Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2021

16.06.2021

Microstructural Evolution and Mechanical Properties of Al0.5CoCrFeNi High-Entropy Alloy after Cold Rolling and Annealing Treatments

verfasst von: Armin Ghaderi, Hossein Moghanni, Kamran Dehghani

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present study investigated the microstructure and mechanical properties of as-cast, homogenized, cold-rolled, and annealed Al0.5CoCrFeNi high-entropy alloy. The microstructure is characterized by optical microscopy, XRD, and scanning electron microscopy (SEM) equipped with energy-dispersive x-ray spectroscopy (EDS). Besides, hardness is acquired by Vickers hardness testing, and tensile testing is performed at room temperature for all samples. Results indicate that the matrix and droplet-shaped phases are present in all states. However, the needle-shaped and wall-shaped phases present after homogenization. In all samples, the matrix consists primarily of Fe, Cr, Co, and Ni, while droplet-shaped phases comprise mainly Al-Ni. Moreover, needle-shaped phases are replete with Cr, Ni, Co, Al, and Fe, whereas wall-shaped phases are rich in Cr, Co, and Fe and depleted in Al-Ni. The hardness of the Al0.5CoCrFeNi HEA increases after homogenizing and culminates at cold-rolled to 425 Hv due to the emerging of the needle and wall-shaped phases and consequently lattice distortion. The yield strength (YS), the ultimate tensile strength (UTS), and the ductility (εf) of the cold-rolled specimen are about 545 MPa, 834 MPa, and 26%, respectively. The noticeable improvement in hardness and strength in cold-rolled condition demonstrates a remarkable work-hardening effect without sacrificing much ductility.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G.L. Chen and C.T. Liu, Moisture Induced Environmental Embrittlement of Intermetallics, Int. Mater. Rev., 2001, 46(6), p 253–270.CrossRef G.L. Chen and C.T. Liu, Moisture Induced Environmental Embrittlement of Intermetallics, Int. Mater. Rev., 2001, 46(6), p 253–270.CrossRef
2.
Zurück zum Zitat C.T. Liu and W.C. Oliver, Environmental Embrittlement and Grain-Boundary Fracture in Ni3Si, Scr. Metall. Mater., 1991, 25, p 1933–1937.CrossRef C.T. Liu and W.C. Oliver, Environmental Embrittlement and Grain-Boundary Fracture in Ni3Si, Scr. Metall. Mater., 1991, 25, p 1933–1937.CrossRef
3.
Zurück zum Zitat A. Peker and W.L. Johnson, A Highly Processable, Appl. Phys. Lett., 2015, 2001(2342), p 22–25. A. Peker and W.L. Johnson, A Highly Processable, Appl. Phys. Lett., 2015, 2001(2342), p 22–25.
4.
Zurück zum Zitat A. Inoue and A. Takeuchi, Recent Progress in Bulk Glassy, Nanoquasicrystalline and Nanocrystalline Alloys, Mater. Sci. Eng. A, 2004, 375–377(1–2), p 16–30.CrossRef A. Inoue and A. Takeuchi, Recent Progress in Bulk Glassy, Nanoquasicrystalline and Nanocrystalline Alloys, Mater. Sci. Eng. A, 2004, 375–377(1–2), p 16–30.CrossRef
5.
Zurück zum Zitat N. Chen, D. Pan, D.V. Louzguine-Luzgin, G.Q. Xie, M.W. Chen and A. Inoue, Improved Thermal Stability and Ductility of Flux-Treated Pd40Ni40Si4P16 BMG, Scr. Mater. Acta Materialia Inc., 2010, 62(1), p 17–20.CrossRef N. Chen, D. Pan, D.V. Louzguine-Luzgin, G.Q. Xie, M.W. Chen and A. Inoue, Improved Thermal Stability and Ductility of Flux-Treated Pd40Ni40Si4P16 BMG, Scr. Mater. Acta Materialia Inc., 2010, 62(1), p 17–20.CrossRef
6.
Zurück zum Zitat S. Praveen and H.S. Kim, High-Entropy Alloys: Potential Candidates for High-Temperature Applications–An Overview, Adv Eng Mater, 2017, 1700645, p 1–22. S. Praveen and H.S. Kim, High-Entropy Alloys: Potential Candidates for High-Temperature Applications–An Overview, Adv Eng Mater, 2017, 1700645, p 1–22.
7.
Zurück zum Zitat A. Mashhuriazar, H. Omidvar, C.H. Gur and Z. Sajuri, Effect of Welding Parameters on the Liquation Cracking Behavior of High-Chromium Ni-Based Superalloy, J. Mater. Eng. Perform., 2020, 29(12), p 7843–7852.CrossRef A. Mashhuriazar, H. Omidvar, C.H. Gur and Z. Sajuri, Effect of Welding Parameters on the Liquation Cracking Behavior of High-Chromium Ni-Based Superalloy, J. Mater. Eng. Perform., 2020, 29(12), p 7843–7852.CrossRef
8.
Zurück zum Zitat A. Ebrahimzadeh Pilehrood, H. Omidvar, A. Shamsipur and Z. Sajuri, Influence of Transient Liquid Phase Bonding Followed by Homogenization on the Fatigue Lifetimes of Inconel 738 at Elevated Temperature, J. Manuf. Process., 2020, 55, p 348–358.CrossRef A. Ebrahimzadeh Pilehrood, H. Omidvar, A. Shamsipur and Z. Sajuri, Influence of Transient Liquid Phase Bonding Followed by Homogenization on the Fatigue Lifetimes of Inconel 738 at Elevated Temperature, J. Manuf. Process., 2020, 55, p 348–358.CrossRef
9.
Zurück zum Zitat B. Cantor, I.T.H. Chang, P. Knight and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 377, p 213–218.CrossRef B. Cantor, I.T.H. Chang, P. Knight and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 377, p 213–218.CrossRef
10.
Zurück zum Zitat J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303.CrossRef J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303.CrossRef
12.
Zurück zum Zitat Y. Zhang, T. Ting, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw and Z. Ping, Progress in Materials Science Microstructures and Properties of High-Entropy Alloys, Prog. Mater. Sci., 2014, 61, p 1–93.CrossRef Y. Zhang, T. Ting, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw and Z. Ping, Progress in Materials Science Microstructures and Properties of High-Entropy Alloys, Prog. Mater. Sci., 2014, 61, p 1–93.CrossRef
13.
Zurück zum Zitat G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler and E.P. George, Reasons for the Superior Mechanical Properties of Medium-Entropy CrCoNi Compared to High-Entropy CrMnFeCoNi, Acta Mater., 2017, 128, p 292–303.CrossRef G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler and E.P. George, Reasons for the Superior Mechanical Properties of Medium-Entropy CrCoNi Compared to High-Entropy CrMnFeCoNi, Acta Mater., 2017, 128, p 292–303.CrossRef
14.
Zurück zum Zitat B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George and R.O. Ritchie, Exceptional Damage-Tolerance of a Medium-Entropy Alloy CrCoNi at Cryogenic Temperatures, Nat. Commun., 2016, 7, p 1–8.CrossRef B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George and R.O. Ritchie, Exceptional Damage-Tolerance of a Medium-Entropy Alloy CrCoNi at Cryogenic Temperatures, Nat. Commun., 2016, 7, p 1–8.CrossRef
15.
Zurück zum Zitat B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345(6201), p 1153–1158.CrossRef B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345(6201), p 1153–1158.CrossRef
16.
Zurück zum Zitat Y. Qiu, S. Thomas, D. Fabijanic, A.J. Barlow, H.L. Fraser and N. Birbilis, Microstructural Evolution, Electrochemical and Corrosion Properties of Al x CoCrFeNiTi y High Entropy Alloys, Mater. Des., 2019, 170, p 107698.CrossRef Y. Qiu, S. Thomas, D. Fabijanic, A.J. Barlow, H.L. Fraser and N. Birbilis, Microstructural Evolution, Electrochemical and Corrosion Properties of Al x CoCrFeNiTi y High Entropy Alloys, Mater. Des., 2019, 170, p 107698.CrossRef
17.
Zurück zum Zitat T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu and C.T. Liu, Multicomponent Intermetallic Nanoparticles and Superb Mechanical Behaviors of Complex Alloys, Science, 2018, 362(6417), p 933–937.CrossRef T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu and C.T. Liu, Multicomponent Intermetallic Nanoparticles and Superb Mechanical Behaviors of Complex Alloys, Science, 2018, 362(6417), p 933–937.CrossRef
19.
Zurück zum Zitat H.F. Sheng and L.M. Peng, Microstructure and Tensile Properties of Al0.5CoCrcuFeNi High-Entropy Alloy, Appl. Mech. Mater., 2014, 456, p 494–497.CrossRef H.F. Sheng and L.M. Peng, Microstructure and Tensile Properties of Al0.5CoCrcuFeNi High-Entropy Alloy, Appl. Mech. Mater., 2014, 456, p 494–497.CrossRef
20.
Zurück zum Zitat B. Ren, J. Ma, R. Zhao, S. Guan and H. Zhang, Age Hardening of AlCrMoNiTi High Entropy Alloy Prepared by Powder Metallurgy, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng., 2014, 43(6), p 1286–1290. B. Ren, J. Ma, R. Zhao, S. Guan and H. Zhang, Age Hardening of AlCrMoNiTi High Entropy Alloy Prepared by Powder Metallurgy, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng., 2014, 43(6), p 1286–1290.
21.
Zurück zum Zitat Q.H. Tang, Y. Huang, Y.Y. Huang, X.Z. Liao, T.G. Langdon and P.Q. Dai, Hardening of an Al0.3CoCrFeNi High Entropy Alloy via High-Pressure Torsion and Thermal Annealing, Mater. Lett., 2015, 151, p 126–129.CrossRef Q.H. Tang, Y. Huang, Y.Y. Huang, X.Z. Liao, T.G. Langdon and P.Q. Dai, Hardening of an Al0.3CoCrFeNi High Entropy Alloy via High-Pressure Torsion and Thermal Annealing, Mater. Lett., 2015, 151, p 126–129.CrossRef
23.
Zurück zum Zitat J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An and Z.P. Lu, A Precipitation-Hardened High-Entropy Alloy with Outstanding Tensile Properties, Acta Mater., 2016, 102, p 187–196.CrossRef J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An and Z.P. Lu, A Precipitation-Hardened High-Entropy Alloy with Outstanding Tensile Properties, Acta Mater., 2016, 102, p 187–196.CrossRef
24.
Zurück zum Zitat C. Lee, Y. Chou, G. Kim, M.C. Gao, K. An, J. Brechtl, C. Zhang, W. Chen, J.D. Poplawsky, G. Song, Y. Ren, Y.C. Chou and P.K. Liaw, Lattice-Distortion-Enhanced Yield Strength in a Refractory High-Entropy Alloy, Adv. Mater., 2020, 32(49), p 1–9.CrossRef C. Lee, Y. Chou, G. Kim, M.C. Gao, K. An, J. Brechtl, C. Zhang, W. Chen, J.D. Poplawsky, G. Song, Y. Ren, Y.C. Chou and P.K. Liaw, Lattice-Distortion-Enhanced Yield Strength in a Refractory High-Entropy Alloy, Adv. Mater., 2020, 32(49), p 1–9.CrossRef
25.
Zurück zum Zitat J. Brechtl, S. Chen, C. Lee, Y. Shi, R. Feng, X. Xie, D. Hamblin, A.M. Coleman, B. Straka, H. Shortt, R.J. Spurling and P.K. Liaw, A Review of the Serrated-Flow Phenomenon and Its Role in the Deformation Behavior of High-Entropy Alloys, Metals (Basel), 2020, 10(8), p 1–72.CrossRef J. Brechtl, S. Chen, C. Lee, Y. Shi, R. Feng, X. Xie, D. Hamblin, A.M. Coleman, B. Straka, H. Shortt, R.J. Spurling and P.K. Liaw, A Review of the Serrated-Flow Phenomenon and Its Role in the Deformation Behavior of High-Entropy Alloys, Metals (Basel), 2020, 10(8), p 1–72.CrossRef
26.
Zurück zum Zitat P.P. Bhattacharjee, G.D. Sathiaraj, M. Zaid, J.R. Gatti, C. Lee, C.W. Tsai and J.W. Yeh, Microstructure and Texture Evolution during Annealing of Equiatomic CoCrFeMnNi High-Entropy Alloy, J. Alloys Compd., 2014, 587, p 544–552.CrossRef P.P. Bhattacharjee, G.D. Sathiaraj, M. Zaid, J.R. Gatti, C. Lee, C.W. Tsai and J.W. Yeh, Microstructure and Texture Evolution during Annealing of Equiatomic CoCrFeMnNi High-Entropy Alloy, J. Alloys Compd., 2014, 587, p 544–552.CrossRef
30.
Zurück zum Zitat F. Wang, Y. Zhang and G. Chen, Tensile and Compressive Mechanical Behavior of a CoCrCuFeNiAl0.5 High Entropy Alloy, Int. J. Modern Phys., 2009, 23, p 1254–1259.CrossRef F. Wang, Y. Zhang and G. Chen, Tensile and Compressive Mechanical Behavior of a CoCrCuFeNiAl0.5 High Entropy Alloy, Int. J. Modern Phys., 2009, 23, p 1254–1259.CrossRef
31.
Zurück zum Zitat Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, et al, A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys, Sci. Rep., 2014, 4(1), p 1–5CrossRef Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, et al, A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys, Sci. Rep., 2014, 4(1), p 1–5CrossRef
32.
Zurück zum Zitat C. Tsai, M. Tsai, J. Yeh and C. Yang, Effect of Temperature on Mechanical Properties of Al0.5CoCrCuFeNi Wrought Alloy, J. Alloys Compd., 2010, 490(1–2), p 160–165.CrossRef C. Tsai, M. Tsai, J. Yeh and C. Yang, Effect of Temperature on Mechanical Properties of Al0.5CoCrCuFeNi Wrought Alloy, J. Alloys Compd., 2010, 490(1–2), p 160–165.CrossRef
33.
Zurück zum Zitat C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin and S.Y. Chang, Microstructure Characterization of AlxCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2005, 36(4), p 881–893.CrossRef C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin and S.Y. Chang, Microstructure Characterization of AlxCoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2005, 36(4), p 881–893.CrossRef
34.
Zurück zum Zitat C.-Y. Hsu, J.-W. Yeh, S.-K. Chen and T.-T. Shun, Wear Resistance and High-Temperature Compression Strength of Fcc CuCoNiCrAl, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci., 2004, 35(5), p 1465–1469.CrossRef C.-Y. Hsu, J.-W. Yeh, S.-K. Chen and T.-T. Shun, Wear Resistance and High-Temperature Compression Strength of Fcc CuCoNiCrAl, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci., 2004, 35(5), p 1465–1469.CrossRef
35.
Zurück zum Zitat Y. Zhang, J. Li, J. Wang, S. Niu and H. Kou, Hot Deformation Behavior of As-Cast and Homogenized Al0.5CoCrFeNi High Entropy Alloys, Metals (Basel)., 2016, 6(11), p 277.CrossRef Y. Zhang, J. Li, J. Wang, S. Niu and H. Kou, Hot Deformation Behavior of As-Cast and Homogenized Al0.5CoCrFeNi High Entropy Alloys, Metals (Basel)., 2016, 6(11), p 277.CrossRef
36.
Zurück zum Zitat C.M. Lin and H.L. Tsai, Evolution of Microstructure, Hardness, and Corrosion Properties of High-Entropy Al0.5CoCrFeNi Alloy, Intermetallics, 2011, 19(3), p 288–294.CrossRef C.M. Lin and H.L. Tsai, Evolution of Microstructure, Hardness, and Corrosion Properties of High-Entropy Al0.5CoCrFeNi Alloy, Intermetallics, 2011, 19(3), p 288–294.CrossRef
39.
Zurück zum Zitat B. Gwalani, V. Soni, M. Lee, S.A. Mantri, Y. Ren and R. Banerjee, Optimizing the Coupled Effects of Hall-Petch and Precipitation Strengthening in a Al0.3 CoCrFeNi High Entropy Alloy, Mater. Des., 2017, 121, p 254–260.CrossRef B. Gwalani, V. Soni, M. Lee, S.A. Mantri, Y. Ren and R. Banerjee, Optimizing the Coupled Effects of Hall-Petch and Precipitation Strengthening in a Al0.3 CoCrFeNi High Entropy Alloy, Mater. Des., 2017, 121, p 254–260.CrossRef
42.
Zurück zum Zitat Y. Kao, T. Chen, S. Chen and J. Yeh, Microstructure and Mechanical Property of As-Cast, -Homogenized, and -Deformed Al x CoCrFeNi (0 ≤ x ≤ 2) High-Entropy Alloys, J Alloys Compd, 2009, 488, p 57–64.CrossRef Y. Kao, T. Chen, S. Chen and J. Yeh, Microstructure and Mechanical Property of As-Cast, -Homogenized, and -Deformed Al x CoCrFeNi (0 ≤ x ≤ 2) High-Entropy Alloys, J Alloys Compd, 2009, 488, p 57–64.CrossRef
43.
Zurück zum Zitat H. Azhari-Saray, M. Sarkari-Khorrami, A. Nademi-Babahadi and S.F. Kashani-Bozorg, Dissimilar Resistance Spot Welding of 6061–T6 Aluminum Alloy/St-12 Carbon Steel Using a High Entropy Alloy Interlayer, Intermetallics, 2020, 124, p 106876.CrossRef H. Azhari-Saray, M. Sarkari-Khorrami, A. Nademi-Babahadi and S.F. Kashani-Bozorg, Dissimilar Resistance Spot Welding of 6061–T6 Aluminum Alloy/St-12 Carbon Steel Using a High Entropy Alloy Interlayer, Intermetallics, 2020, 124, p 106876.CrossRef
45.
Zurück zum Zitat C. Tsai, Y. Chen, M. Tsai, J. Yeh, T. Shun and S. Chen, Deformation and Annealing Behaviors of High-Entropy Alloy Al0.5 CoCrCuFeNi, J. Alloys Compd., 2009, 2010(486), p 427–435.CrossRef C. Tsai, Y. Chen, M. Tsai, J. Yeh, T. Shun and S. Chen, Deformation and Annealing Behaviors of High-Entropy Alloy Al0.5 CoCrCuFeNi, J. Alloys Compd., 2009, 2010(486), p 427–435.CrossRef
46.
Zurück zum Zitat T. Shun and Y. Du, Age Hardening of the Al0.3CoCrFeNiC0.1 High Entropy Alloy, J. Alloys Compd., 2009, 478(1–2), p 269–272.CrossRef T. Shun and Y. Du, Age Hardening of the Al0.3CoCrFeNiC0.1 High Entropy Alloy, J. Alloys Compd., 2009, 478(1–2), p 269–272.CrossRef
47.
Zurück zum Zitat Z. Tang, M.C. Gao, H. Diao, T. Yang, J. Liu, T. Zuo, Y. Zhang, Z. Lu, Y. Cheng, Y. Zhang, K.A. Dahmen, P.K. Liaw and T. Egami, Aluminum Alloying Effects on Lattice Types Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems, Jom, 2013, 65(12), p 1848–1858.CrossRef Z. Tang, M.C. Gao, H. Diao, T. Yang, J. Liu, T. Zuo, Y. Zhang, Z. Lu, Y. Cheng, Y. Zhang, K.A. Dahmen, P.K. Liaw and T. Egami, Aluminum Alloying Effects on Lattice Types Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems, Jom, 2013, 65(12), p 1848–1858.CrossRef
48.
Zurück zum Zitat Y.J. Zhou, Y. Zhang, Y.L. Wang and G.L. Chen, Solid Solution Alloys of AlCoCrFeNi Tix with Excellent Room-Temperature Mechanical Properties, Appl. Phys. Lett., 2007, 90(18), p 181904.CrossRef Y.J. Zhou, Y. Zhang, Y.L. Wang and G.L. Chen, Solid Solution Alloys of AlCoCrFeNi Tix with Excellent Room-Temperature Mechanical Properties, Appl. Phys. Lett., 2007, 90(18), p 181904.CrossRef
49.
Zurück zum Zitat Z.P. Lu, H. Wang, M.W. Chen, I. Baker, J.W. Yeh, C.T. Liu and T.G. Nieh, An Assessment on the Future Development of High-Entropy Alloys: Summary from a Recent Workshop, Intermetallics, 2015, 66, p 67–76.CrossRef Z.P. Lu, H. Wang, M.W. Chen, I. Baker, J.W. Yeh, C.T. Liu and T.G. Nieh, An Assessment on the Future Development of High-Entropy Alloys: Summary from a Recent Workshop, Intermetallics, 2015, 66, p 67–76.CrossRef
50.
Zurück zum Zitat O.N. Senkov and S.L. Semiatin, Microstructure and Properties of a Refractory High-Entropy Alloy after Cold Working, J. Alloys Compd., 2015, 649, p 1110–1123.CrossRef O.N. Senkov and S.L. Semiatin, Microstructure and Properties of a Refractory High-Entropy Alloy after Cold Working, J. Alloys Compd., 2015, 649, p 1110–1123.CrossRef
51.
Zurück zum Zitat I. Baker, F. Meng, M. Wu and A. Brandenberg, Recrystallization of a Novel Two-Phase FeNiMnAlCr High Entropy Alloy, J. Alloys Compd., 2016, 656, p 458–464.CrossRef I. Baker, F. Meng, M. Wu and A. Brandenberg, Recrystallization of a Novel Two-Phase FeNiMnAlCr High Entropy Alloy, J. Alloys Compd., 2016, 656, p 458–464.CrossRef
52.
Zurück zum Zitat F. Otto, A. Dlouhy, C. Somsen, H. Bei, G. Eggeler and E.P. George, The Influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi High-Entropy Alloy, Acta Mater., 2013, 61(15), p 5743–5755.CrossRef F. Otto, A. Dlouhy, C. Somsen, H. Bei, G. Eggeler and E.P. George, The Influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi High-Entropy Alloy, Acta Mater., 2013, 61(15), p 5743–5755.CrossRef
Metadaten
Titel
Microstructural Evolution and Mechanical Properties of Al0.5CoCrFeNi High-Entropy Alloy after Cold Rolling and Annealing Treatments
verfasst von
Armin Ghaderi
Hossein Moghanni
Kamran Dehghani
Publikationsdatum
16.06.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05886-y

Weitere Artikel der Ausgabe 10/2021

Journal of Materials Engineering and Performance 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.