Skip to main content

2018 | OriginalPaper | Buchkapitel

Electrodes for Nerve Recording and Stimulation

verfasst von : Jing-Quan Liu, Hong-Chang Tian, Xiao-Yang Kang, Ming-Hao Wang

Erschienen in: Micro Electro Mechanical Systems

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the rapid development of MEMS fabrication technologies, versatile microelectrodes with different structures and functions have been designed and fabricated. The flexible MEMS microelectrodes exhibit multiaspect excellent characteristics compared to stiff microelectrodes based on silicon or SU-8, which comprising: lighter weight, smaller volume, better conforming to neural tissue, and lower fabrication cost.
This chapter mainly reviewed key technologies on flexible MEMS microelectrodes for neural interface in recent years, including: design and fabrication technology, fluidic channels, μLEDs, and electrode-tissue interface modification technology for performance improvement. Furthermore, the future directions of flexible MEMS microelectrodes were described including transparent and stretchable microelectrodes with characteristics of multifunction, high-density, biodegradation, and next-generation electrode-tissue interface modifications facilitated electrode efficacy and implantation safety.
The goal of this chapter is to provide the reader a broader overview of flexible MEMS technologies that can be applied together to solve problems in neural interface.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abidian MR, Martin DC (2009) Multifunctional Nanobiomaterials for neural interfaces. Adv Funct Mater 19(4):573–585CrossRef Abidian MR, Martin DC (2009) Multifunctional Nanobiomaterials for neural interfaces. Adv Funct Mater 19(4):573–585CrossRef
Zurück zum Zitat Abidian MR, Ludwig KA, Marzullo TC, Martin DC, Kipke DR (2009) Interfacing conducting polymer nanotubes with the central nervous system: chronic neural recording using poly (3, 4-ethylenedioxythiophene) nanotubes. Adv Mater 21(37):3764–3770CrossRef Abidian MR, Ludwig KA, Marzullo TC, Martin DC, Kipke DR (2009) Interfacing conducting polymer nanotubes with the central nervous system: chronic neural recording using poly (3, 4-ethylenedioxythiophene) nanotubes. Adv Mater 21(37):3764–3770CrossRef
Zurück zum Zitat Abidian MR, Daneshvar ED, Egeland BM, Kipke DR, Cederna PS, Urbanchek MG (2012) Hybrid conducting polymer-hydrogel conduits for axonal growth and neural tissue engineering. Adv Healthcare Mater 1(6):762–767CrossRef Abidian MR, Daneshvar ED, Egeland BM, Kipke DR, Cederna PS, Urbanchek MG (2012) Hybrid conducting polymer-hydrogel conduits for axonal growth and neural tissue engineering. Adv Healthcare Mater 1(6):762–767CrossRef
Zurück zum Zitat Al-bahrani MR, Ahmad W, Mehnane HF, Chen Y, Cheng Z, Gao Y (2015) Enhanced electrocatalytic activity by RGO/MWCNTs/NiO counter electrode for dye-sensitized solar cells. Nano-Micro Lett 7(3):298–306CrossRef Al-bahrani MR, Ahmad W, Mehnane HF, Chen Y, Cheng Z, Gao Y (2015) Enhanced electrocatalytic activity by RGO/MWCNTs/NiO counter electrode for dye-sensitized solar cells. Nano-Micro Lett 7(3):298–306CrossRef
Zurück zum Zitat Altuna EB, Cid E, Aivar P, Gal B, Berganzo J, Gabriel G, Guimera A, Villa R, Fernandez LJ, Menendez de la Prida L (2013) SU-8 based microprobes for simultaneous neural depth recording and drug delivery in the brain. Lab Chip 13(7):1422–1430CrossRef Altuna EB, Cid E, Aivar P, Gal B, Berganzo J, Gabriel G, Guimera A, Villa R, Fernandez LJ, Menendez de la Prida L (2013) SU-8 based microprobes for simultaneous neural depth recording and drug delivery in the brain. Lab Chip 13(7):1422–1430CrossRef
Zurück zum Zitat Anthony TE, Dee N, Bernard A, Lerchner W, Heintz N, Anderson DJ (2014) Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell 156(3):522–536CrossRef Anthony TE, Dee N, Bernard A, Lerchner W, Heintz N, Anderson DJ (2014) Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell 156(3):522–536CrossRef
Zurück zum Zitat Aregueta-Robles UA, Woolley AJ, Poole-Warren LA, Lovell NH, Green RA (2014) Organic electrode coatings for next-generation neural interfaces. Front Neuroeng 7:15CrossRef Aregueta-Robles UA, Woolley AJ, Poole-Warren LA, Lovell NH, Green RA (2014) Organic electrode coatings for next-generation neural interfaces. Front Neuroeng 7:15CrossRef
Zurück zum Zitat Arter JA, Taggart DK, McIntire TM, Penner RM, Weiss GA (2010) Virus-PEDOT nanowires for biosensing. Nano Lett 10(12):4858–4862CrossRef Arter JA, Taggart DK, McIntire TM, Penner RM, Weiss GA (2010) Virus-PEDOT nanowires for biosensing. Nano Lett 10(12):4858–4862CrossRef
Zurück zum Zitat Asplund M, von Holst H, Inganas O (2008) Composite biomolecule/PEDOT materials for neural electrodes. Biointerphases 3(3):83–93CrossRef Asplund M, von Holst H, Inganas O (2008) Composite biomolecule/PEDOT materials for neural electrodes. Biointerphases 3(3):83–93CrossRef
Zurück zum Zitat Asplund M, Nyberg T, Inganäs O (2010) Electroactive polymers for neural interfaces. Polym Chem 1(9):1374–1391CrossRef Asplund M, Nyberg T, Inganäs O (2010) Electroactive polymers for neural interfaces. Polym Chem 1(9):1374–1391CrossRef
Zurück zum Zitat Au KM, Lu Z, Matcher SJ, Armes SP (2013) Anti-biofouling conducting polymer nanoparticles as a label-free optical contrast agent for high resolution subsurface biomedical imaging. Biomaterials 34(35):8925–8940CrossRef Au KM, Lu Z, Matcher SJ, Armes SP (2013) Anti-biofouling conducting polymer nanoparticles as a label-free optical contrast agent for high resolution subsurface biomedical imaging. Biomaterials 34(35):8925–8940CrossRef
Zurück zum Zitat Bangar MA, Shirale DJ, Chen W, Myung NV, Mulchandani A (2009) Single conducting polymer nanowire chemiresistive label-free immunosensor for cancer biomarker. Anal Chem 81(6):2168–2175CrossRef Bangar MA, Shirale DJ, Chen W, Myung NV, Mulchandani A (2009) Single conducting polymer nanowire chemiresistive label-free immunosensor for cancer biomarker. Anal Chem 81(6):2168–2175CrossRef
Zurück zum Zitat Bongo M, Winther-Jensen O, Himmelberger S, Strakosas X, Ramuz M, Hama A, Stavrinidou E, Malliaras GG, Salleo A, Winther-Jensen B (2013) PEDOT:gelatin composites mediate brain endothelial cell adhesion. J Mater Chem B 1:3860–3867CrossRef Bongo M, Winther-Jensen O, Himmelberger S, Strakosas X, Ramuz M, Hama A, Stavrinidou E, Malliaras GG, Salleo A, Winther-Jensen B (2013) PEDOT:gelatin composites mediate brain endothelial cell adhesion. J Mater Chem B 1:3860–3867CrossRef
Zurück zum Zitat Cho Y, Borgens RB (2013) Electrically controlled release of the nerve growth factor from a collagen–carbon nanotube composite for supporting neuronal growth. J Mater Chem B 1(33):4166–4170CrossRef Cho Y, Borgens RB (2013) Electrically controlled release of the nerve growth factor from a collagen–carbon nanotube composite for supporting neuronal growth. J Mater Chem B 1(33):4166–4170CrossRef
Zurück zum Zitat Cogan SF (2008) Neural stimulation and recording electrodes. Annu Rev Biomed Eng 10:275–309CrossRef Cogan SF (2008) Neural stimulation and recording electrodes. Annu Rev Biomed Eng 10:275–309CrossRef
Zurück zum Zitat Cogan SF, Guzelian AA, Agnew WF, Yuen TG, Mccreery DB (2004) Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation. J Neurosci Meth 137(2):141CrossRef Cogan SF, Guzelian AA, Agnew WF, Yuen TG, Mccreery DB (2004) Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation. J Neurosci Meth 137(2):141CrossRef
Zurück zum Zitat Cui XY, Martin DC (2003) Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sensor Actuat B-Chem 89(1–2):92–102CrossRef Cui XY, Martin DC (2003) Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sensor Actuat B-Chem 89(1–2):92–102CrossRef
Zurück zum Zitat Dobson J (2008) Remote control of cellular behaviour with magnetic nanoparticles. Nat Nanotechnol 3(3):139–143CrossRef Dobson J (2008) Remote control of cellular behaviour with magnetic nanoparticles. Nat Nanotechnol 3(3):139–143CrossRef
Zurück zum Zitat Farina D, Yoshida K, Stieglitz T, Koch KP (2008) Multichannel thin-film electrode for intramuscular electromyographic recordings. J Appl Physiol 104(3):821–827CrossRef Farina D, Yoshida K, Stieglitz T, Koch KP (2008) Multichannel thin-film electrode for intramuscular electromyographic recordings. J Appl Physiol 104(3):821–827CrossRef
Zurück zum Zitat Ferguson JE, Boldt C, Redish AD (2009) Creating low-impedance tetrodes by electroplating with additives. Sensor Actuat A-Phys 156(2):388–393CrossRef Ferguson JE, Boldt C, Redish AD (2009) Creating low-impedance tetrodes by electroplating with additives. Sensor Actuat A-Phys 156(2):388–393CrossRef
Zurück zum Zitat Gao KP, Li G, Liao LY, Cheng J, Zhao JL, Xu YS (2013) Fabrication of flexible microelectrode arrays integrated with microfluidic channels for stable neural interfaces. Sensor Actuat A-Phys 197:9–14CrossRef Gao KP, Li G, Liao LY, Cheng J, Zhao JL, Xu YS (2013) Fabrication of flexible microelectrode arrays integrated with microfluidic channels for stable neural interfaces. Sensor Actuat A-Phys 197:9–14CrossRef
Zurück zum Zitat Gomez N, Lee JY, Nickels JD, Schmidt CE (2007) Micropatterned polypyrrole: a combination of electrical and topographical characteristics for the stimulation of cells. Adv Funct Mater 17(10):1645–1653CrossRef Gomez N, Lee JY, Nickels JD, Schmidt CE (2007) Micropatterned polypyrrole: a combination of electrical and topographical characteristics for the stimulation of cells. Adv Funct Mater 17(10):1645–1653CrossRef
Zurück zum Zitat Grill WM, Norman SE, Bellamkonda RV (2009) Implanted neural interfaces: biochallenges and engineered solutions. Annu Rev Biomed Eng 11:1–24CrossRef Grill WM, Norman SE, Bellamkonda RV (2009) Implanted neural interfaces: biochallenges and engineered solutions. Annu Rev Biomed Eng 11:1–24CrossRef
Zurück zum Zitat Hira R, Honkura NJ, Maruyama Y, Augustine G, Kasai H, Matsuzaki M (2009) Transcranial optogenetic stimulation for functional mapping of the motor cortex. J Neurosci Meth 179(2):258–263CrossRef Hira R, Honkura NJ, Maruyama Y, Augustine G, Kasai H, Matsuzaki M (2009) Transcranial optogenetic stimulation for functional mapping of the motor cortex. J Neurosci Meth 179(2):258–263CrossRef
Zurück zum Zitat Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171CrossRef Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171CrossRef
Zurück zum Zitat Hong X, Wu Z, Chen L, Wu F, Wei L, Yuan W (2014) Hydrogel microneedle arrays for transdermal drug delivery. Nano-Micro Lett 6(3):191–199CrossRef Hong X, Wu Z, Chen L, Wu F, Wei L, Yuan W (2014) Hydrogel microneedle arrays for transdermal drug delivery. Nano-Micro Lett 6(3):191–199CrossRef
Zurück zum Zitat Hsiao YS, Kuo CW, Chen P (2013) Multifunctional Graphene–PEDOT microelectrodes for on-Chip manipulation of human Mesenchymal stem cells. Adv Funct Mater 23(37):4649–4656CrossRef Hsiao YS, Kuo CW, Chen P (2013) Multifunctional Graphene–PEDOT microelectrodes for on-Chip manipulation of human Mesenchymal stem cells. Adv Funct Mater 23(37):4649–4656CrossRef
Zurück zum Zitat Huang YJ, Wu HC, Tai NH, Wang TW (2012) Carbon Nanotube rope with electrical stimulation promotes the differentiation and maturity of neural stem cells. Small 8(18):2869–2877CrossRef Huang YJ, Wu HC, Tai NH, Wang TW (2012) Carbon Nanotube rope with electrical stimulation promotes the differentiation and maturity of neural stem cells. Small 8(18):2869–2877CrossRef
Zurück zum Zitat Iwai Y, Honda S, Ozeki H, Hashimoto M, Hirase H (2011) A simple head-mountable led device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci Res 70(1):124–127CrossRef Iwai Y, Honda S, Ozeki H, Hashimoto M, Hirase H (2011) A simple head-mountable led device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci Res 70(1):124–127CrossRef
Zurück zum Zitat Jarc M, Berniker M, Tresch MC (2013) FES control of isometric forces in the rat Hindlimb using many muscles. IEEE Trans Bio-Med Eng 60(5):1422–1430CrossRef Jarc M, Berniker M, Tresch MC (2013) FES control of isometric forces in the rat Hindlimb using many muscles. IEEE Trans Bio-Med Eng 60(5):1422–1430CrossRef
Zurück zum Zitat Jeong JW, Mccall JG, Shin G, Zhang Y, Alhasani R, Kim M (2015) Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162(3):662–674CrossRef Jeong JW, Mccall JG, Shin G, Zhang Y, Alhasani R, Kim M (2015) Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162(3):662–674CrossRef
Zurück zum Zitat Jessin J, Yuefa L, Jinsheng Z, Jeffrey AL, Yong X (2011) Microfabrication of 3D neural probes with combined electrical and chemical interfaces. J Micromech Microeng 21(10):105011CrossRef Jessin J, Yuefa L, Jinsheng Z, Jeffrey AL, Yong X (2011) Microfabrication of 3D neural probes with combined electrical and chemical interfaces. J Micromech Microeng 21(10):105011CrossRef
Zurück zum Zitat Ji BW, Kang XY, Wang MH, Bao BF, Tian HC, Yang B, Chen X, Wang XL, Liu JQ (2017) Photoelectric neural interface combining wire-bondingμLEDS with iridium oxide microelectrodes for optogenetics, MEMS 2017, Las Vegas, 22–26 Jan Ji BW, Kang XY, Wang MH, Bao BF, Tian HC, Yang B, Chen X, Wang XL, Liu JQ (2017) Photoelectric neural interface combining wire-bondingμLEDS with iridium oxide microelectrodes for optogenetics, MEMS 2017, Las Vegas, 22–26 Jan
Zurück zum Zitat Kang XY, Liu JQ, Tian HC, Zhang C, Yang B, NuLi Y, Zhu HY, Yang CS (2014a) Controlled activation of iridium film for AIROF microelectrodes. Sensor Actuat B-Chem 190:601–611CrossRef Kang XY, Liu JQ, Tian HC, Zhang C, Yang B, NuLi Y, Zhu HY, Yang CS (2014a) Controlled activation of iridium film for AIROF microelectrodes. Sensor Actuat B-Chem 190:601–611CrossRef
Zurück zum Zitat Kang XY, Liu JQ, Tian HC, Yang B, Nuli YN, Yang CS (2014b) Fabrication and electrochemical comparison of SIROF-AIROF-EIROF microelectrodes for neural interfaces. IEEE Eng Med Biol:478–481 Kang XY, Liu JQ, Tian HC, Yang B, Nuli YN, Yang CS (2014b) Fabrication and electrochemical comparison of SIROF-AIROF-EIROF microelectrodes for neural interfaces. IEEE Eng Med Biol:478–481
Zurück zum Zitat Kang XY, Liu JQ, Tian HC, Yang B, NuLi YN, Yang CS (2014c) Optimization and electrochemical characterization of RF-sputtered iridium oxide microelectrodes for electrical stimulation. J Microelectromech Syst 24(2)CrossRef Kang XY, Liu JQ, Tian HC, Yang B, NuLi YN, Yang CS (2014c) Optimization and electrochemical characterization of RF-sputtered iridium oxide microelectrodes for electrical stimulation. J Microelectromech Syst 24(2)CrossRef
Zurück zum Zitat Kang XY, Liu JQ, Tian HC, Du JC, Yang B, Zhu HY, NuLi YN Yang CS (2014d) Fabrication and degradation characteristic of sputtered iridium oxide neural microelectrodes for Fes application, MEMS 2014, San Francisco, 26–30 Jan, 616–619 Kang XY, Liu JQ, Tian HC, Du JC, Yang B, Zhu HY, NuLi YN Yang CS (2014d) Fabrication and degradation characteristic of sputtered iridium oxide neural microelectrodes for Fes application, MEMS 2014, San Francisco, 26–30 Jan, 616–619
Zurück zum Zitat Kang XY, Liu JQ, Tian HC, Yang B, Nuli YN, Yang CS (2015) Self-closed Parylene cuff electrode for peripheral nerve recording. J Microelectromech Syst 24(2):319–332CrossRef Kang XY, Liu JQ, Tian HC, Yang B, Nuli YN, Yang CS (2015) Self-closed Parylene cuff electrode for peripheral nerve recording. J Microelectromech Syst 24(2):319–332CrossRef
Zurück zum Zitat Kim S, Bhandari R, Klein M, Negi S, Rieth L, Tathireddy P, Toepper M, Oppermann H, Solzbacher F (2009) Integrated wireless neural interface based on the Utah electrode array. Biomed Microdevices 11(2):453–466CrossRef Kim S, Bhandari R, Klein M, Negi S, Rieth L, Tathireddy P, Toepper M, Oppermann H, Solzbacher F (2009) Integrated wireless neural interface based on the Utah electrode array. Biomed Microdevices 11(2):453–466CrossRef
Zurück zum Zitat Kim H, Viventi J, Amsden JJ, Xiao JL, Vigeland L, Kim YS, Blanco JA, Panilaitis B, Frechette ES, Contreras D, Kaplan DL, Omenetto FG, Huang YG, Hwang KC, Zakin MR, Litt B, Rogers JA (2010) Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 9(6):511–517CrossRef Kim H, Viventi J, Amsden JJ, Xiao JL, Vigeland L, Kim YS, Blanco JA, Panilaitis B, Frechette ES, Contreras D, Kaplan DL, Omenetto FG, Huang YG, Hwang KC, Zakin MR, Litt B, Rogers JA (2010) Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 9(6):511–517CrossRef
Zurück zum Zitat Kozai TDY, Langhals NB, Patel PR, Deng XP, Zhang HN, Smith KL, Lahann J, Kotov NA, Kipke DR (2012) Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat Mater 11(12):1065–1073CrossRef Kozai TDY, Langhals NB, Patel PR, Deng XP, Zhang HN, Smith KL, Lahann J, Kotov NA, Kipke DR (2012) Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat Mater 11(12):1065–1073CrossRef
Zurück zum Zitat Kwon KY, Lee HM, Ghovanloo M, Weber A, Li W (2014) A wireless slanted optrode array with intergrated micro LEDs for optogenetics, MEMS 2014, San Francisco, 26–30 Jan Kwon KY, Lee HM, Ghovanloo M, Weber A, Li W (2014) A wireless slanted optrode array with intergrated micro LEDs for optogenetics, MEMS 2014, San Francisco, 26–30 Jan
Zurück zum Zitat Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30(26):4325–4335CrossRef Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30(26):4325–4335CrossRef
Zurück zum Zitat Luo X, Weaver CL, Zhou DD, Greenberg R, Cui XT (2011) Highly stable carbon nanotube doped poly (3, 4-ethylenedioxythiophene) for chronic neural stimulation. Biomaterials 32(24):5551–5557CrossRef Luo X, Weaver CL, Zhou DD, Greenberg R, Cui XT (2011) Highly stable carbon nanotube doped poly (3, 4-ethylenedioxythiophene) for chronic neural stimulation. Biomaterials 32(24):5551–5557CrossRef
Zurück zum Zitat Martins PM, Ribeiro S, Ribeiro C, Sencadas V, Gomes AC, Gama FM, Lanceros-Mendez S (2013) Effect of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue engineering. RSC Adv 3(39):17938–17944CrossRef Martins PM, Ribeiro S, Ribeiro C, Sencadas V, Gomes AC, Gama FM, Lanceros-Mendez S (2013) Effect of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue engineering. RSC Adv 3(39):17938–17944CrossRef
Zurück zum Zitat Memberg WD, Stage TG, Kirsch RF (2014) A fully implanted intramuscular bipolar Myoelectric signal recording electrode. Neuromodulation 17(8):794–799CrossRef Memberg WD, Stage TG, Kirsch RF (2014) A fully implanted intramuscular bipolar Myoelectric signal recording electrode. Neuromodulation 17(8):794–799CrossRef
Zurück zum Zitat Metz S, Bertsch A, Bertrand D, Renaud P (2004) Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity. Biosens Bioelectron 19(10):1309–1318CrossRef Metz S, Bertsch A, Bertrand D, Renaud P (2004) Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity. Biosens Bioelectron 19(10):1309–1318CrossRef
Zurück zum Zitat Midrio M (2006) The denervated muscle: facts and hypotheses. A historical review. Eur J Appl Physiol 98(1):1–21CrossRef Midrio M (2006) The denervated muscle: facts and hypotheses. A historical review. Eur J Appl Physiol 98(1):1–21CrossRef
Zurück zum Zitat Mitch WE, Goldberg AL (1996) Mechanisms of disease: mechanisms of muscle wasting: the role of the ubiquitin-proteasome pathway. New Engl J Med 335(25):1897–1905CrossRef Mitch WE, Goldberg AL (1996) Mechanisms of disease: mechanisms of muscle wasting: the role of the ubiquitin-proteasome pathway. New Engl J Med 335(25):1897–1905CrossRef
Zurück zum Zitat Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 10(3):229CrossRef Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 10(3):229CrossRef
Zurück zum Zitat Ortiz-Catalan M, Branemark R, Hakansson B, Delbeke J (2012) On the viability of implantable electrodes for the natural control of artificial limbs: review and discussion. Biomed Eng Online 11(1):33CrossRef Ortiz-Catalan M, Branemark R, Hakansson B, Delbeke J (2012) On the viability of implantable electrodes for the natural control of artificial limbs: review and discussion. Biomed Eng Online 11(1):33CrossRef
Zurück zum Zitat Park SY, Park J, Sim SH, Sung MG, Kim KS, Hong BH, Hong S (2011) Enhanced differentiation of human neural stem cells into neurons on Graphene. Adv Mater 23(36),H263–H267CrossRef Park SY, Park J, Sim SH, Sung MG, Kim KS, Hong BH, Hong S (2011) Enhanced differentiation of human neural stem cells into neurons on Graphene. Adv Mater 23(36),H263–H267CrossRef
Zurück zum Zitat Plesse C, Vidal F, Teyssié D, Chevrot C (2010) Conducting polymer artificial muscle fibres: toward an open air linear actuation. Chem Commun 46(17):2910–2912CrossRef Plesse C, Vidal F, Teyssié D, Chevrot C (2010) Conducting polymer artificial muscle fibres: toward an open air linear actuation. Chem Commun 46(17):2910–2912CrossRef
Zurück zum Zitat Pongrácz ZF, Márton G, Bérces Z, Ulbert I, Fürjes P (2013) Deep-brain silicon multielectrodes for simultaneous in vivo neural recording and drug delivery. Sensor Actuat B-Chem 189:97–105CrossRef Pongrácz ZF, Márton G, Bérces Z, Ulbert I, Fürjes P (2013) Deep-brain silicon multielectrodes for simultaneous in vivo neural recording and drug delivery. Sensor Actuat B-Chem 189:97–105CrossRef
Zurück zum Zitat Poole-Warren L, Lovell N, Baek S, Green R (2010) Development of bioactive conducting polymers for neural interfaces. Expert Rev Med Devices 7(1):35–49CrossRef Poole-Warren L, Lovell N, Baek S, Green R (2010) Development of bioactive conducting polymers for neural interfaces. Expert Rev Med Devices 7(1):35–49CrossRef
Zurück zum Zitat Quigley F, Razal JM, Kita M, Jalili R, Gelmi A, Penington A, Ovalle-Robles R, Baughman RH, Clark GM, Wallace GG (2012) Electrical stimulation of myoblast proliferation and differentiation on aligned nanostructured conductive polymer platforms. Adv Healthc Mater 1(6):801–808CrossRef Quigley F, Razal JM, Kita M, Jalili R, Gelmi A, Penington A, Ovalle-Robles R, Baughman RH, Clark GM, Wallace GG (2012) Electrical stimulation of myoblast proliferation and differentiation on aligned nanostructured conductive polymer platforms. Adv Healthc Mater 1(6):801–808CrossRef
Zurück zum Zitat Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, Freed LE, Vunjak-Novakovic G (2004) From the cover:functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A 52:18129–18134CrossRef Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, Freed LE, Vunjak-Novakovic G (2004) From the cover:functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A 52:18129–18134CrossRef
Zurück zum Zitat Receveur RAM, Lindemans FW, de Rooij NF (2007) Microsystem technologies for implantable applications. J Micromech Microeng 17(5):R50–R80CrossRef Receveur RAM, Lindemans FW, de Rooij NF (2007) Microsystem technologies for implantable applications. J Micromech Microeng 17(5):R50–R80CrossRef
Zurück zum Zitat Robblee LS, Mchardy J, Agnew WF, Bullara LA (1983) Electrical stimulation with pt electrodes. Vii. Dissolution of pt electrodes during electrical stimulation of the cat cerebral cortex. J Neurosci Meth 9(4):301–308CrossRef Robblee LS, Mchardy J, Agnew WF, Bullara LA (1983) Electrical stimulation with pt electrodes. Vii. Dissolution of pt electrodes during electrical stimulation of the cat cerebral cortex. J Neurosci Meth 9(4):301–308CrossRef
Zurück zum Zitat Rui YF, Liu JQ, Wang YJ, Yang CS (2011) Parylene-based implantable pt-black coated flexible 3-D hemispherical microelectrode arrays for improved neural interfaces. Microsyst Technol 17(3):437–442CrossRef Rui YF, Liu JQ, Wang YJ, Yang CS (2011) Parylene-based implantable pt-black coated flexible 3-D hemispherical microelectrode arrays for improved neural interfaces. Microsyst Technol 17(3):437–442CrossRef
Zurück zum Zitat Rui YF, Liu JQ, Yang B, Li KY, Yang CS (2012) Parylene-based implantable platinum-black coated wire microelectrode for orbicularis oculi muscle electrical stimulation. Biomed Microdevices 14(2):367–373CrossRef Rui YF, Liu JQ, Yang B, Li KY, Yang CS (2012) Parylene-based implantable platinum-black coated wire microelectrode for orbicularis oculi muscle electrical stimulation. Biomed Microdevices 14(2):367–373CrossRef
Zurück zum Zitat Simon T, Kurup S, Larsson KC, Hori R, Tybrandt K, Goiny M, Jager EW, Berggren M, Canlon B, Richter-Dahlfors A (2009) Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function. Nat Mater 8(9):742–746CrossRef Simon T, Kurup S, Larsson KC, Hori R, Tybrandt K, Goiny M, Jager EW, Berggren M, Canlon B, Richter-Dahlfors A (2009) Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function. Nat Mater 8(9):742–746CrossRef
Zurück zum Zitat Svennersten K, Berggren M, Richter-Dahlfors A, Jager EWH (2011) Mechanical stimulation of epithelial cells using polypyrrole microactuators. Lab Chip 11(19):3287–3293CrossRef Svennersten K, Berggren M, Richter-Dahlfors A, Jager EWH (2011) Mechanical stimulation of epithelial cells using polypyrrole microactuators. Lab Chip 11(19):3287–3293CrossRef
Zurück zum Zitat Takeuchi S, Ziegler D, Yoshida Y, Mabuchi K, Suzuki T (2005) Parylene flexible neural probes integrated with microfluidic channels. Lab Chip 5(5):519–523CrossRef Takeuchi S, Ziegler D, Yoshida Y, Mabuchi K, Suzuki T (2005) Parylene flexible neural probes integrated with microfluidic channels. Lab Chip 5(5):519–523CrossRef
Zurück zum Zitat Tandon N, Cannizzaro C, Chao PHG, Maidhof R, Marsano A, Au HTH, Radisic M, Vunjak-Novakovic G (2009) Electrical stimulation systems for cardiac tissue engineering. Nat Protoc 4(2):155–173CrossRef Tandon N, Cannizzaro C, Chao PHG, Maidhof R, Marsano A, Au HTH, Radisic M, Vunjak-Novakovic G (2009) Electrical stimulation systems for cardiac tissue engineering. Nat Protoc 4(2):155–173CrossRef
Zurück zum Zitat Thomas CK, Zaidner EY, Calancie B, Broton JG, Bigland-Ritchie BR (1997) Muscle weakness, paralysis, and atrophy after human cervical spinal cord injury. Exp Neurol 148(2):414–423CrossRef Thomas CK, Zaidner EY, Calancie B, Broton JG, Bigland-Ritchie BR (1997) Muscle weakness, paralysis, and atrophy after human cervical spinal cord injury. Exp Neurol 148(2):414–423CrossRef
Zurück zum Zitat Tian HC, Liu JQ, Du JC, Kang XY, Zhang C, Yang B, Chen X, Yang CS (2014a) Flexible intramuscular micro tube electrode combining electrical and chemical Interface. IEEE Eng Med Biol:6949–6952 Tian HC, Liu JQ, Du JC, Kang XY, Zhang C, Yang B, Chen X, Yang CS (2014a) Flexible intramuscular micro tube electrode combining electrical and chemical Interface. IEEE Eng Med Biol:6949–6952
Zurück zum Zitat Tian HC, Liu JQ, Wei DX, Kang XY, Zhang C, Du JC, Yang B, Chen X, Zhu HY, NuLi YN, Yang CS (2014b) Graphene oxide doped conducting polymer nanocomposite film for electrode-tissue interface. Biomaterials 35(7):2120–2129CrossRef Tian HC, Liu JQ, Wei DX, Kang XY, Zhang C, Du JC, Yang B, Chen X, Zhu HY, NuLi YN, Yang CS (2014b) Graphene oxide doped conducting polymer nanocomposite film for electrode-tissue interface. Biomaterials 35(7):2120–2129CrossRef
Zurück zum Zitat Tian HC, Liu JQ, Kang XY, Wei DX, Zhang C, Du JC, Yang B, Chen X, Yang CS (2014c) Biotic and abiotic molecule dopants determining the electrochemical performance, stability and fibroblast behavior of conducting polymer for tissue interface. RSC Adv 4(88):47461–47471CrossRef Tian HC, Liu JQ, Kang XY, Wei DX, Zhang C, Du JC, Yang B, Chen X, Yang CS (2014c) Biotic and abiotic molecule dopants determining the electrochemical performance, stability and fibroblast behavior of conducting polymer for tissue interface. RSC Adv 4(88):47461–47471CrossRef
Zurück zum Zitat Tian HC, Liu JQ, Kang XY, Wei DX, Zhang C, Du JC, Yang B, Chen X, Yang CS (2014d) Poly(3,4-ethylenedioxythiophene)/Graphene oxide composite coating for electrode-tissue Interface. IEEE Eng Med Biol:1571–1574 Tian HC, Liu JQ, Kang XY, Wei DX, Zhang C, Du JC, Yang B, Chen X, Yang CS (2014d) Poly(3,4-ethylenedioxythiophene)/Graphene oxide composite coating for electrode-tissue Interface. IEEE Eng Med Biol:1571–1574
Zurück zum Zitat Tian HC, Liu JQ, Kang XY, He Q, Yang B, Chen X, Yang CS (2015) Flexible multi-channel microelectrode with fluidic paths for intramuscular stimulation and recording. Sensor Actuat A-Phys 228:28–39CrossRef Tian HC, Liu JQ, Kang XY, He Q, Yang B, Chen X, Yang CS (2015) Flexible multi-channel microelectrode with fluidic paths for intramuscular stimulation and recording. Sensor Actuat A-Phys 228:28–39CrossRef
Zurück zum Zitat Vallejo-Giraldo AK, Biggs MJP (2014) Biofunctionalisation of electrically conducting polymers. Drug Discov Today 19(1):88–94CrossRef Vallejo-Giraldo AK, Biggs MJP (2014) Biofunctionalisation of electrically conducting polymers. Drug Discov Today 19(1):88–94CrossRef
Zurück zum Zitat Wang MH, Nikaido K, Kim Y, Ji BW, Tian HC, Kang XY, Yang CS, Yang B, Chen X, Wang XL, Zhang Y, Liu JQ (2017) Flexible cylindrical neural probe with graphene enchenced conductiive polymer for multi-mode BCI applications, MEMS 2017, Las Vegas, 22–26 Jan Wang MH, Nikaido K, Kim Y, Ji BW, Tian HC, Kang XY, Yang CS, Yang B, Chen X, Wang XL, Zhang Y, Liu JQ (2017) Flexible cylindrical neural probe with graphene enchenced conductiive polymer for multi-mode BCI applications, MEMS 2017, Las Vegas, 22–26 Jan
Zurück zum Zitat Warden MR, Cardin JA, Deisseroth K (2014) Optical neural interfaces. Annu Rev Biomed Eng 16(16):103–129CrossRef Warden MR, Cardin JA, Deisseroth K (2014) Optical neural interfaces. Annu Rev Biomed Eng 16(16):103–129CrossRef
Zurück zum Zitat Wells J, Kao C, Mariappan K, Albea J, Jansen ED, Konrad P, Mahadevan-Jansen A (2005) Optical stimulation of neural tissue in vivo. Opt Lett 30(5):504–506CrossRef Wells J, Kao C, Mariappan K, Albea J, Jansen ED, Konrad P, Mahadevan-Jansen A (2005) Optical stimulation of neural tissue in vivo. Opt Lett 30(5):504–506CrossRef
Zurück zum Zitat Wise KD, Sodagar AM, Yao Y, Gulari MN, Perlin GE, Najafi K (2008) Microelectrodes, microelectronics, and implantable neural microsystems. Proc IEEE 96(7):1184–1202CrossRef Wise KD, Sodagar AM, Yao Y, Gulari MN, Perlin GE, Najafi K (2008) Microelectrodes, microelectronics, and implantable neural microsystems. Proc IEEE 96(7):1184–1202CrossRef
Zurück zum Zitat Yang SY, Kim BN, Zakhidov AA, Taylor PG, Lee JK, Ober CK, Lindau M, Malliaras GG (2011) Detection of transmitter release from single living cells using conducting polymer microelectrodes. Adv Mater 23(24):H184–H188CrossRef Yang SY, Kim BN, Zakhidov AA, Taylor PG, Lee JK, Ober CK, Lindau M, Malliaras GG (2011) Detection of transmitter release from single living cells using conducting polymer microelectrodes. Adv Mater 23(24):H184–H188CrossRef
Zurück zum Zitat Yang Z, Gao RG, Hu NT, Chai J, Cheng YW, Zhang LY, Wei H, Kong ESW, Zhang YF (2012) The prospective two-dimensional Graphene Nanosheets: preparation, Functionalization, and applications. Nano-Micro Lett 4(1):1–9CrossRef Yang Z, Gao RG, Hu NT, Chai J, Cheng YW, Zhang LY, Wei H, Kong ESW, Zhang YF (2012) The prospective two-dimensional Graphene Nanosheets: preparation, Functionalization, and applications. Nano-Micro Lett 4(1):1–9CrossRef
Zurück zum Zitat Yang Z, Zhang Y, Itoh T, Maeda R (2014) Flexible implantable microtemperature sensor fabricated on polymer capillary by programmable UV lithography with multilayer alignment for biomedical applications. J Microelectromech Syst 20:21–29CrossRef Yang Z, Zhang Y, Itoh T, Maeda R (2014) Flexible implantable microtemperature sensor fabricated on polymer capillary by programmable UV lithography with multilayer alignment for biomedical applications. J Microelectromech Syst 20:21–29CrossRef
Zurück zum Zitat Yoon H, Jang J (2009) Conducting-polymer Nanomaterials for high-performance sensor applications: issues and challenges. Adv Funct Mater 19(10):1567–1576CrossRef Yoon H, Jang J (2009) Conducting-polymer Nanomaterials for high-performance sensor applications: issues and challenges. Adv Funct Mater 19(10):1567–1576CrossRef
Zurück zum Zitat Yoshida K, Farina D, Akay M, Jensen W (2010) Multichannel Intraneural and intramuscular techniques for multiunit recording and use in active prostheses. Proc IEEE 98(3):432–449CrossRef Yoshida K, Farina D, Akay M, Jensen W (2010) Multichannel Intraneural and intramuscular techniques for multiunit recording and use in active prostheses. Proc IEEE 98(3):432–449CrossRef
Zurück zum Zitat Yu L, Wu H, Wu B, Wang Z, Cao H, Fu C, Jia N (2014) Magnetic Fe3O4-reduced graphene oxide nanocomposites-based electrochemical biosensing. Nano-Micro Lett 6(3):258–267CrossRef Yu L, Wu H, Wu B, Wang Z, Cao H, Fu C, Jia N (2014) Magnetic Fe3O4-reduced graphene oxide nanocomposites-based electrochemical biosensing. Nano-Micro Lett 6(3):258–267CrossRef
Zurück zum Zitat Zhang AMA, Adamantidis A, De LL, Deisseroth K (2007) Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8(8):577CrossRef Zhang AMA, Adamantidis A, De LL, Deisseroth K (2007) Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8(8):577CrossRef
Zurück zum Zitat Zhang Z, Li SW, Xue C, Yang S, Zhang W (2014) A bionic fish cilia median-low frequency three-dimensional piezoresistive MEMS vector hydrophone. Nano-Micro Lett 6(2):136–142CrossRef Zhang Z, Li SW, Xue C, Yang S, Zhang W (2014) A bionic fish cilia median-low frequency three-dimensional piezoresistive MEMS vector hydrophone. Nano-Micro Lett 6(2):136–142CrossRef
Zurück zum Zitat Zhao Y (2009) Investigating electrical field-affected skeletal myogenesis using a microfabricated electrode array. Sensor Actuat A-Phys 154(2):281–287CrossRef Zhao Y (2009) Investigating electrical field-affected skeletal myogenesis using a microfabricated electrode array. Sensor Actuat A-Phys 154(2):281–287CrossRef
Zurück zum Zitat Ziegler TS, Takeuchi S (2006) Fabrication of flexible neural probes with built-in microfluidic channels by thermal bonding of Parylene. j. Microelectromech Syst 15(6):1477–1482CrossRef Ziegler TS, Takeuchi S (2006) Fabrication of flexible neural probes with built-in microfluidic channels by thermal bonding of Parylene. j. Microelectromech Syst 15(6):1477–1482CrossRef
Metadaten
Titel
Electrodes for Nerve Recording and Stimulation
verfasst von
Jing-Quan Liu
Hong-Chang Tian
Xiao-Yang Kang
Ming-Hao Wang
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5945-2_43

Neuer Inhalt