Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2018

29.01.2018

Microstructure and Mechanical Properties of Friction Stir Process Derived Al-TiO2 Nanocomposite

verfasst von: H. C. Madhu, P. Ajay Kumar, Chandra S. Perugu, Satish V. Kailas

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aluminum-based composites have many advantages over their conventional counterparts. A major problem in such composites is the clustering of particles in the matrix. Friction stir processing (FSP) can homogenize particle distribution in aluminum-based composites. In this study, unannealed TiO2 particles were used to prepare Al-TiO2 nanocomposite using FSP. The TiO2 particles, about 1 µm, were dispersed into an aluminum matrix by 6 passes of FSP. The TiO2 particles were fractured by multiple FSP passes, leading to a nano-size particle distribution in the matrix. Nanoscale dispersion was confirmed by scanning electron microscopy and transmission electron microscopy. The fractured TiO2 particles reacted with the aluminum matrix to form Al3Ti intermetallic and Al2O3 ceramic. The progression of the Al-TiO2 reaction from the fourth to the sixth pass of FSP was revealed by x-ray diffraction. Due to the nanoscale dispersion, the yield and ultimate tensile strength of the composite increased to 97 and 145 MPa, respectively. Ductility of the composite decreased marginally compared to the as-received aluminum. As the dispersed particles pin dislocations, the strain-hardening rate of the composite was considerably increased and the same was seen in the Kocks-Mecking plot. The TiO2 particles are mechanically activated due to their fracture during FSP, hence leading to reaction with the matrix. The particle refinement and dispersion lead to a homogeneous matrix with higher strength.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W. Thomas, Friction Stir butt-welding, International Patent Application No. PCT/GB92/0220 (1991) W. Thomas, Friction Stir butt-welding, International Patent Application No. PCT/GB92/0220 (1991)
2.
Zurück zum Zitat R.S. Mishra and Z. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng., A, 2005, 50(1), p 1–78 R.S. Mishra and Z. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng., A, 2005, 50(1), p 1–78
3.
Zurück zum Zitat E.E. Patterson, Y. Hovanski, and D.P. Field, Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints, Metall. Mater. Trans. A, 2016, 47(6), p 2815–2829CrossRef E.E. Patterson, Y. Hovanski, and D.P. Field, Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints, Metall. Mater. Trans. A, 2016, 47(6), p 2815–2829CrossRef
4.
Zurück zum Zitat L. Ceschini, I. Boromei, G. Minak, A. Morri, and F. Tarterini, Effect of Friction Stir Welding on Microstructure, Tensile and Fatigue Properties of the AA7005/10 vol.% Al2O3 Composite, Compos. Sci. Technol., 2007, 67(3), p 605–661CrossRef L. Ceschini, I. Boromei, G. Minak, A. Morri, and F. Tarterini, Effect of Friction Stir Welding on Microstructure, Tensile and Fatigue Properties of the AA7005/10 vol.% Al2O3 Composite, Compos. Sci. Technol., 2007, 67(3), p 605–661CrossRef
5.
Zurück zum Zitat W.B. Lee, C.Y. Lee, M.K. Kim, J.I. Yoon, Y.J. Kim, Y.M. Yoen, and S.B. Jung, Microstructures and Wear Property of Friction Stir Welded AZ91 Mg/SiC Particle Reinforced Composite, Compos. Sci. Technol., 2006, 66(11), p 1513–1520CrossRef W.B. Lee, C.Y. Lee, M.K. Kim, J.I. Yoon, Y.J. Kim, Y.M. Yoen, and S.B. Jung, Microstructures and Wear Property of Friction Stir Welded AZ91 Mg/SiC Particle Reinforced Composite, Compos. Sci. Technol., 2006, 66(11), p 1513–1520CrossRef
6.
Zurück zum Zitat R.S. Mishra, M. Mahoney, S. McFadden, N. Mara, and A. Mukherjee, High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloys, Scr. Mater., 1999, 42(2), p 163–168CrossRef R.S. Mishra, M. Mahoney, S. McFadden, N. Mara, and A. Mukherjee, High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloys, Scr. Mater., 1999, 42(2), p 163–168CrossRef
7.
Zurück zum Zitat P.B. Berbon, W.H. Bingel, R.S. Mishra, C.C. Bampton, and M.W. Mahoney, Friction Stir Processing: A Tool to Homogenize Nanocomposite Aluminum Alloys, Scr. Mater., 2001, 44(1), p 61–66CrossRef P.B. Berbon, W.H. Bingel, R.S. Mishra, C.C. Bampton, and M.W. Mahoney, Friction Stir Processing: A Tool to Homogenize Nanocomposite Aluminum Alloys, Scr. Mater., 2001, 44(1), p 61–66CrossRef
8.
Zurück zum Zitat Y. Kwon, I. Shigematsu, and N. Saito, Mechanical Properties of Fine-Grained Aluminum Alloy Produced by Friction Stir Process, Scr. Mater., 2003, 49(8), p 785–789CrossRef Y. Kwon, I. Shigematsu, and N. Saito, Mechanical Properties of Fine-Grained Aluminum Alloy Produced by Friction Stir Process, Scr. Mater., 2003, 49(8), p 785–789CrossRef
9.
Zurück zum Zitat C. Rhodes, M. Mahoney, W. Bingel, and M. Calabrese, Fine-Grain Evolution in Friction-Stir Processed 7050 Aluminum, Scr Mater., 2003, 48(10), p 1451–1455CrossRef C. Rhodes, M. Mahoney, W. Bingel, and M. Calabrese, Fine-Grain Evolution in Friction-Stir Processed 7050 Aluminum, Scr Mater., 2003, 48(10), p 1451–1455CrossRef
10.
Zurück zum Zitat Z. Ma, R.S. Mishra, and M.W. Mahoney, Superplasticity in Cast A356 Induced via Friction Stir Processing, Scr Mater., 2004, 50(7), p 931–935CrossRef Z. Ma, R.S. Mishra, and M.W. Mahoney, Superplasticity in Cast A356 Induced via Friction Stir Processing, Scr Mater., 2004, 50(7), p 931–935CrossRef
11.
Zurück zum Zitat X.L. Shi, R.S. Mishra, and T.J. Watson, Effect of Temperature and Strain Rate on Tensile Behavior of Ultrafine-Grained Aluminum Alloys, Mater. Sci. Eng., A, 2008, 494(1), p 247–252CrossRef X.L. Shi, R.S. Mishra, and T.J. Watson, Effect of Temperature and Strain Rate on Tensile Behavior of Ultrafine-Grained Aluminum Alloys, Mater. Sci. Eng., A, 2008, 494(1), p 247–252CrossRef
12.
Zurück zum Zitat J.Q. Su, T. Nelson, and C. Sterling, Grain Refinement of Aluminum Alloys by Friction Stir Processing, Philos. Mag., 2006, 86(1), p 1–24CrossRef J.Q. Su, T. Nelson, and C. Sterling, Grain Refinement of Aluminum Alloys by Friction Stir Processing, Philos. Mag., 2006, 86(1), p 1–24CrossRef
13.
Zurück zum Zitat I. Charit and R.S. Mishra, Evaluation of Microstructure and Superplasticity in Friction Stir Processed 5083 Al Alloys, J. Mater. Res., 2004, 19(11), p 3329–3342CrossRef I. Charit and R.S. Mishra, Evaluation of Microstructure and Superplasticity in Friction Stir Processed 5083 Al Alloys, J. Mater. Res., 2004, 19(11), p 3329–3342CrossRef
14.
Zurück zum Zitat P.B. Berbon, W.H. Bingel, R.S. Mishra, C.C. Bampton, and M.W. Mahoney, Friction Stir Processing: A Tool to Homogenize Nanocomposite Aluminum Alloys, Scr. Mater., 2001, 44(1), p 61–66CrossRef P.B. Berbon, W.H. Bingel, R.S. Mishra, C.C. Bampton, and M.W. Mahoney, Friction Stir Processing: A Tool to Homogenize Nanocomposite Aluminum Alloys, Scr. Mater., 2001, 44(1), p 61–66CrossRef
15.
Zurück zum Zitat M. Saadatmand and J.A. Mohandesi, Comparison Between Wear Resistance of Functionally Graded And Homogenous Al-SiC Nanocomposite Produced by Friction Stir Processing (FSP), J. Mater. Eng. Perform., 2014, 23(3), p 736–742CrossRef M. Saadatmand and J.A. Mohandesi, Comparison Between Wear Resistance of Functionally Graded And Homogenous Al-SiC Nanocomposite Produced by Friction Stir Processing (FSP), J. Mater. Eng. Perform., 2014, 23(3), p 736–742CrossRef
16.
Zurück zum Zitat R. Beygi, M.Z. Mehrizi, and G. Eisaabadi B, Friction Stir Processing of Al with Mechanically Alloyed Al-TiO2-Graphite Powder: Microstructure and Mechanical Properties, J. Mater. Eng. Perform., 2017, 26(3), p 1455–1462CrossRef R. Beygi, M.Z. Mehrizi, and G. Eisaabadi B, Friction Stir Processing of Al with Mechanically Alloyed Al-TiO2-Graphite Powder: Microstructure and Mechanical Properties, J. Mater. Eng. Perform., 2017, 26(3), p 1455–1462CrossRef
17.
Zurück zum Zitat R.S. Mishra, Z. Ma, and I. Charit, Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite, Mater. Sci. Eng., A, 2003, 341(1), p 307–310CrossRef R.S. Mishra, Z. Ma, and I. Charit, Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite, Mater. Sci. Eng., A, 2003, 341(1), p 307–310CrossRef
18.
Zurück zum Zitat C. Hsu, P. Kao, and N. Ho, Ultrafine-Grained Al-Al2 Cu Composite Produced In Situ by Friction Stir Processing, Scr Mater., 2005, 53(3), p 341–345CrossRef C. Hsu, P. Kao, and N. Ho, Ultrafine-Grained Al-Al2 Cu Composite Produced In Situ by Friction Stir Processing, Scr Mater., 2005, 53(3), p 341–345CrossRef
19.
Zurück zum Zitat C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, and C.P. Chang, Al-Al3 Ti Nanocomposites Produced In Situ by Friction Stir Processing, Acta Mater., 2006, 54(19), p 5241–5249CrossRef C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, and C.P. Chang, Al-Al3 Ti Nanocomposites Produced In Situ by Friction Stir Processing, Acta Mater., 2006, 54(19), p 5241–5249CrossRef
20.
Zurück zum Zitat N. Chawla and Y.L. Shen, Mechanical Behaviour of Particle Reinforced Metal Matrix Composites, Adv. Eng. Mater., 2001, 3(6), p 357–370CrossRef N. Chawla and Y.L. Shen, Mechanical Behaviour of Particle Reinforced Metal Matrix Composites, Adv. Eng. Mater., 2001, 3(6), p 357–370CrossRef
21.
Zurück zum Zitat L. Davis and J. Allison, Residual Stresses and Their Effects on Deformation, Metall. Mater. Transac. A, 1993, 24(11), p 2487–2496CrossRef L. Davis and J. Allison, Residual Stresses and Their Effects on Deformation, Metall. Mater. Transac. A, 1993, 24(11), p 2487–2496CrossRef
22.
Zurück zum Zitat M. Vogelsang, R. Arsenault, and R. Fisher, An In Situ HVEM Study of Dislocation Generation at Al/SiC Interfaces in Metal Matrix Composites, Metall. Mater. Trans. A, 1986, 17(3), p 379–389CrossRef M. Vogelsang, R. Arsenault, and R. Fisher, An In Situ HVEM Study of Dislocation Generation at Al/SiC Interfaces in Metal Matrix Composites, Metall. Mater. Trans. A, 1986, 17(3), p 379–389CrossRef
23.
Zurück zum Zitat R. Arsenault and S. Wu, A Comparison of PM vs. Melted SiC/Al Composites, Scr Mater., 1988, 22(6), p 767–772 R. Arsenault and S. Wu, A Comparison of PM vs. Melted SiC/Al Composites, Scr Mater., 1988, 22(6), p 767–772
24.
Zurück zum Zitat P. Krajewski, J. Allison, and J. Jones, The Influence of Matrix Microstructure and Particle Reinforcement on the Creep Behavior of 2219 Aluminum, Metall. Mater. Trans. A, 1993, 24(1), p 2731–2741CrossRef P. Krajewski, J. Allison, and J. Jones, The Influence of Matrix Microstructure and Particle Reinforcement on the Creep Behavior of 2219 Aluminum, Metall. Mater. Trans. A, 1993, 24(1), p 2731–2741CrossRef
25.
Zurück zum Zitat K.S. Tun and M. Gupta, Improving Mechanical Properties of Magnesium Using Nano-yttria Reinforcement and Microwave Assisted Powder Metallurgy Method, Compos. Sci. Technol., 2007, 67(13), p 2657–2664CrossRef K.S. Tun and M. Gupta, Improving Mechanical Properties of Magnesium Using Nano-yttria Reinforcement and Microwave Assisted Powder Metallurgy Method, Compos. Sci. Technol., 2007, 67(13), p 2657–2664CrossRef
26.
Zurück zum Zitat N. Chawla, J. Jones, C. Andres, and J. Allison, Effect of SiC Volume Fraction and Particle Size on the Fatigue Resistance of a 2080 Al/SiCp Composite, Metall. Mater. Trans. A, 1998, 29(11), p 2843–2854CrossRef N. Chawla, J. Jones, C. Andres, and J. Allison, Effect of SiC Volume Fraction and Particle Size on the Fatigue Resistance of a 2080 Al/SiCp Composite, Metall. Mater. Trans. A, 1998, 29(11), p 2843–2854CrossRef
27.
Zurück zum Zitat F. Hou, W. Wang, and H. Guo, Effect of the Dispersibility of ZrO2 Nanoparticles in Ni–ZrO2 Electroplated Nanocomposite Coatings on the Mechanical Properties of Nanocomposite Coatings, Appl. Surf. Sci., 2006, 252(10), p 3812–3817CrossRef F. Hou, W. Wang, and H. Guo, Effect of the Dispersibility of ZrO2 Nanoparticles in Ni–ZrO2 Electroplated Nanocomposite Coatings on the Mechanical Properties of Nanocomposite Coatings, Appl. Surf. Sci., 2006, 252(10), p 3812–3817CrossRef
28.
Zurück zum Zitat Q. Zhang, B. Xiao, W. Wang, and Z. Ma, Reactive Mechanism and Mechanical Properties of In Situ Composites Fabricated from an Al–TiO2 System by Friction Stir Processing, Acta Mater., 2012, 60(20), p 7090–7103CrossRef Q. Zhang, B. Xiao, W. Wang, and Z. Ma, Reactive Mechanism and Mechanical Properties of In Situ Composites Fabricated from an Al–TiO2 System by Friction Stir Processing, Acta Mater., 2012, 60(20), p 7090–7103CrossRef
29.
Zurück zum Zitat F. Khodabakhshi, A. Simchi, A. Kokabi, M. Sadeghahmadi, and A. Gerlich, Reactive Friction Stir Processing of AA 5052-TiO2 Nanocomposite: Process-Microstructure-Mechanical Characteristics, Mater. Sci. Technol., 2015, 31(4), p 426–435CrossRef F. Khodabakhshi, A. Simchi, A. Kokabi, M. Sadeghahmadi, and A. Gerlich, Reactive Friction Stir Processing of AA 5052-TiO2 Nanocomposite: Process-Microstructure-Mechanical Characteristics, Mater. Sci. Technol., 2015, 31(4), p 426–435CrossRef
30.
Zurück zum Zitat F. Khodabakhshi, A. Simchi, A. Kokabi, M. Nosko, F. Simanĉik, and P. Švec, Microstructure and Texture Development During Friction Stir Processing of Al-Mg Alloy Sheets with TiO2 Nanoparticles, Mater. Sci. Eng., A, 2014, 605, p 108–118CrossRef F. Khodabakhshi, A. Simchi, A. Kokabi, M. Nosko, F. Simanĉik, and P. Švec, Microstructure and Texture Development During Friction Stir Processing of Al-Mg Alloy Sheets with TiO2 Nanoparticles, Mater. Sci. Eng., A, 2014, 605, p 108–118CrossRef
31.
Zurück zum Zitat V.C. Gudla, F. Jensen, A. Simar, R. Shabadi, and R. Ambat, Friction Stir Processed Al-TiO2 Surface Composites: Anodising Behaviour and Optical Appearance, Appl. Surface Sci., 2015, 324(Supplement C), p 554–562CrossRef V.C. Gudla, F. Jensen, A. Simar, R. Shabadi, and R. Ambat, Friction Stir Processed Al-TiO2 Surface Composites: Anodising Behaviour and Optical Appearance, Appl. Surface Sci., 2015, 324(Supplement C), p 554–562CrossRef
32.
Zurück zum Zitat S. Mahshid, M.S. Ghamsari, M. Askari, N. Afshar, and S. Lahuti, Synthesis of TiO2 Nanoparticles by Hydrolysis and Peptization of Titanium Isopropoxide Solution, Semicond. Phys. Quan. Electron. Optoelectron, 2006, 9(2), p 65–68 S. Mahshid, M.S. Ghamsari, M. Askari, N. Afshar, and S. Lahuti, Synthesis of TiO2 Nanoparticles by Hydrolysis and Peptization of Titanium Isopropoxide Solution, Semicond. Phys. Quan. Electron. Optoelectron, 2006, 9(2), p 65–68
33.
Zurück zum Zitat K. Jata, S. Semiatin, Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys, DTIC Document, 2000 K. Jata, S. Semiatin, Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys, DTIC Document, 2000
34.
Zurück zum Zitat R. Fonda, J. Bingert, and K. Colligan, Development of Grain Structure During Friction Stir Welding, Scr Mater., 2004, 51(3), p 243–248CrossRef R. Fonda, J. Bingert, and K. Colligan, Development of Grain Structure During Friction Stir Welding, Scr Mater., 2004, 51(3), p 243–248CrossRef
35.
Zurück zum Zitat A. Kumar, R. Raj, and S.V. Kailas, A Novel in-situ Polymer Derived Nano Ceramic MMC by Friction Stir Processing, Mater. Des., 2015, 85, p 626–634CrossRef A. Kumar, R. Raj, and S.V. Kailas, A Novel in-situ Polymer Derived Nano Ceramic MMC by Friction Stir Processing, Mater. Des., 2015, 85, p 626–634CrossRef
36.
Zurück zum Zitat M. Guerra, C. Schmidt, J. McClure, L. Murr, and A. Nunes, Flow Patterns During Friction Stir Welding, Mater. Charact., 2002, 49(2), p 95–101CrossRef M. Guerra, C. Schmidt, J. McClure, L. Murr, and A. Nunes, Flow Patterns During Friction Stir Welding, Mater. Charact., 2002, 49(2), p 95–101CrossRef
37.
Zurück zum Zitat A. Kumar, D. Yadav, C.S. Perugu, and S.V. Kailas, Influence of Particulate Reinforcement on Microstructure Evolution and Tensile Properties of in-situ Polymer Derived MMC by Friction Stir Processing, Mater. Des., 2017, 113, p 99–108CrossRef A. Kumar, D. Yadav, C.S. Perugu, and S.V. Kailas, Influence of Particulate Reinforcement on Microstructure Evolution and Tensile Properties of in-situ Polymer Derived MMC by Friction Stir Processing, Mater. Des., 2017, 113, p 99–108CrossRef
38.
Zurück zum Zitat C. Chang, C. Lee, and J. Huang, Relationship Between Grain Size and Zener-Holloman Parameter During Friction Stir Processing in AZ31 Mg alloys, Scr Mater., 2004, 51(6), p 509–514CrossRef C. Chang, C. Lee, and J. Huang, Relationship Between Grain Size and Zener-Holloman Parameter During Friction Stir Processing in AZ31 Mg alloys, Scr Mater., 2004, 51(6), p 509–514CrossRef
39.
Zurück zum Zitat Z. Zhang and D. Chen, Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength, Scr Mater., 2006, 54(7), p 1321–1326CrossRef Z. Zhang and D. Chen, Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength, Scr Mater., 2006, 54(7), p 1321–1326CrossRef
40.
Zurück zum Zitat U. Kocks, Laws for Work Hardening and Low-Temperature Creep, J. Eng. Mater. Technol., 1976, 98(1), p 76–85CrossRef U. Kocks, Laws for Work Hardening and Low-Temperature Creep, J. Eng. Mater. Technol., 1976, 98(1), p 76–85CrossRef
Metadaten
Titel
Microstructure and Mechanical Properties of Friction Stir Process Derived Al-TiO2 Nanocomposite
verfasst von
H. C. Madhu
P. Ajay Kumar
Chandra S. Perugu
Satish V. Kailas
Publikationsdatum
29.01.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3188-y

Weitere Artikel der Ausgabe 3/2018

Journal of Materials Engineering and Performance 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.