum Zitat Glenn WW, Phelps ML (1985) Diaphragm pacing by electrical stimulation of the phrenic nerve. Neurosurgery 17(6):974–984CrossRef Glenn WW, Phelps ML (1985) Diaphragm pacing by electrical stimulation of the phrenic nerve. Neurosurgery 17(6):974–984CrossRef
Zurück zum Zitat González C, Rodríguez M (1997) A flexible perforated microelectrode array probe for action potential recording in nerve and muscle tissues. J Neurosci Methods 72(2):189–195MathSciNetCrossRef González C, Rodríguez M (1997) A flexible perforated microelectrode array probe for action potential recording in nerve and muscle tissues. J Neurosci Methods 72(2):189–195MathSciNetCrossRef
Zurück zum Zitat Hassler C, Boretius T, Stieglitz T (2011) Polymers for neural implants. J Polym Sci B Polym Phys 49(1):18–33CrossRef Hassler C, Boretius T, Stieglitz T (2011) Polymers for neural implants. J Polym Sci B Polym Phys 49(1):18–33CrossRef
Zurück zum Zitat Holman G et al (2002) Silicon micro-needles with flexible interconnections. In: IEEE-EMBS, pp 255–260 Holman G et al (2002) Silicon micro-needles with flexible interconnections. In: IEEE-EMBS, pp 255–260
Zurück zum Zitat Huang R et al (2008) Integrated parylene-cabled silicon probes for neural prosthetics. In: MEMS 2008, pp 240–243 Huang R et al (2008) Integrated parylene-cabled silicon probes for neural prosthetics. In: MEMS 2008, pp 240–243
Zurück zum Zitat Humayun MS (2001) Intraocular retinal prosthesis. Trans Am Ophthalmol Soc 99:271–300 Humayun MS (2001) Intraocular retinal prosthesis. Trans Am Ophthalmol Soc 99:271–300
Zurück zum Zitat Jeong J et al (2013) Advancements in fabrication process of microelectrode array for a retinal prosthesis using liquid crystal polymer (LCP). In: 35th annual international conference of the IEEE EMBS, pp 5295–5298 Jeong J et al (2013) Advancements in fabrication process of microelectrode array for a retinal prosthesis using liquid crystal polymer (LCP). In: 35th annual international conference of the IEEE EMBS, pp 5295–5298
Zurück zum Zitat Johnson L et al (2004) Electrical stimulation of isolated retina with microwire glass electrodes. J Neurosci Methods 137(2):265–273CrossRef Johnson L et al (2004) Electrical stimulation of isolated retina with microwire glass electrodes. J Neurosci Methods 137(2):265–273CrossRef
Zurück zum Zitat Kang X, Liu JQ, Tian H (2015) Self-closed parylene cuff electrode for peripheral nerve recording. J Microelectromech Syst 24(2):319–332CrossRef Kang X, Liu JQ, Tian H (2015) Self-closed parylene cuff electrode for peripheral nerve recording. J Microelectromech Syst 24(2):319–332CrossRef
Zurück zum Zitat Keseru M et al (2012) Acute electrical stimulation of the human retina with an epiretinal electrode array. Acta Ophthalmol 90:1–8CrossRef Keseru M et al (2012) Acute electrical stimulation of the human retina with an epiretinal electrode array. Acta Ophthalmol 90:1–8CrossRef
Zurück zum Zitat Kim D et al (2010) Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 9:511–517CrossRef Kim D et al (2010) Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 9:511–517CrossRef
Zurück zum Zitat Ko H, Lee S (2017) Electrical characterization of 2D and 3D microelectrodes for achieving high resolution sensing in retinal prostheses with in vitro animal experimental results. Microsyst Technol 23(2):473–481CrossRef Ko H, Lee S (2017) Electrical characterization of 2D and 3D microelectrodes for achieving high resolution sensing in retinal prostheses with in vitro animal experimental results. Microsyst Technol 23(2):473–481CrossRef
Zurück zum Zitat Larsen JO et al (1998) Degeneration and regeneration in rabbit peripheral nerve with long-term nerve cuff electrode implant: a stereological study of myelinated and unmyelinated axons. Acta Neuropathol 96(4):365–378CrossRef Larsen JO et al (1998) Degeneration and regeneration in rabbit peripheral nerve with long-term nerve cuff electrode implant: a stereological study of myelinated and unmyelinated axons. Acta Neuropathol 96(4):365–378CrossRef
Zurück zum Zitat Lawrence SM, Dhillon GS, Horch KW (2003) Fabrication and characteristics of an implantable, polymer-based, intrafascicular electrode. J Neurosci Methods 131:9–26CrossRef Lawrence SM, Dhillon GS, Horch KW (2003) Fabrication and characteristics of an implantable, polymer-based, intrafascicular electrode. J Neurosci Methods 131:9–26CrossRef
Zurück zum Zitat Lee S (2017) Top-down fabrication of silicon nanowire arrays for large scale integration on a flexible substrate for achieving high resolution neural microelectrodes. Microsyst Technol 23(2):491–498CrossRef Lee S (2017) Top-down fabrication of silicon nanowire arrays for large scale integration on a flexible substrate for achieving high resolution neural microelectrodes. Microsyst Technol 23(2):491–498CrossRef
Zurück zum Zitat Lee K, Singh A, He J (2004) Polyimide based neural implants with stiffness improvement. Sens Actuators B Chem 102(1):67–72CrossRef Lee K, Singh A, He J (2004) Polyimide based neural implants with stiffness improvement. Sens Actuators B Chem 102(1):67–72CrossRef
Zurück zum Zitat Lee S, Yen SC, Liao LD (2016) Flexible sling electrode for bidirectional neural signal recording and selective stimulation. In: IEEE MEMS, pp 375–378 Lee S, Yen SC, Liao LD (2016) Flexible sling electrode for bidirectional neural signal recording and selective stimulation. In: IEEE MEMS, pp 375–378
Zurück zum Zitat Loeb GE (1993) The distal hindlimb musculature of the cat: interanimal variability of locomotor activity and cutaneous reflexes. Exp Brain Res 96(1):125–140CrossRef Loeb GE (1993) The distal hindlimb musculature of the cat: interanimal variability of locomotor activity and cutaneous reflexes. Exp Brain Res 96(1):125–140CrossRef
Zurück zum Zitat Luo YH-L, da Cruz L (2016) The Argus® II retinal prosthesis system. Prog Retin Eye Res 50:89–107CrossRef Luo YH-L, da Cruz L (2016) The Argus® II retinal prosthesis system. Prog Retin Eye Res 50:89–107CrossRef
Zurück zum Zitat Mackinnon SE et al (1984) Chronic nerve compression – an experimental model in the rat. Ann Plast Surg 13(2):112–120CrossRef Mackinnon SE et al (1984) Chronic nerve compression – an experimental model in the rat. Ann Plast Surg 13(2):112–120CrossRef
Zurück zum Zitat Margalit E et al (2002) Retinal prosthesis for the blind. Surv Ophthalmol 47(4):335–356CrossRef Margalit E et al (2002) Retinal prosthesis for the blind. Surv Ophthalmol 47(4):335–356CrossRef
Zurück zum Zitat Matzel KE et al (2001) Chronic sacral spinal nerve stimulation for fecal incontinence: longterm results with foramen and cuff electrodes. Dis Colon Rectum 44(1):59–66CrossRef Matzel KE et al (2001) Chronic sacral spinal nerve stimulation for fecal incontinence: longterm results with foramen and cuff electrodes. Dis Colon Rectum 44(1):59–66CrossRef
Zurück zum Zitat McNeal DR, Bowman BR (1985) Selective activation of muscles using peripheral nerve electrodes. Med Biol Eng Comput 23(3):249–253CrossRef McNeal DR, Bowman BR (1985) Selective activation of muscles using peripheral nerve electrodes. Med Biol Eng Comput 23(3):249–253CrossRef
Zurück zum Zitat Motta PS, Judy JW (2005) Multielectrode microprobes for deep-brain stimulation fabricated with a customizable 3-D electroplating process. IEEE Trans Biomed Eng 52(5):923–933CrossRef Motta PS, Judy JW (2005) Multielectrode microprobes for deep-brain stimulation fabricated with a customizable 3-D electroplating process. IEEE Trans Biomed Eng 52(5):923–933CrossRef
Zurück zum Zitat Najafi K, Wise KD, Mochizuki T (1985) A high-yield IC-compatible multichannel recording array. IEEE Trans Electron Devices 32(7):1206–1211CrossRef Najafi K, Wise KD, Mochizuki T (1985) A high-yield IC-compatible multichannel recording array. IEEE Trans Electron Devices 32(7):1206–1211CrossRef
Zurück zum Zitat Naples GG et al (1988) A spiral nerve cuff electrode for peripheral nerve stimulation. IEEE Trans Biomed Eng 35(11):905–916CrossRef Naples GG et al (1988) A spiral nerve cuff electrode for peripheral nerve stimulation. IEEE Trans Biomed Eng 35(11):905–916CrossRef
Zurück zum Zitat Navarro X, Valderrama E, Stieglitz T (2001) Selective fascicular stimulation of the rat sciatic nerve with multipolar polyimide cuff electrodes. Restor Neurol Neurosci 18(1):9–21 Navarro X, Valderrama E, Stieglitz T (2001) Selective fascicular stimulation of the rat sciatic nerve with multipolar polyimide cuff electrodes. Restor Neurol Neurosci 18(1):9–21
Zurück zum Zitat Normann RA et al (1999) A neural interface for a cortical vision prosthesis. Vis Res 39(15):2577–2587CrossRef Normann RA et al (1999) A neural interface for a cortical vision prosthesis. Vis Res 39(15):2577–2587CrossRef
Zurück zum Zitat Palanker D et al (2005) Design of a high-resolution optoelectronic retinal prosthesis. J Neural Eng 2:S105–S120CrossRef Palanker D et al (2005) Design of a high-resolution optoelectronic retinal prosthesis. J Neural Eng 2:S105–S120CrossRef
Zurück zum Zitat Peckham PH, Knutson JS (2005) Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng 7:327–360CrossRef Peckham PH, Knutson JS (2005) Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng 7:327–360CrossRef
Zurück zum Zitat Polasek KH et al (2009) Stimulation stability and selectivity of chronically implanted multicontact nerve cuff electrodes in the human upper extremity. IEEE Trans Neural Syst Rehabil Eng 17(5):428–437CrossRef Polasek KH et al (2009) Stimulation stability and selectivity of chronically implanted multicontact nerve cuff electrodes in the human upper extremity. IEEE Trans Neural Syst Rehabil Eng 17(5):428–437CrossRef
Zurück zum Zitat Pratt CA, Chanaud CM, Loeb GE (1991) Functionally complex muscles of the cat hindlimb. Exp Brain Res 85(2):281–299CrossRef Pratt CA, Chanaud CM, Loeb GE (1991) Functionally complex muscles of the cat hindlimb. Exp Brain Res 85(2):281–299CrossRef
Zurück zum Zitat Randles JEB (1947) Kinetics of rapid electrode reactions. In: Discuss Faraday SOC, pp 11–19CrossRef Randles JEB (1947) Kinetics of rapid electrode reactions. In: Discuss Faraday SOC, pp 11–19CrossRef
Zurück zum Zitat Rijkhoff NJ (1994) Selective stimulation of sacral nerve roots for bladder control: a study by computer modeling. IEEE Trans Biomed Eng 41(5):413–424CrossRef Rijkhoff NJ (1994) Selective stimulation of sacral nerve roots for bladder control: a study by computer modeling. IEEE Trans Biomed Eng 41(5):413–424CrossRef
Zurück zum Zitat Rodger D et al (2008) Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sens Actuators B Chem 132(2):449–460CrossRef Rodger D et al (2008) Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sens Actuators B Chem 132(2):449–460CrossRef
Zurück zum Zitat Rodríguez FJ (2000) Polyimide cuff electrodes for peripheral nerve stimulation. J Neurosci Methods 98(2):105–118CrossRef Rodríguez FJ (2000) Polyimide cuff electrodes for peripheral nerve stimulation. J Neurosci Methods 98(2):105–118CrossRef
Zurück zum Zitat Roessler G et al (2009) Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial. Invest Ophthalmol Vis Sci 50:3003–3008CrossRef Roessler G et al (2009) Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial. Invest Ophthalmol Vis Sci 50:3003–3008CrossRef
Zurück zum Zitat Rousche J, Normann A (1999) Chronic intracortical microstimulation (ICMS) of cat sensory cortex using the Utah intracortical electrode array. IEEE Trans Rehabil Eng 7(1):56–68CrossRef Rousche J, Normann A (1999) Chronic intracortical microstimulation (ICMS) of cat sensory cortex using the Utah intracortical electrode array. IEEE Trans Rehabil Eng 7(1):56–68CrossRef
Zurück zum Zitat Rui Y et al (2011) Parylene-based implantable Pt-black coated flexible 3-D hemispherical microelectrode arrays for improved neural interfaces. Microsyst Technol 17(3):437–442CrossRef Rui Y et al (2011) Parylene-based implantable Pt-black coated flexible 3-D hemispherical microelectrode arrays for improved neural interfaces. Microsyst Technol 17(3):437–442CrossRef
Zurück zum Zitat Ryu M et al (2017) Enhancement of interface characteristics of neural probe based on graphene, ZnO nanowires, and conducting polymer PEDOT. ACS Appl Mater Interfaces 9:10577–10586CrossRef Ryu M et al (2017) Enhancement of interface characteristics of neural probe based on graphene, ZnO nanowires, and conducting polymer PEDOT. ACS Appl Mater Interfaces 9:10577–10586CrossRef
Zurück zum Zitat Struijk JJ et al (1999) Cuff electrodes for long-term recording of natural sensory information. IEEE Eng Med Biol Mag 18(3):91–98CrossRef Struijk JJ et al (1999) Cuff electrodes for long-term recording of natural sensory information. IEEE Eng Med Biol Mag 18(3):91–98CrossRef
Zurück zum Zitat Strumwasser F (1958) Long-term recording from single neurons in brain of unrestrained mammals. Science 127(3296):469–470CrossRef Strumwasser F (1958) Long-term recording from single neurons in brain of unrestrained mammals. Science 127(3296):469–470CrossRef
Zurück zum Zitat Takeuchi S et al (2004) 3D flexible multichannel neural probe array. J Micromech Microeng 14(1):104–107CrossRef Takeuchi S et al (2004) 3D flexible multichannel neural probe array. J Micromech Microeng 14(1):104–107CrossRef
Zurück zum Zitat Tombran-Tink J, Barnstable CJ, Rizzo III JF (2007) VISUAL PROSTHESIS AND OPHTHALMIC DEVICES Tombran-Tink J, Barnstable CJ, Rizzo III JF (2007) VISUAL PROSTHESIS AND OPHTHALMIC DEVICES
Zurück zum Zitat Velliste M et al (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453(7198):1098–1101CrossRef Velliste M et al (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453(7198):1098–1101CrossRef
Zurück zum Zitat Wang R et al (2010) Fabrication and characterization of a parylene-based 3D microelectrode array for use in retinal prosthesis. J Microelectromech Syst 19:367–374CrossRef Wang R et al (2010) Fabrication and characterization of a parylene-based 3D microelectrode array for use in retinal prosthesis. J Microelectromech Syst 19:367–374CrossRef
Zurück zum Zitat Wang R et al (2012) A flexible microneedle electrode array with solid silicon needles. J Microelectromech Syst 21(5):1084–1089CrossRef Wang R et al (2012) A flexible microneedle electrode array with solid silicon needles. J Microelectromech Syst 21(5):1084–1089CrossRef
Zurück zum Zitat Wang R et al (2017) A microneedle electrode array on flexible substrate for long-term EEG monitoring. Sens Actuators B Chem 244:750–758CrossRef Wang R et al (2017) A microneedle electrode array on flexible substrate for long-term EEG monitoring. Sens Actuators B Chem 244:750–758CrossRef
Zurück zum Zitat Waschkowski F et al (2014) Development of very large electrode arrays for epiretinal stimulation (VLARS). Biomed Eng Online 13:1–15CrossRef Waschkowski F et al (2014) Development of very large electrode arrays for epiretinal stimulation (VLARS). Biomed Eng Online 13:1–15CrossRef
Zurück zum Zitat Waters RL et al (1985) Functional electrical stimulation of the peroneal nerve for hemiplegia. Long-term clinical follow-up. J Bone Joint Surg Am 67(5):792–793CrossRef Waters RL et al (1985) Functional electrical stimulation of the peroneal nerve for hemiplegia. Long-term clinical follow-up. J Bone Joint Surg Am 67(5):792–793CrossRef
Zurück zum Zitat Weiland JD et al (2006) Implantation of an inactive epiretinal poly (dimethyl siloxane) electrode array in dogs. Exp Eye Res 82:81–90CrossRef Weiland JD et al (2006) Implantation of an inactive epiretinal poly (dimethyl siloxane) electrode array in dogs. Exp Eye Res 82:81–90CrossRef
Zurück zum Zitat Wise KD, Angell JB (1975) A low-capacitance multielectrode probe for use in extracellular neurophysiology. IEEE Trans Biomed Eng 3:212–219CrossRef Wise KD, Angell JB (1975) A low-capacitance multielectrode probe for use in extracellular neurophysiology. IEEE Trans Biomed Eng 3:212–219CrossRef
Zurück zum Zitat Wise KD et al (2004) Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc IEEE 92(1):76–97CrossRef Wise KD et al (2004) Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc IEEE 92(1):76–97CrossRef
Zurück zum Zitat Yamagiwa S, Ishida M, Kawano T (2013) Self-curling and -sticking flexible substrate for ECOG electrode array. In: IEEE MEMS, pp 480–483 Yamagiwa S, Ishida M, Kawano T (2013) Self-curling and -sticking flexible substrate for ECOG electrode array. In: IEEE MEMS, pp 480–483
Zurück zum Zitat Yoo PB, Durand DM (2005) Selective recording of the canine hypoglossal nerve using a multicontact flat interface nerve electrode. IEEE Trans Biomed Eng 52(8):1461–1469CrossRef Yoo PB, Durand DM (2005) Selective recording of the canine hypoglossal nerve using a multicontact flat interface nerve electrode. IEEE Trans Biomed Eng 52(8):1461–1469CrossRef
Zurück zum Zitat Yu H et al (2013) Electroplated nickel multielectrode microprobes with flexible parylene cable for neural recording and stimulation. J Microelectromech Syst 22(5):1199–1206CrossRef Yu H et al (2013) Electroplated nickel multielectrode microprobes with flexible parylene cable for neural recording and stimulation. J Microelectromech Syst 22(5):1199–1206CrossRef
Zurück zum Zitat Yu H et al (2014) A parylene self-locking cuff electrode for peripheral nerve stimulation and recording. J Microelectromech Syst 23(5):1025–1035CrossRef Yu H et al (2014) A parylene self-locking cuff electrode for peripheral nerve stimulation and recording. J Microelectromech Syst 23(5):1025–1035CrossRef
Zurück zum Zitat Zhang X et al (2011) Characterization of a light switchable microelectrode array for retinal prosthesis. Appl Phys Lett 99:253702CrossRef Zhang X et al (2011) Characterization of a light switchable microelectrode array for retinal prosthesis. Appl Phys Lett 99:253702CrossRef
Zurück zum Zitat Zhou DD, Greenbaum E (2009) Implantable neural prostheses 1:devices and applications Zhou DD, Greenbaum E (2009) Implantable neural prostheses 1:devices and applications
Zurück zum Zitat Zhou H et al (2009) A new process for fabricating tip-shaped polymer microstructure array with patterned metallic coatings. Sens Actuators A Phys 150:296–301CrossRef Zhou H et al (2009) A new process for fabricating tip-shaped polymer microstructure array with patterned metallic coatings. Sens Actuators A Phys 150:296–301CrossRef
Zurück zum Zitat Zrenner E et al (2011) Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Roy Soc B-Biol Sci 278:1489–1497CrossRef Zrenner E et al (2011) Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Roy Soc B-Biol Sci 278:1489–1497CrossRef
Metadaten
Titel
Microelectrode Array
verfasst von
Renxin Wang
Huaiqiang Yu
Zhihong Li
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5945-2_41

Neuer Inhalt