Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2018

25.09.2018

Microstructure and Deformation Mechanism of AZ31 Magnesium Alloy Under Dynamic Strain Rate

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A hot-rolled AZ31Mg alloy sheet was subjected to dynamic plastic deformation parallel to the rolling direction, and microstructural evolutions and mechanical properties of the deformed samples were examined. It has been found that dynamic strain rate could facilitate {10-12} twin nucleation and growth and leads to a lower yield stress of about 20 MPa and an early end to twinning characteristic (happening at a strain point of about 6%) shown in the stress–strain curve. {10-12} twinning mechanism dominates the early plastic deformation; but when plastic strain exceeds ~ 9%, dislocation–slip mechanism instead of {10-12} twinning dominates the later plastic deformation. And this premature transformation of the dominant deformation mechanisms from {10-12} twinning to dislocation slip is caused by dynamic strain rate. The effect of dynamic strain rate on the number of twin nucleations remains unclear, and the more systematic researches are needed in the future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Akhtar and E. Teghtsoonnian, Solid Solution Strengthening of Magnesium Single Crystals—II. The Effect of Solute on the Ease of Prismatic Slip, Acta Metall., 1969, 17(11), p 1351–1356CrossRef A. Akhtar and E. Teghtsoonnian, Solid Solution Strengthening of Magnesium Single Crystals—II. The Effect of Solute on the Ease of Prismatic Slip, Acta Metall., 1969, 17(11), p 1351–1356CrossRef
2.
Zurück zum Zitat G. Groves and A. Kelly, Independent Slip Systems in Crystals, Philos. Mag., 1963, 8(89), p 877–887CrossRef G. Groves and A. Kelly, Independent Slip Systems in Crystals, Philos. Mag., 1963, 8(89), p 877–887CrossRef
3.
Zurück zum Zitat B. Pourbahari, H. Mirzadeh, and M. Emamy, The Effects of Grain Refinement and Rare Earth Intermetallics on Mechanical Properties of As-Cast and Wrought Magnesium Alloys, J. Mater. Eng. Perform., 2018, 27(3), p 1327–1333CrossRef B. Pourbahari, H. Mirzadeh, and M. Emamy, The Effects of Grain Refinement and Rare Earth Intermetallics on Mechanical Properties of As-Cast and Wrought Magnesium Alloys, J. Mater. Eng. Perform., 2018, 27(3), p 1327–1333CrossRef
4.
Zurück zum Zitat E.W. Kelley and W.F. Hosford, The Deformation Characteristics of Textured Magnesium, Trans. Metall. Soc. AIME, 1968, 242, p 654–661 E.W. Kelley and W.F. Hosford, The Deformation Characteristics of Textured Magnesium, Trans. Metall. Soc. AIME, 1968, 242, p 654–661
5.
Zurück zum Zitat J.W. Christian and S. Mahajan, Deformation Twinning, Prog. Mater Sci., 1995, 39, p 1–157CrossRef J.W. Christian and S. Mahajan, Deformation Twinning, Prog. Mater Sci., 1995, 39, p 1–157CrossRef
6.
Zurück zum Zitat M.T. Prado, J.A. Valle, and O.A. Ruano, Effect of Sheet Thickness on the Microstructure Evolution of an Mg Alloy During Large Strain Hot Rolling, Scr. Mater., 2004, 50, p 667–671CrossRef M.T. Prado, J.A. Valle, and O.A. Ruano, Effect of Sheet Thickness on the Microstructure Evolution of an Mg Alloy During Large Strain Hot Rolling, Scr. Mater., 2004, 50, p 667–671CrossRef
7.
Zurück zum Zitat L.E. Murr, E. Moin, and F. Greulich, The Contribution of Deformation Twins to Yield Stress: The Hall–Petch Law for Inter-Twin Spacing, Scr. Metall., 1978, 12, p 1031–1035CrossRef L.E. Murr, E. Moin, and F. Greulich, The Contribution of Deformation Twins to Yield Stress: The Hall–Petch Law for Inter-Twin Spacing, Scr. Metall., 1978, 12, p 1031–1035CrossRef
8.
Zurück zum Zitat M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell, Influence of Grain Size on the Compressive Deformation of Wrought Mg-3Al-1Zn, Acta Mater., 2004, 52, p 5093–5103CrossRef M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell, Influence of Grain Size on the Compressive Deformation of Wrought Mg-3Al-1Zn, Acta Mater., 2004, 52, p 5093–5103CrossRef
9.
Zurück zum Zitat X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner, Hardening Evolution of AZ31B Mg Sheet, Int. J. Plast, 2007, 23, p 44–86CrossRef X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner, Hardening Evolution of AZ31B Mg Sheet, Int. J. Plast, 2007, 23, p 44–86CrossRef
10.
Zurück zum Zitat L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, and K. Lu, Ultrahigh Strength and High Electrical Conductivity in Copper, Science, 2004, 304, p 422–426CrossRef L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, and K. Lu, Ultrahigh Strength and High Electrical Conductivity in Copper, Science, 2004, 304, p 422–426CrossRef
11.
Zurück zum Zitat L. Lu, X.H. Chen, X. Huang, and K. Lu, Revealing the Maximum Strength in Nanotwinned Copper, Science, 2009, 323, p 607–610CrossRef L. Lu, X.H. Chen, X. Huang, and K. Lu, Revealing the Maximum Strength in Nanotwinned Copper, Science, 2009, 323, p 607–610CrossRef
12.
Zurück zum Zitat Y.C. Lin, Z.H. Liu, X.M. Chen, and Z.L. Long, Cyclic Plasticity Constitutive Model for Uniaxial Ratcheting Behavior of AZ31B Magnesium Alloy, J. Mater. Eng. Perform., 2015, 24(5), p 1820–1833CrossRef Y.C. Lin, Z.H. Liu, X.M. Chen, and Z.L. Long, Cyclic Plasticity Constitutive Model for Uniaxial Ratcheting Behavior of AZ31B Magnesium Alloy, J. Mater. Eng. Perform., 2015, 24(5), p 1820–1833CrossRef
13.
Zurück zum Zitat C. Lou, X.Y. Zhang, and Y. Ren, Improved Strength and Ductility of Magnesium Alloy Below Micro-twin Lamellar Structure, Mater. Sci. Eng. A, 2014, 614, p 1–5CrossRef C. Lou, X.Y. Zhang, and Y. Ren, Improved Strength and Ductility of Magnesium Alloy Below Micro-twin Lamellar Structure, Mater. Sci. Eng. A, 2014, 614, p 1–5CrossRef
14.
Zurück zum Zitat Q. Yu, L. Qi, K. Chen, R.K. Mishra, J. Li, and A.M. Minor, The Nanostructured Origin of Deformation Twinning, Nano Lett., 2012, 12, p 887–892CrossRef Q. Yu, L. Qi, K. Chen, R.K. Mishra, J. Li, and A.M. Minor, The Nanostructured Origin of Deformation Twinning, Nano Lett., 2012, 12, p 887–892CrossRef
15.
Zurück zum Zitat S.G. Hong, S.H. Park, and C.S. Lee, Role of 10–12 Twinning Characteristics in the Deformation Behavior of a Polycrystalline Magnesium Alloy, Acta Mater., 2010, 58, p 5873–5885CrossRef S.G. Hong, S.H. Park, and C.S. Lee, Role of 10–12 Twinning Characteristics in the Deformation Behavior of a Polycrystalline Magnesium Alloy, Acta Mater., 2010, 58, p 5873–5885CrossRef
16.
Zurück zum Zitat C. Lou, X.Y. Zhang, G.L. Duan, J. Tu, and Q. Liu, Characteristics of Twin Lamellar Structure in Magnesium Alloy during Room Temperature Dynamic Plastic Deformation, J. Mater. Sci. Technol., 2014, 30(1), p 41–46CrossRef C. Lou, X.Y. Zhang, G.L. Duan, J. Tu, and Q. Liu, Characteristics of Twin Lamellar Structure in Magnesium Alloy during Room Temperature Dynamic Plastic Deformation, J. Mater. Sci. Technol., 2014, 30(1), p 41–46CrossRef
17.
Zurück zum Zitat N.V. Dudamell, I. Ulacia, F. Gálvez, S. Yi, J. Bohlen, D. Letzig, I. Hurtado, and M.T. Pérez-Prado, Twinning and Grain Subdivision During Dynamic Deformation of a Mg AZ31 Sheet Alloy at Room Temperature, Acta Mater., 2011, 59, p 6949–6962CrossRef N.V. Dudamell, I. Ulacia, F. Gálvez, S. Yi, J. Bohlen, D. Letzig, I. Hurtado, and M.T. Pérez-Prado, Twinning and Grain Subdivision During Dynamic Deformation of a Mg AZ31 Sheet Alloy at Room Temperature, Acta Mater., 2011, 59, p 6949–6962CrossRef
18.
Zurück zum Zitat X.Y. Zhang, B. Li, and Q. Liu, Non-equilibrium Basal Stacking Faults in Hexagonal Close-Packed Metals, Acta Mater., 2015, 90, p 140–150CrossRef X.Y. Zhang, B. Li, and Q. Liu, Non-equilibrium Basal Stacking Faults in Hexagonal Close-Packed Metals, Acta Mater., 2015, 90, p 140–150CrossRef
19.
Zurück zum Zitat W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, and S.N. Mathaudhu, Ultrastrong Mg Alloy Via Nano-spaced Stacking Faults, Mater. Res. Lett., 2013, 1, p 61–66CrossRef W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, and S.N. Mathaudhu, Ultrastrong Mg Alloy Via Nano-spaced Stacking Faults, Mater. Res. Lett., 2013, 1, p 61–66CrossRef
20.
Zurück zum Zitat B.S. Wang, R.L. Xin, G.J. Huang, and Q. Liu, Effect of Crystal Orientation on the Mechanical Properties and Strain Hardening Behavior of Magnesium Alloy AZ31 During Uniaxial Compression, Mater. Sci. Eng. A, 2012, 534, p 588–593CrossRef B.S. Wang, R.L. Xin, G.J. Huang, and Q. Liu, Effect of Crystal Orientation on the Mechanical Properties and Strain Hardening Behavior of Magnesium Alloy AZ31 During Uniaxial Compression, Mater. Sci. Eng. A, 2012, 534, p 588–593CrossRef
21.
Zurück zum Zitat C. Lou, X.Y. Zhang, and Y. Ren, Non-Schmid-Based 10–12 Twinning Behavior in Polycrystalline Magnesium Alloy, Mater. Charact., 2015, 107, p 249–254CrossRef C. Lou, X.Y. Zhang, and Y. Ren, Non-Schmid-Based 10–12 Twinning Behavior in Polycrystalline Magnesium Alloy, Mater. Charact., 2015, 107, p 249–254CrossRef
22.
Zurück zum Zitat M.D. Nave and M.R. Barnett, Microstructures and Textures of Pure Magnesium Deformed in Plane-Strain Compression, Scr. Mater., 2004, 51, p 881–885CrossRef M.D. Nave and M.R. Barnett, Microstructures and Textures of Pure Magnesium Deformed in Plane-Strain Compression, Scr. Mater., 2004, 51, p 881–885CrossRef
23.
Zurück zum Zitat S. Kleiner and P.J. Uggowitzer, Mechanical Anisotropy of Extruded Mg-6% Al-1% Zn Alloy, Mater. Sci. Eng. A, 2004, 379, p 258–263CrossRef S. Kleiner and P.J. Uggowitzer, Mechanical Anisotropy of Extruded Mg-6% Al-1% Zn Alloy, Mater. Sci. Eng. A, 2004, 379, p 258–263CrossRef
24.
Zurück zum Zitat M.A. Meyers, O. Vohringer, and V.A. Lubarda, The Onset of Twinning in Metals: A Constitutive Description, Acta Mater., 2001, 49, p 4025–4039CrossRef M.A. Meyers, O. Vohringer, and V.A. Lubarda, The Onset of Twinning in Metals: A Constitutive Description, Acta Mater., 2001, 49, p 4025–4039CrossRef
25.
Zurück zum Zitat C. Lou, X.Y. Zhang, R.H. Wang, and Q. Liu, Mechanical Behavior and Microstructural Characteristics of Magnesium Alloy Containing 10–12 Twin Lamellar Structure, J. Mater. Res., 2013, 28, p 733–739CrossRef C. Lou, X.Y. Zhang, R.H. Wang, and Q. Liu, Mechanical Behavior and Microstructural Characteristics of Magnesium Alloy Containing 10–12 Twin Lamellar Structure, J. Mater. Res., 2013, 28, p 733–739CrossRef
26.
Zurück zum Zitat K. Lu, L. Lu, and S. Suresh, Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale, Science, 2009, 324, p 349–352CrossRef K. Lu, L. Lu, and S. Suresh, Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale, Science, 2009, 324, p 349–352CrossRef
27.
Zurück zum Zitat L. Capolungo, P.E. Marshall, R.J. McCabe, I.J. Beyerlein, and C.N. Tome, Nucleation and Growth of Twins in Zr: A Statistical Study, Acta Mater., 2009, 57, p 6047–6056CrossRef L. Capolungo, P.E. Marshall, R.J. McCabe, I.J. Beyerlein, and C.N. Tome, Nucleation and Growth of Twins in Zr: A Statistical Study, Acta Mater., 2009, 57, p 6047–6056CrossRef
Metadaten
Titel
Microstructure and Deformation Mechanism of AZ31 Magnesium Alloy Under Dynamic Strain Rate
Publikationsdatum
25.09.2018
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3627-9

Weitere Artikel der Ausgabe 11/2018

Journal of Materials Engineering and Performance 11/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.