Skip to main content
Erschienen in: Physics of Metals and Metallography 13/2021

18.08.2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Microstructural Evolution and Grain Refinement in Gas Tungsten Constricted Arc (GTCA) Welds of Inconel 718 Alloy—Mechanism and Segregation Analysis

verfasst von: T. Sonar, V. Balasubramanian, S. Malarvizhi, T. Venkateswaran, D. Sivakumar

Erschienen in: Physics of Metals and Metallography | Ausgabe 13/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The magnetic arc constriction and current pulsing techniques were employed to control segregation of Nb and laves phase precipitation in the fusion zone of conventional gas tungsten arc (GTA) welded Inconel 718 alloy joints. In this paper, an emphasis was laid to understand the mechanism responsible for grain refinement in fusion zone microstructure and corresponding influence on laves phase evolution in interdendritic regions. The joints welded at an optimum level of heat input showed finer dendritic structure leading to the evolution of finer discrete laves phase in fusion zone. However, the arc constriction and current pulsing techniques were not effective at higher heat input levels. The welded joints were free from microfissuring in the heat affected zone (HAZ) though welded at high heat input, thus proving its advantages over the other variants of GTA welding process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Gordine, “Some problems in welding Inconel 718,” in Proceedings of the AWS Spring Meeting (San Francisco, 1971), pp. 480s–484s. J. Gordine, “Some problems in welding Inconel 718,” in Proceedings of the AWS Spring Meeting (San Francisco, 1971), pp. 480s–484s.
2.
Zurück zum Zitat K. Sivaprasad and S. G. S. Raman, “Influence of weld cooling rate, on microstructure and mechanical properties of alloy 718 weldments,” Metall. Mater. Trans. A 39, 2115–2127 (2008).CrossRef K. Sivaprasad and S. G. S. Raman, “Influence of weld cooling rate, on microstructure and mechanical properties of alloy 718 weldments,” Metall. Mater. Trans. A 39, 2115–2127 (2008).CrossRef
3.
Zurück zum Zitat M. C. Chaturvedi and Y. Han, “Strengthening mechanisms in Inconel 718 superalloy,” Met. Sci. 17, 145–149 (1983).CrossRef M. C. Chaturvedi and Y. Han, “Strengthening mechanisms in Inconel 718 superalloy,” Met. Sci. 17, 145–149 (1983).CrossRef
4.
Zurück zum Zitat M. Prager and C. S. Shira, Welding of Precipitation-Hardening Nickel-Base Alloys (Welding Research Council, New York, NY, 1968). M. Prager and C. S. Shira, Welding of Precipitation-Hardening Nickel-Base Alloys (Welding Research Council, New York, NY, 1968).
5.
Zurück zum Zitat J. N. Dupont, J. C. Lippold, and S. D. Kiser, Welding Metallurgy and Weldability of Nickel-Base Alloys (Wiley, Hoboken, NJ, 2009).CrossRef J. N. Dupont, J. C. Lippold, and S. D. Kiser, Welding Metallurgy and Weldability of Nickel-Base Alloys (Wiley, Hoboken, NJ, 2009).CrossRef
6.
Zurück zum Zitat C. H. Radhakrishna and K. Prasad Rao, “The formation and control of Laves phase in superalloy 718 welds,” J. Mater. Sci. 32, 1977–1984 (1997).CrossRef C. H. Radhakrishna and K. Prasad Rao, “The formation and control of Laves phase in superalloy 718 welds,” J. Mater. Sci. 32, 1977–1984 (1997).CrossRef
7.
Zurück zum Zitat G. D. J. Ram, A. V. Reddy, K. P. Rao, G. M. Reddy, and S. G. S. Raman, “Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds,” J. Mater. Proc. Technol. 167, 73–82 (2005).CrossRef G. D. J. Ram, A. V. Reddy, K. P. Rao, G. M. Reddy, and S. G. S. Raman, “Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds,” J. Mater. Proc. Technol. 167, 73–82 (2005).CrossRef
8.
Zurück zum Zitat S. G. K. Manikandan, D. Sivakumar, M. Kamaraj, and K. P. Rao, “Laves phase control in Inconel 718 weldments,” Mater. Sci. Forum 710, 614–619 (2012).CrossRef S. G. K. Manikandan, D. Sivakumar, M. Kamaraj, and K. P. Rao, “Laves phase control in Inconel 718 weldments,” Mater. Sci. Forum 710, 614–619 (2012).CrossRef
9.
Zurück zum Zitat J. K. Hong, J. H. Park, N. K. Park, I. S. Eom, M. B. Kim, and C. Y. Kang, “Microstructures and mechanical properties of Inconel 718 welds by CO2 laser welding,” J. Mater. Proc. Technol. 201, 515–520 (2008).CrossRef J. K. Hong, J. H. Park, N. K. Park, I. S. Eom, M. B. Kim, and C. Y. Kang, “Microstructures and mechanical properties of Inconel 718 welds by CO2 laser welding,” J. Mater. Proc. Technol. 201, 515–520 (2008).CrossRef
10.
Zurück zum Zitat G. M. Reddy, C. V. S. Murthy, N. Viswanathan, and K. P. Rao, “Effects of electron beam oscillation techniques on solidification behavior and stress rupture properties of Inconel 718 welds,” Sci. Technol. Weld. Joining 12, 106–114 (2007).CrossRef G. M. Reddy, C. V. S. Murthy, N. Viswanathan, and K. P. Rao, “Effects of electron beam oscillation techniques on solidification behavior and stress rupture properties of Inconel 718 welds,” Sci. Technol. Weld. Joining 12, 106–114 (2007).CrossRef
11.
Zurück zum Zitat G. D. J. Ram, A. Venugopal Reddy, K. Prasad Rao, and G. M. Reddy, “Control of Laves phase in Inconel 718 GTA welds with current pulsing,” Sci. Technol. Weld. Join. 9, 390–398 (2004).CrossRef G. D. J. Ram, A. Venugopal Reddy, K. Prasad Rao, and G. M. Reddy, “Control of Laves phase in Inconel 718 GTA welds with current pulsing,” Sci. Technol. Weld. Join. 9, 390–398 (2004).CrossRef
12.
Zurück zum Zitat K. Sivaprasad, S. G. S. Raman, P. Mastanaiah, and G. M. Reddy, “Influence of magnetic arc oscillation and current pulsing on microstructure and high temperature tensile strength of alloy 718 TIG weldments,” Mater. Sci. Eng., A 428, 327–331 (2006).CrossRef K. Sivaprasad, S. G. S. Raman, P. Mastanaiah, and G. M. Reddy, “Influence of magnetic arc oscillation and current pulsing on microstructure and high temperature tensile strength of alloy 718 TIG weldments,” Mater. Sci. Eng., A 428, 327–331 (2006).CrossRef
13.
Zurück zum Zitat R. K. Leary, E. Merson, K. Birmingham, D. Harvey, and R. Brydson, “Microstructural and microtextural analysis of InterPulse GTCAW welds in Cp-Ti and Ti–6Al–4V,” Mater. Sci. Eng., A 527, 7694–7705 (2010).CrossRef R. K. Leary, E. Merson, K. Birmingham, D. Harvey, and R. Brydson, “Microstructural and microtextural analysis of InterPulse GTCAW welds in Cp-Ti and Ti–6Al–4V,” Mater. Sci. Eng., A 527, 7694–7705 (2010).CrossRef
14.
Zurück zum Zitat S. G. Rao, K. Saravanan, G. Harikrishnan, V. M. J. Sharma, P. Ramesh, K. Sreekumar, and P. Sinha, “Local deformation behavior of Inconel 718 TIG weldments at room temperature and 550°C,” Mater. Sci. Forum 710, 439–444 (2012).CrossRef S. G. Rao, K. Saravanan, G. Harikrishnan, V. M. J. Sharma, P. Ramesh, K. Sreekumar, and P. Sinha, “Local deformation behavior of Inconel 718 TIG weldments at room temperature and 550°C,” Mater. Sci. Forum 710, 439–444 (2012).CrossRef
15.
Zurück zum Zitat R. Cortés, E.,R. Barragán, V.,H. López, R.,R. Ambriz, and D. Jaramillo, “Mechanical properties of Inconel 718 welds performed by gas tungsten arc welding,” Int. J. Adv. Manuf. Technol. 94, 3949–3961 (2017).CrossRef R. Cortés, E.,R. Barragán, V.,H. López, R.,R. Ambriz, and D. Jaramillo, “Mechanical properties of Inconel 718 welds performed by gas tungsten arc welding,” Int. J. Adv. Manuf. Technol. 94, 3949–3961 (2017).CrossRef
16.
Zurück zum Zitat N. Anbarasan, S. Jerome, and S. G. K. Manikandan, “Hydrogen and molybdenum control on laves phase formation and tensile properties of Inconel 718 GTA welds,” Mater. Sci. Eng., A 773, 1–20 (2020).CrossRef N. Anbarasan, S. Jerome, and S. G. K. Manikandan, “Hydrogen and molybdenum control on laves phase formation and tensile properties of Inconel 718 GTA welds,” Mater. Sci. Eng., A 773, 1–20 (2020).CrossRef
17.
Zurück zum Zitat G. D. J. Ram, A. V. Reddy, K. P. Rao, G. M. Reddy, and S. G. S. Raman, “Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds,” J. Mater. Proc. Technol. 167, 73–82 (2005).CrossRef G. D. J. Ram, A. V. Reddy, K. P. Rao, G. M. Reddy, and S. G. S. Raman, “Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds,” J. Mater. Proc. Technol. 167, 73–82 (2005).CrossRef
18.
Zurück zum Zitat A. Odabasi, N. Unlu, G. Goller, and M. Eruslu, “A study on laser beam welding (LBW) technique: effect of heat input on the microstructural evolution of superalloy Inconel 718,” Metall. Mater. Trans. A 41, 2357–2365 (2010).CrossRef A. Odabasi, N. Unlu, G. Goller, and M. Eruslu, “A study on laser beam welding (LBW) technique: effect of heat input on the microstructural evolution of superalloy Inconel 718,” Metall. Mater. Trans. A 41, 2357–2365 (2010).CrossRef
19.
Zurück zum Zitat J. K. Hong, J. H. Park, N. K. Park, I. S. Eom, M. B. Kim, and C. Y. Kang, “Microstructures and mechanical properties of Inconel 718 welds by CO2 laser welding,” J. Mater. Proc. Technol. 201, 515–520 (2008).CrossRef J. K. Hong, J. H. Park, N. K. Park, I. S. Eom, M. B. Kim, and C. Y. Kang, “Microstructures and mechanical properties of Inconel 718 welds by CO2 laser welding,” J. Mater. Proc. Technol. 201, 515–520 (2008).CrossRef
20.
Zurück zum Zitat S. I. Kwon, S. H. Bae, J. H. Do, C. Y. Jo, and H. U. Hong, “Characterization of the microstructures and the cryogenic mechanical properties of electron beam welded Inconel 718,” Metall. Mater. Trans. A 47, 777–787 (2015).CrossRef S. I. Kwon, S. H. Bae, J. H. Do, C. Y. Jo, and H. U. Hong, “Characterization of the microstructures and the cryogenic mechanical properties of electron beam welded Inconel 718,” Metall. Mater. Trans. A 47, 777–787 (2015).CrossRef
21.
Zurück zum Zitat Y. Mei, Y. Liu, C. Liu, C. Li, L. Yu, Q. Guo, and H. Li, “Effect of base metal and welding speed on fusion zone microstructure and HAZ hot-cracking of electron-beam welded Inconel 718,” Mater. Des. 89, 964–977 (2016).CrossRef Y. Mei, Y. Liu, C. Liu, C. Li, L. Yu, Q. Guo, and H. Li, “Effect of base metal and welding speed on fusion zone microstructure and HAZ hot-cracking of electron-beam welded Inconel 718,” Mater. Des. 89, 964–977 (2016).CrossRef
22.
Zurück zum Zitat G. M. Reddy, C. V. Srinivasa Murthy, K. Srinivasa Rao, and K. P. Rao, “Improvement of mechanical properties of Inconel 718 electron beam welds—influence of welding techniques and post weld heat treatment,” Int. J. Adv. Manuf. Technol. 43, 671–680 (2008).CrossRef G. M. Reddy, C. V. Srinivasa Murthy, K. Srinivasa Rao, and K. P. Rao, “Improvement of mechanical properties of Inconel 718 electron beam welds—influence of welding techniques and post weld heat treatment,” Int. J. Adv. Manuf. Technol. 43, 671–680 (2008).CrossRef
23.
Zurück zum Zitat V. Balasubramanian and S. Malarvizhi, InterPulse TIG Welding of Aerospace Alloys: Final Technical Report (Vikram Sarabhai Space Centre, Indian Space Research Organization, Thiruvananthapuram, 2020). V. Balasubramanian and S. Malarvizhi, InterPulse TIG Welding of Aerospace Alloys: Final Technical Report (Vikram Sarabhai Space Centre, Indian Space Research Organization, Thiruvananthapuram, 2020).
24.
Zurück zum Zitat K. R. Vishwakarma, N. L. Richards, and M. C. Chaturvedi, “Microstructural analysis of fusion and heat affected zones in electron beam welded ALLVAC® 718PLUS™ superalloy. Mater. Sci. Eng., A 480, 517–528 (2008).CrossRef K. R. Vishwakarma, N. L. Richards, and M. C. Chaturvedi, “Microstructural analysis of fusion and heat affected zones in electron beam welded ALLVAC® 718PLUS™ superalloy. Mater. Sci. Eng., A 480, 517–528 (2008).CrossRef
25.
Zurück zum Zitat R. Mehrabian, B. H. Kear, and M. Cohen, Rapid Solidification Processing: Principles and Technologies (Claitor’s Publication Division, Baton Rouge, LA, 1978), Part 1, p. 398. R. Mehrabian, B. H. Kear, and M. Cohen, Rapid Solidification Processing: Principles and Technologies (Claitor’s Publication Division, Baton Rouge, LA, 1978), Part 1, p. 398.
26.
Zurück zum Zitat M. Agilan, S. C. Krishna, S. K. Manwatkar, E. G. Vinayan, D. Sivakumar, and B. Pant, “Effect of welding processes (GTAW & EBW) and solutionizing temperature on microfissuring tendency in inconel 718 welds,” Mater. Sci. Forum 710, 603–607 (2012).CrossRef M. Agilan, S. C. Krishna, S. K. Manwatkar, E. G. Vinayan, D. Sivakumar, and B. Pant, “Effect of welding processes (GTAW & EBW) and solutionizing temperature on microfissuring tendency in inconel 718 welds,” Mater. Sci. Forum 710, 603–607 (2012).CrossRef
27.
Zurück zum Zitat B. G. Muralidharan, V. Shankar, and T. P. S. Gill, Weldability of Inconel 718—A Review (Indira Gandhi Centre for Atomic Research, Kalpakkam, 1996), pp. 1–62. B. G. Muralidharan, V. Shankar, and T. P. S. Gill, Weldability of Inconel 718—A Review (Indira Gandhi Centre for Atomic Research, Kalpakkam, 1996), pp. 1–62.
28.
Zurück zum Zitat G. D. J. Ram, A. V. Reddy, K. P. Rao, and G. M. Reddy, “Improvement in stress rupture properties of Inconel 718 gas tungsten arc welds using current pulsing,” J. Mater. Sci. 40 (6), 1497–1500 (2005).CrossRef G. D. J. Ram, A. V. Reddy, K. P. Rao, and G. M. Reddy, “Improvement in stress rupture properties of Inconel 718 gas tungsten arc welds using current pulsing,” J. Mater. Sci. 40 (6), 1497–1500 (2005).CrossRef
29.
Zurück zum Zitat T. M. Pollock and S. Tin, “Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties,” J. Propul. Power 222, 361–374 (2006).CrossRef T. M. Pollock and S. Tin, “Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties,” J. Propul. Power 222, 361–374 (2006).CrossRef
30.
Zurück zum Zitat Heat management, InterPulse and plasma systems. http://www.vbcie.com. Accessed August 15, 2017. Heat management, InterPulse and plasma systems. http://​www.​vbcie.​com.​ Accessed August 15, 2017.
Metadaten
Titel
Microstructural Evolution and Grain Refinement in Gas Tungsten Constricted Arc (GTCA) Welds of Inconel 718 Alloy—Mechanism and Segregation Analysis
verfasst von
T. Sonar
V. Balasubramanian
S. Malarvizhi
T. Venkateswaran
D. Sivakumar
Publikationsdatum
18.08.2021
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 13/2021
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21130093

Weitere Artikel der Ausgabe 13/2021

Physics of Metals and Metallography 13/2021 Zur Ausgabe