Skip to main content
Erschienen in: Microsystem Technologies 2/2016

07.12.2015 | Review Paper

Microfabrication techniques for producing freestanding multi-dimensional microstructures

verfasst von: Hui Li

Erschienen in: Microsystem Technologies | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Freestanding microstructures are widely used as components in micro-electro-mechanical systems (MEMS) applications or its functions as a microdevice itself. Microfabrication techniques and materials were originally borrowed from the integrated circuit industry; but nowadays, various microfabrication techniques for producing multi-dimensional microstructures are developed with lots of available alternative materials. To obtain freestanding microstructures for assembling MEMS devices, sacrificial layer and release techniques are developed to release the fabricated microcomponents from substrate. This review presents a detailed description of current existing microfabrication and release techniques, fabrication structural and sacrificial material, and achieved multi-dimensional microstructures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agirregabiria M et al (2005) Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps. Lab Chip 5(5):545–552CrossRef Agirregabiria M et al (2005) Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps. Lab Chip 5(5):545–552CrossRef
Zurück zum Zitat Ahn CH, Kim YJ, Allen MG (1993) A planar variable reluctance magnetic micromotor with fully integrated stator and coils. Microelectromech Syst J 2(4):165–173CrossRef Ahn CH, Kim YJ, Allen MG (1993) A planar variable reluctance magnetic micromotor with fully integrated stator and coils. Microelectromech Syst J 2(4):165–173CrossRef
Zurück zum Zitat Alderman B et al (2001) Microfabrication of channels using an embedded mask in negative resist. J Micromech Microeng 11(6):703CrossRef Alderman B et al (2001) Microfabrication of channels using an embedded mask in negative resist. J Micromech Microeng 11(6):703CrossRef
Zurück zum Zitat Aracil C et al (2010) BETTS: bonding, exposing and transferring technique in SU-8 for microsystems fabrication. J Micromech Microeng 20(3):035008CrossRef Aracil C et al (2010) BETTS: bonding, exposing and transferring technique in SU-8 for microsystems fabrication. J Micromech Microeng 20(3):035008CrossRef
Zurück zum Zitat Auyeung R et al (2009) Laser decal transfer of freestanding microcantilevers and microbridges. Appl Phys A 97(3):513–519CrossRef Auyeung R et al (2009) Laser decal transfer of freestanding microcantilevers and microbridges. Appl Phys A 97(3):513–519CrossRef
Zurück zum Zitat Azad JB et al (2013) Release of MEMS devices with hard-baked polyimide sacrificial layer. In: SPIE advanced lithography. International Society for Optics and Photonics Azad JB et al (2013) Release of MEMS devices with hard-baked polyimide sacrificial layer. In: SPIE advanced lithography. International Society for Optics and Photonics
Zurück zum Zitat Backer E et al (1982) Production of separation-nozzle systems for uranium enrichment by a combination of X-ray lithography and galvanoplastics. Naturwissenschaften 69(11):520–523CrossRef Backer E et al (1982) Production of separation-nozzle systems for uranium enrichment by a combination of X-ray lithography and galvanoplastics. Naturwissenschaften 69(11):520–523CrossRef
Zurück zum Zitat Bagolini A et al (2002) Polyimide sacrificial layer and novel materials for post-processing surface micromachining. J Micromech Microeng 12(4):385CrossRef Bagolini A et al (2002) Polyimide sacrificial layer and novel materials for post-processing surface micromachining. J Micromech Microeng 12(4):385CrossRef
Zurück zum Zitat Bell DJ et al (2007) Flagella-like propulsion for microrobots using a nanocoil and a rotating electromagnetic field. In: ICRA Bell DJ et al (2007) Flagella-like propulsion for microrobots using a nanocoil and a rotating electromagnetic field. In: ICRA
Zurück zum Zitat Bogunovic L, Anselmetti D, Regtmeier J (2011) Photolithographic fabrication of arbitrarily shaped SU-8 microparticles without sacrificial release layers. J Micromech Microeng 21(2):027003CrossRef Bogunovic L, Anselmetti D, Regtmeier J (2011) Photolithographic fabrication of arbitrarily shaped SU-8 microparticles without sacrificial release layers. J Micromech Microeng 21(2):027003CrossRef
Zurück zum Zitat Bohl B et al (2005) Multi-layer SU-8 lift-off technology for microfluidic devices. J Micromech Microeng 15(6):1125CrossRef Bohl B et al (2005) Multi-layer SU-8 lift-off technology for microfluidic devices. J Micromech Microeng 15(6):1125CrossRef
Zurück zum Zitat Bruno Frazier A, Allen MG (1993) Metallic microstructures fabricated using photosensitive polyimide electroplating molds. Microelectromech Syst J 2(2):87–94CrossRef Bruno Frazier A, Allen MG (1993) Metallic microstructures fabricated using photosensitive polyimide electroplating molds. Microelectromech Syst J 2(2):87–94CrossRef
Zurück zum Zitat Ceyssens F, Puers R (2006) Creating multi-layered structures with freestanding parts in SU-8. J Micromech Microeng 16(6):S19CrossRef Ceyssens F, Puers R (2006) Creating multi-layered structures with freestanding parts in SU-8. J Micromech Microeng 16(6):S19CrossRef
Zurück zum Zitat Chiamori H et al (2008) Suspension of nanoparticles in SU-8: processing and characterization of nanocomposite polymers. Microelectron J 39(2):228–236CrossRef Chiamori H et al (2008) Suspension of nanoparticles in SU-8: processing and characterization of nanocomposite polymers. Microelectron J 39(2):228–236CrossRef
Zurück zum Zitat Choi S-O et al (2006) 3-D patterned microstructures using inclined UV exposure and metal transfer micromolding. In: Proceedings of the solid state sensors, actuators and microsystems workshop (Hilton Head, SC) Choi S-O et al (2006) 3-D patterned microstructures using inclined UV exposure and metal transfer micromolding. In: Proceedings of the solid state sensors, actuators and microsystems workshop (Hilton Head, SC)
Zurück zum Zitat Choi J-W et al (2009) Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography. Rapid Prototyp J 15(1):59–70CrossRef Choi J-W et al (2009) Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography. Rapid Prototyp J 15(1):59–70CrossRef
Zurück zum Zitat Chuang Y-J et al (2003) A novel fabrication method of embedded micro-channels by using SU-8 thick-film photoresists. Sens Actuators A 103(1):64–69MathSciNetCrossRef Chuang Y-J et al (2003) A novel fabrication method of embedded micro-channels by using SU-8 thick-film photoresists. Sens Actuators A 103(1):64–69MathSciNetCrossRef
Zurück zum Zitat da Silva LW, Kaviany M (2005) Fabrication and measured performance of a first-generation microthermoelectric cooler. Microelectromech Syst J 14(5):1110–1117CrossRef da Silva LW, Kaviany M (2005) Fabrication and measured performance of a first-generation microthermoelectric cooler. Microelectromech Syst J 14(5):1110–1117CrossRef
Zurück zum Zitat Del Campo A, Greiner C (2007) SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. J Micromech Microeng 17(6):R81CrossRef Del Campo A, Greiner C (2007) SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. J Micromech Microeng 17(6):R81CrossRef
Zurück zum Zitat Delille R et al (2006) Benchtop polymer MEMS. Microelectromech Syst J 15(5):1108–1120CrossRef Delille R et al (2006) Benchtop polymer MEMS. Microelectromech Syst J 15(5):1108–1120CrossRef
Zurück zum Zitat Deubel M et al (2004) Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater 3(7):444–447CrossRef Deubel M et al (2004) Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater 3(7):444–447CrossRef
Zurück zum Zitat DeVoe DL, Pisano AP (2001) Surface micromachined piezoelectric accelerometers (PiXLs). Microelectromech Syst J 10(2):180–186CrossRef DeVoe DL, Pisano AP (2001) Surface micromachined piezoelectric accelerometers (PiXLs). Microelectromech Syst J 10(2):180–186CrossRef
Zurück zum Zitat Fedder GK (2003) MEMS fabrication. In: 2013 IEEE international test conference (ITC). IEEE Computer Society Fedder GK (2003) MEMS fabrication. In: 2013 IEEE international test conference (ITC). IEEE Computer Society
Zurück zum Zitat Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23(5):22–36 Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23(5):22–36
Zurück zum Zitat Formanek F et al (2006) Selective electroless plating to fabricate complex three-dimensional metallic micro/nanostructures. Appl Phys Lett 88(8):083110CrossRef Formanek F et al (2006) Selective electroless plating to fabricate complex three-dimensional metallic micro/nanostructures. Appl Phys Lett 88(8):083110CrossRef
Zurück zum Zitat Foulds IG, Johnstone R, Parameswaran M (2008) Polydimethylglutarimide (PMGI) as a sacrificial material for SU-8 surface-micromachining. J Micromech Microeng 18(7):075011CrossRef Foulds IG, Johnstone R, Parameswaran M (2008) Polydimethylglutarimide (PMGI) as a sacrificial material for SU-8 surface-micromachining. J Micromech Microeng 18(7):075011CrossRef
Zurück zum Zitat Genolet G, Lorenz H (2014) UV-LIGA: from development to commercialization. Micromachines 5(3):486–495CrossRef Genolet G, Lorenz H (2014) UV-LIGA: from development to commercialization. Micromachines 5(3):486–495CrossRef
Zurück zum Zitat Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9(6):2243–2245CrossRef Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9(6):2243–2245CrossRef
Zurück zum Zitat Hasan SA, Kavich DW, Dickerson JH (2009) Sacrificial layer electrophoretic deposition of free-standing multilayered nanoparticle films. Chem Commun 25:3723–3725CrossRef Hasan SA, Kavich DW, Dickerson JH (2009) Sacrificial layer electrophoretic deposition of free-standing multilayered nanoparticle films. Chem Commun 25:3723–3725CrossRef
Zurück zum Zitat Horade M, Sugiyama S (2010) Study on fabrication of 3-D microstructures by synchrotron radiation based on pixels exposed lithography. Microsyst Technol 16(8–9):1331–1338CrossRef Horade M, Sugiyama S (2010) Study on fabrication of 3-D microstructures by synchrotron radiation based on pixels exposed lithography. Microsyst Technol 16(8–9):1331–1338CrossRef
Zurück zum Zitat Hrapovic S et al (2003) New strategy for preparing thin gold films on modified glass surfaces by electroless deposition. Langmuir 19(9):3958–3965CrossRef Hrapovic S et al (2003) New strategy for preparing thin gold films on modified glass surfaces by electroless deposition. Langmuir 19(9):3958–3965CrossRef
Zurück zum Zitat Hull CW (1986) U.S. Patent No. 4,575,330. Washington, DC: U.S. Patent and Trademark Office Hull CW (1986) U.S. Patent No. 4,575,330. Washington, DC: U.S. Patent and Trademark Office
Zurück zum Zitat Imbaby MF, Jiang K (2009) Fabrication of free standing 316-L stainless steel–Al2O3 composite micro machine parts by soft moulding. Acta Mater 57(16):4751–4757CrossRef Imbaby MF, Jiang K (2009) Fabrication of free standing 316-L stainless steel–Al2O3 composite micro machine parts by soft moulding. Acta Mater 57(16):4751–4757CrossRef
Zurück zum Zitat Irving S (1967) a dry photoresist removal method. In: Journal of the Electrochemical Society, Electrochemical Soc Inc 10 South Main Street, Pennington, NJ 08534 Irving S (1967) a dry photoresist removal method. In: Journal of the Electrochemical Society, Electrochemical Soc Inc 10 South Main Street, Pennington, NJ 08534
Zurück zum Zitat Irving S (1971) Plasma oxidation process for removing photoresist films. Solid State Technol 14(6):47 Irving S (1971) Plasma oxidation process for removing photoresist films. Solid State Technol 14(6):47
Zurück zum Zitat Irving SM, Lemons KE, Bobos GE (1971) Gas plasma vapor etching process. US Patent 3,615,956 Irving SM, Lemons KE, Bobos GE (1971) Gas plasma vapor etching process. US Patent 3,615,956
Zurück zum Zitat Ito H (2005) Chemical amplification resists for microlithography. In: Microlithography. Molecular imprinting. Springer, pp 37–245 Ito H (2005) Chemical amplification resists for microlithography. In: Microlithography. Molecular imprinting. Springer, pp 37–245
Zurück zum Zitat Jaeger RC (2002) Lithography. Introduction to microelectronic fabrication. Prentice Hall, Upper Saddle River Jaeger RC (2002) Lithography. Introduction to microelectronic fabrication. Prentice Hall, Upper Saddle River
Zurück zum Zitat Jiguet S et al (2005) Conductive SU8 photoresist for microfabrication. Adv Funct Mater 15(9):1511–1516CrossRef Jiguet S et al (2005) Conductive SU8 photoresist for microfabrication. Adv Funct Mater 15(9):1511–1516CrossRef
Zurück zum Zitat Judy JW (2001) Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Mater Struct 10(6):1115CrossRef Judy JW (2001) Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Mater Struct 10(6):1115CrossRef
Zurück zum Zitat Kawata S et al (2001) Finer features for functional microdevices. Nature 412(6848):697–698CrossRef Kawata S et al (2001) Finer features for functional microdevices. Nature 412(6848):697–698CrossRef
Zurück zum Zitat Kim E, Xia Y, Whitesides GM (1996) Micromolding in capillaries: applications in materials science. J Am Chem Soc 118(24):5722–5731CrossRef Kim E, Xia Y, Whitesides GM (1996) Micromolding in capillaries: applications in materials science. J Am Chem Soc 118(24):5722–5731CrossRef
Zurück zum Zitat Ko WH (2007) Trends and frontiers of MEMS. Sens Actuators A 136(1):62–67CrossRef Ko WH (2007) Trends and frontiers of MEMS. Sens Actuators A 136(1):62–67CrossRef
Zurück zum Zitat LaVan DA, George PM, Langer R (2003) Simple, three-dimensional microfabrication of electrodeposited structures. Angew Chem 115(11):1300–1303CrossRef LaVan DA, George PM, Langer R (2003) Simple, three-dimensional microfabrication of electrodeposited structures. Angew Chem 115(11):1300–1303CrossRef
Zurück zum Zitat Lee JS, Lee SS (2009) Fabrication of a freestanding micro mechanical structure using electroplated thick metal with a HAR SU-8 mold. Microsyst Technol 15(2):287–296CrossRef Lee JS, Lee SS (2009) Fabrication of a freestanding micro mechanical structure using electroplated thick metal with a HAR SU-8 mold. Microsyst Technol 15(2):287–296CrossRef
Zurück zum Zitat Lee JA et al (2008a) Fabrication and characterization of freestanding 3D carbon microstructures using multi-exposures and resist pyrolysis. J Micromech Microeng 18(3):035012CrossRef Lee JA et al (2008a) Fabrication and characterization of freestanding 3D carbon microstructures using multi-exposures and resist pyrolysis. J Micromech Microeng 18(3):035012CrossRef
Zurück zum Zitat Lee K-S et al (2008b) Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog Polym Sci 33(6):631–681CrossRef Lee K-S et al (2008b) Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog Polym Sci 33(6):631–681CrossRef
Zurück zum Zitat Lee K et al (2010) Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle. Adv Mater 22(4):483–486CrossRef Lee K et al (2010) Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle. Adv Mater 22(4):483–486CrossRef
Zurück zum Zitat Li H (2014) Fabrication of magnetic two-dimensional and three-dimensional microstructures for microfluidics and microrobotics applications. Dissertations & Theses @ University of Kentucky; ProQuest Dissertations & Theses Global Li H (2014) Fabrication of magnetic two-dimensional and three-dimensional microstructures for microfluidics and microrobotics applications. Dissertations & Theses @ University of Kentucky; ProQuest Dissertations & Theses Global
Zurück zum Zitat Lorenz H, Laudon M, Renaud P (1998) Mechanical characterization of a new high-aspect-ratio near UV-photoresist. Microelectron Eng 41:371–374CrossRef Lorenz H, Laudon M, Renaud P (1998) Mechanical characterization of a new high-aspect-ratio near UV-photoresist. Microelectron Eng 41:371–374CrossRef
Zurück zum Zitat Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization. CRC Press Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization. CRC Press
Zurück zum Zitat Maruo S, Nakamura O, Kawata S (1997) Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett 22(2):132–134CrossRef Maruo S, Nakamura O, Kawata S (1997) Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett 22(2):132–134CrossRef
Zurück zum Zitat Milton GE (2006) An automated micro-grinding system for the fabrication of precision micro-scale profiles. Thesis and dissertations-mechanical and manufacturing engineering, The University of New South Wales Milton GE (2006) An automated micro-grinding system for the fabrication of precision micro-scale profiles. Thesis and dissertations-mechanical and manufacturing engineering, The University of New South Wales
Zurück zum Zitat Mimoun B et al (2013) Residue-free plasma etching of polyimide coatings for small pitch vias with improved step coverage. J Vac Sci Technol, B 31(2):021201CrossRef Mimoun B et al (2013) Residue-free plasma etching of polyimide coatings for small pitch vias with improved step coverage. J Vac Sci Technol, B 31(2):021201CrossRef
Zurück zum Zitat Moore GE (1965) Cramming more components onto integrated circuits. McGraw-Hill, New York Moore GE (1965) Cramming more components onto integrated circuits. McGraw-Hill, New York
Zurück zum Zitat Nathanson H, Wickstrom R (1965) A resonant-gate silicon surface transistor with high-Q band-pass properties. Appl Phys Lett 7(4):84–86CrossRef Nathanson H, Wickstrom R (1965) A resonant-gate silicon surface transistor with high-Q band-pass properties. Appl Phys Lett 7(4):84–86CrossRef
Zurück zum Zitat Nathanson HC et al (1967) The resonant gate transistor. Electron Devices IEEE Trans 14(3):117–133CrossRef Nathanson HC et al (1967) The resonant gate transistor. Electron Devices IEEE Trans 14(3):117–133CrossRef
Zurück zum Zitat Nayak AP, Islam MS, Logeeswaran VJ (2012a) Wet Etching. In: Bhushan B (ed) Encyclopedia of Nanotechnology. Springer, Netherlands, pp 2829–2830 Nayak AP, Islam MS, Logeeswaran VJ (2012a) Wet Etching. In: Bhushan B (ed) Encyclopedia of Nanotechnology. Springer, Netherlands, pp 2829–2830
Zurück zum Zitat Nayak AP, Islam MS, Logeeswaran VJ (2012b) Dry Etching. In: Bhushan B (ed) Encyclopedia of Nanotechnology. Springer, Netherlands, pp 587–589 Nayak AP, Islam MS, Logeeswaran VJ (2012b) Dry Etching. In: Bhushan B (ed) Encyclopedia of Nanotechnology. Springer, Netherlands, pp 587–589
Zurück zum Zitat Pesántez D, Amponsah E, Gadre A (2008) Wet release of multipolymeric structures with a nanoscale release layer. Sens Actuators B: Chem 132(2):426–430CrossRef Pesántez D, Amponsah E, Gadre A (2008) Wet release of multipolymeric structures with a nanoscale release layer. Sens Actuators B: Chem 132(2):426–430CrossRef
Zurück zum Zitat Peyer KE, Zhang L, Nelson BJ (2013) Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5(4):1259–1272CrossRef Peyer KE, Zhang L, Nelson BJ (2013) Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5(4):1259–1272CrossRef
Zurück zum Zitat Preechaburana P, Filippini D (2011) Fabrication of monolithic 3D micro-systems. Lab Chip 11(2):288–295CrossRef Preechaburana P, Filippini D (2011) Fabrication of monolithic 3D micro-systems. Lab Chip 11(2):288–295CrossRef
Zurück zum Zitat Psoma SD, Jenkins DW (2005) Comparative assessment of different sacrificial materials for releasing SU-8 structures. Rev Adv Mater Sci 10(2):149–155 Psoma SD, Jenkins DW (2005) Comparative assessment of different sacrificial materials for releasing SU-8 structures. Rev Adv Mater Sci 10(2):149–155
Zurück zum Zitat Radjenović B, Radmilović-Radjenović M, Mitrić M (2010) Level set approach to anisotropic wet etching of silicon. Sensors 10(5):4950–4967CrossRef Radjenović B, Radmilović-Radjenović M, Mitrić M (2010) Level set approach to anisotropic wet etching of silicon. Sensors 10(5):4950–4967CrossRef
Zurück zum Zitat Rahman MM et al (2014) 3-D hemispherical micro glass-shell resonator with integrated electrostatic excitation and capacitive detection transducers. In: 2014 IEEE 27th international conference on micro electro mechanical systems (MEMS). IEEE Rahman MM et al (2014) 3-D hemispherical micro glass-shell resonator with integrated electrostatic excitation and capacitive detection transducers. In: 2014 IEEE 27th international conference on micro electro mechanical systems (MEMS). IEEE
Zurück zum Zitat Rajagopalan J, Saif MTA (2013) Fabrication of freestanding 1-D PDMS microstructures using capillary micromolding. Microelectromech Syst J 22:992–994CrossRef Rajagopalan J, Saif MTA (2013) Fabrication of freestanding 1-D PDMS microstructures using capillary micromolding. Microelectromech Syst J 22:992–994CrossRef
Zurück zum Zitat Saile V (2009) LIGA and its applications, vol 7. Wiley Saile V (2009) LIGA and its applications, vol 7. Wiley
Zurück zum Zitat Seidemann V et al (2002) SU8-micromechanical structures with in situ fabricated movable parts. Microsyst Technol 8(4–5):348–350CrossRef Seidemann V et al (2002) SU8-micromechanical structures with in situ fabricated movable parts. Microsyst Technol 8(4–5):348–350CrossRef
Zurück zum Zitat Seol SK et al (2007) Fabrication of freestanding metallic micro hollow tubes by template-free localized electrochemical deposition. Electrochem Solid-State Lett 10(5):C44–C46CrossRef Seol SK et al (2007) Fabrication of freestanding metallic micro hollow tubes by template-free localized electrochemical deposition. Electrochem Solid-State Lett 10(5):C44–C46CrossRef
Zurück zum Zitat Shikida M et al (2010) The mechanism of selective corrugation removal by KOH anisotropic wet etching. J Micromech Microeng 20(1):015038CrossRef Shikida M et al (2010) The mechanism of selective corrugation removal by KOH anisotropic wet etching. J Micromech Microeng 20(1):015038CrossRef
Zurück zum Zitat Smoukov SK et al (2005) Freestanding three-dimensional copper foils prepared by electroless deposition on micropatterned gels. Adv Mater 17(6):751–755CrossRef Smoukov SK et al (2005) Freestanding three-dimensional copper foils prepared by electroless deposition on micropatterned gels. Adv Mater 17(6):751–755CrossRef
Zurück zum Zitat Soman P et al (2013) Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels. Biotechnol Bioeng 110(11):3038–3047CrossRef Soman P et al (2013) Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels. Biotechnol Bioeng 110(11):3038–3047CrossRef
Zurück zum Zitat Song I-H, Ajmera PK (2003) Use of a photoresist sacrificial layer with SU-8 electroplating mould in MEMS fabrication. J Micromech Microeng 13(6):816CrossRef Song I-H, Ajmera PK (2003) Use of a photoresist sacrificial layer with SU-8 electroplating mould in MEMS fabrication. J Micromech Microeng 13(6):816CrossRef
Zurück zum Zitat Suh KY, Lee HH (2002) Capillary force lithography: large-area patterning, self-organization, and anisotropic dewetting. Adv Funct Mater 12(6–7):405–413CrossRef Suh KY, Lee HH (2002) Capillary force lithography: large-area patterning, self-organization, and anisotropic dewetting. Adv Funct Mater 12(6–7):405–413CrossRef
Zurück zum Zitat Suh KY, Kim YS, Lee HH (2001) Capillary force lithography. Adv Mater 13(18):1386CrossRef Suh KY, Kim YS, Lee HH (2001) Capillary force lithography. Adv Mater 13(18):1386CrossRef
Zurück zum Zitat Sun H-B, Kawata S (2004) Two-photon photopolymerization and 3D lithographic microfabrication. In: NMR, 3D analysis, photopolymerization. Springer, pp 169–273 Sun H-B, Kawata S (2004) Two-photon photopolymerization and 3D lithographic microfabrication. In: NMR, 3D analysis, photopolymerization. Springer, pp 169–273
Zurück zum Zitat Tao SL, Popat K, Desai TA (2007) Off-wafer fabrication and surface modification of asymmetric 3D SU-8 microparticles. Nat Protoc 1(6):3153–3158CrossRef Tao SL, Popat K, Desai TA (2007) Off-wafer fabrication and surface modification of asymmetric 3D SU-8 microparticles. Nat Protoc 1(6):3153–3158CrossRef
Zurück zum Zitat Tang Y, Loh HT, Fuh JYH, Lu L, Wong YS, Thian SCH (2005). Micro-layeredphotolithography for Micro-Fabrication and Micro-molding. Innovation in Manufacturing Systems and Technology (IMST) Tang Y, Loh HT, Fuh JYH, Lu L, Wong YS, Thian SCH (2005). Micro-layeredphotolithography for Micro-Fabrication and Micro-molding. Innovation in Manufacturing Systems and Technology (IMST)
Zurück zum Zitat Teh W et al (2005) Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography. J Appl Phys 97(5):054907CrossRef Teh W et al (2005) Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography. J Appl Phys 97(5):054907CrossRef
Zurück zum Zitat Thian S et al (2006) Micro-rapid-prototyping via multi-layered photo-lithography. Int J Adv Manuf Technol 29(9–10):1026–1032CrossRef Thian S et al (2006) Micro-rapid-prototyping via multi-layered photo-lithography. Int J Adv Manuf Technol 29(9–10):1026–1032CrossRef
Zurück zum Zitat Tuomikoski S, Franssila S (2005) Free-standing SU-8 microfluidic chips by adhesive bonding and release etching. Sens Actuators A 120(2):408–415CrossRef Tuomikoski S, Franssila S (2005) Free-standing SU-8 microfluidic chips by adhesive bonding and release etching. Sens Actuators A 120(2):408–415CrossRef
Zurück zum Zitat Turner R et al (2003) Tapered LIGA HARMs. J Micromech Microeng 13(3):367CrossRef Turner R et al (2003) Tapered LIGA HARMs. J Micromech Microeng 13(3):367CrossRef
Zurück zum Zitat Vittorio SA (2001) Microelectromechanical Systems (MEMS). Cambridge Scientific Abstracts, Oct 1–11 Vittorio SA (2001) Microelectromechanical Systems (MEMS). Cambridge Scientific Abstracts, Oct 1–11
Zurück zum Zitat Waits CM, Modafe A, Ghodssi R (2003) Investigation of gray-scale technology for large area 3D silicon MEMS structures. J Micromech Microeng 13(2):170CrossRef Waits CM, Modafe A, Ghodssi R (2003) Investigation of gray-scale technology for large area 3D silicon MEMS structures. J Micromech Microeng 13(2):170CrossRef
Zurück zum Zitat Waits C et al (2005) Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching. Sens Actuators A 119(1):245–253CrossRef Waits C et al (2005) Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching. Sens Actuators A 119(1):245–253CrossRef
Zurück zum Zitat Wang X et al (2008) Free-standing SU-8 subwavelength gratings fabricated by UV curing imprint. Microelectron Eng 85(5):910–913CrossRef Wang X et al (2008) Free-standing SU-8 subwavelength gratings fabricated by UV curing imprint. Microelectron Eng 85(5):910–913CrossRef
Zurück zum Zitat Wu S, Serbin J, Gu M (2006) Two-photon polymerisation for three-dimensional micro-fabrication. J Photochem Photobiol A 181(1):1–11CrossRef Wu S, Serbin J, Gu M (2006) Two-photon polymerisation for three-dimensional micro-fabrication. J Photochem Photobiol A 181(1):1–11CrossRef
Zurück zum Zitat Zavracky PM, Majumder S, McGruer NE (1997) Micromechanical switches fabricated using nickel surface micromachining. Microelectromech Syst J 6(1):3–9CrossRef Zavracky PM, Majumder S, McGruer NE (1997) Micromechanical switches fabricated using nickel surface micromachining. Microelectromech Syst J 6(1):3–9CrossRef
Zurück zum Zitat Zevenbergen MA et al (2009) Fast electron-transfer kinetics probed in nanofluidic channels. J Am Chem Soc 131(32):11471–11477CrossRef Zevenbergen MA et al (2009) Fast electron-transfer kinetics probed in nanofluidic channels. J Am Chem Soc 131(32):11471–11477CrossRef
Zurück zum Zitat Zhang J (2002) LIGA mold insert fabrication using SU-8 photoresist in Mechanical Engineering Department, Louisiana State University, Baton Rouge Zhang J (2002) LIGA mold insert fabrication using SU-8 photoresist in Mechanical Engineering Department, Louisiana State University, Baton Rouge
Zurück zum Zitat Zhang X, Jiang X, Sun C (1999) Micro-stereolithography of polymeric and ceramic microstructures. Sens Actuators A 77(2):149–156CrossRef Zhang X, Jiang X, Sun C (1999) Micro-stereolithography of polymeric and ceramic microstructures. Sens Actuators A 77(2):149–156CrossRef
Zurück zum Zitat Zhang D, Su B, Button TW (2003a) Microfabrication of three-dimensional, free-standing ceramic MEMS components by soft moulding. Adv Eng Mater 5(12):924–927CrossRef Zhang D, Su B, Button TW (2003a) Microfabrication of three-dimensional, free-standing ceramic MEMS components by soft moulding. Adv Eng Mater 5(12):924–927CrossRef
Zurück zum Zitat Zhang N et al (2003b) Chemical bonding of multiwalled carbon nanotubes to SU-8 via ultrasonic irradiation. Smart Mater Struct 12(2):260CrossRef Zhang N et al (2003b) Chemical bonding of multiwalled carbon nanotubes to SU-8 via ultrasonic irradiation. Smart Mater Struct 12(2):260CrossRef
Zurück zum Zitat Zhang L et al (2009a) Characterizing the swimming properties of artificial bacterial flagella. Nano Lett 9(10):3663–3667CrossRef Zhang L et al (2009a) Characterizing the swimming properties of artificial bacterial flagella. Nano Lett 9(10):3663–3667CrossRef
Zurück zum Zitat Zhang L et al (2009b) Artificial bacterial flagella: fabrication and magnetic control. Appl Phys Lett 94(6):064107CrossRef Zhang L et al (2009b) Artificial bacterial flagella: fabrication and magnetic control. Appl Phys Lett 94(6):064107CrossRef
Zurück zum Zitat Zhou F et al (2003) Fabrication of positively patterned conducting polymer microstructures via one-step electrodeposition. Adv Mater 15(16):1367–1370CrossRef Zhou F et al (2003) Fabrication of positively patterned conducting polymer microstructures via one-step electrodeposition. Adv Mater 15(16):1367–1370CrossRef
Zurück zum Zitat Zhu Z, Wei X, Jiang K (2007) A net-shape fabrication process of alumina micro-components using a soft lithography technique. J Micromech Microeng 17(2):193CrossRef Zhu Z, Wei X, Jiang K (2007) A net-shape fabrication process of alumina micro-components using a soft lithography technique. J Micromech Microeng 17(2):193CrossRef
Metadaten
Titel
Microfabrication techniques for producing freestanding multi-dimensional microstructures
verfasst von
Hui Li
Publikationsdatum
07.12.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 2/2016
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-015-2720-3

Weitere Artikel der Ausgabe 2/2016

Microsystem Technologies 2/2016 Zur Ausgabe

Neuer Inhalt