Skip to main content
Erschienen in: Rare Metals 2/2023

17.08.2017

Microstructure and mechanical properties of Ti44Al6Nb1Cr2V alloy after gaseous hydrogen charging at 1373–1693 K

verfasst von: Teng-Fei Ma, Rui-Run Chen, De-Shuang Zheng, Jing-Jie Guo, Hong-Sheng Ding, Yan-Qing Su, Heng-Zhi Fu

Erschienen in: Rare Metals | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The hydrogenation behavior of Ti44Al6Nb1Cr2V (at%) alloy at temperature range of 1373–1693 K and its effect on microstructure and room-temperature mechanical properties were studied systematically in this study. The results show that hydrogen content increases with the increase in temperature, and the maximum hydrogen content is 0.126 wt% at 1693 K. The heat of solution of hydrogen is calculated as 82.9 kJ·mol−1 by curve fitting, indicating that hydrogen absorption in TiAl alloys is endothermic. Hydrogen promotes the lamellar colony size because hydrogen promotes the diffusion of elements. Hydrogen stabilizes B2 phase during hydrogenation resulting in more residual B2 phase in the hydrogenated alloy. The nanohardness and elastic modulus decrease after hydrogenation due to that hydrogen weakens the bonds. The Ti44Al6Nb1Cr2V alloy exhibits higher plasticity and lower flow stress hydrogenation with 0.039 wt% H, and the ultimate compressive strength decreases from 1220 to 1130 MPa, while the fracture strain is enhanced by 26%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Schwaighofer E, Clemens H, Mayer S, Lindemann J, Klose J, Smarsly W, Güther V. Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ-TiAl based alloy. Intermetallics. 2014;44:128.CrossRef Schwaighofer E, Clemens H, Mayer S, Lindemann J, Klose J, Smarsly W, Güther V. Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ-TiAl based alloy. Intermetallics. 2014;44:128.CrossRef
[2]
Zurück zum Zitat Imayev V, Oleneva T, Imayev R, Christ HJ, Fecht HJ. Microstructure and mechanical properties of low and heavy alloyed γ-TiAl + α2−Ti3Al based alloys subjected to different treatments. Intermetallics. 2012;26:91.CrossRef Imayev V, Oleneva T, Imayev R, Christ HJ, Fecht HJ. Microstructure and mechanical properties of low and heavy alloyed γ-TiAl + α2−Ti3Al based alloys subjected to different treatments. Intermetallics. 2012;26:91.CrossRef
[3]
Zurück zum Zitat Pflumm R, Friedle S, Schütze M. Oxidation protection of γ-TiAl-based alloys—a review. Intermetallics. 2015;56:1.CrossRef Pflumm R, Friedle S, Schütze M. Oxidation protection of γ-TiAl-based alloys—a review. Intermetallics. 2015;56:1.CrossRef
[4]
Zurück zum Zitat Liang YF, Xu XJ, Lin JP. Advances in phase relationship for high Nb-containing TiAl alloys. Rare Met. 2016;35(1):15.CrossRef Liang YF, Xu XJ, Lin JP. Advances in phase relationship for high Nb-containing TiAl alloys. Rare Met. 2016;35(1):15.CrossRef
[5]
Zurück zum Zitat Jiao ZH, Yu HC, Su YJ, Kong FT, Chen YY. Tensile properties of large-sized Ti–43Al–9V–Y alloy with duplex and fully lamellar structure. Mater Mech Eng. 2014;38(3):50. Jiao ZH, Yu HC, Su YJ, Kong FT, Chen YY. Tensile properties of large-sized Ti–43Al–9V–Y alloy with duplex and fully lamellar structure. Mater Mech Eng. 2014;38(3):50.
[6]
Zurück zum Zitat Hadi M, Shafyei A, Meratian M. A comparative study of microstructure and high temperature mechanical properties of a β-stabilized TiAl alloy modified by lanthanum and erbium. Mater Sci Eng A. 2015;624:1.CrossRef Hadi M, Shafyei A, Meratian M. A comparative study of microstructure and high temperature mechanical properties of a β-stabilized TiAl alloy modified by lanthanum and erbium. Mater Sci Eng A. 2015;624:1.CrossRef
[7]
Zurück zum Zitat Zong Y, Shan D, Lv Y, Guo B. Effect of 0.3 wt% H addition on the high temperature deformation behaviors of Ti–6Al–4V alloy. Int J Hydrogen Energy. 2007;32(16):3936.CrossRef Zong Y, Shan D, Lv Y, Guo B. Effect of 0.3 wt% H addition on the high temperature deformation behaviors of Ti–6Al–4V alloy. Int J Hydrogen Energy. 2007;32(16):3936.CrossRef
[8]
Zurück zum Zitat Froes FH, Senkov ON, Qazi JI. Hydrogen as a temporary alloying element in titanium alloys: thermohydrogen processing. Int Mater Rev. 2004;49(3–4):227.CrossRef Froes FH, Senkov ON, Qazi JI. Hydrogen as a temporary alloying element in titanium alloys: thermohydrogen processing. Int Mater Rev. 2004;49(3–4):227.CrossRef
[9]
Zurück zum Zitat Shen C, Yu C, Perng T. Variation of structure and mechanical properties of Ti–6Al–4V with isothermal hydrogenation treatment. Acta Mater. 2009;57(3):868.CrossRef Shen C, Yu C, Perng T. Variation of structure and mechanical properties of Ti–6Al–4V with isothermal hydrogenation treatment. Acta Mater. 2009;57(3):868.CrossRef
[10]
Zurück zum Zitat Wen D, Zong Y, Xu W, Shan D, Guo B. The effect of hydrogen on phase transformation and mechanical properties of a β containing γ–TiAl based alloy. Int J Hydrogen Energy. 2014;39(30):17404.CrossRef Wen D, Zong Y, Xu W, Shan D, Guo B. The effect of hydrogen on phase transformation and mechanical properties of a β containing γ–TiAl based alloy. Int J Hydrogen Energy. 2014;39(30):17404.CrossRef
[11]
Zurück zum Zitat Liu X, Su Y, Luo L, Liu J, Guo J, Fu H. Effect of hydrogen on hot deformation behaviors of TiAl alloys. Int J Hydrogen Energy. 2010;35(24):13322.CrossRef Liu X, Su Y, Luo L, Liu J, Guo J, Fu H. Effect of hydrogen on hot deformation behaviors of TiAl alloys. Int J Hydrogen Energy. 2010;35(24):13322.CrossRef
[12]
Zurück zum Zitat Takasaki A. High-pressure hydrogen charging of TiAl-based titanium aluminides. Scr Mater. 1998;38(4):687.CrossRef Takasaki A. High-pressure hydrogen charging of TiAl-based titanium aluminides. Scr Mater. 1998;38(4):687.CrossRef
[13]
Zurück zum Zitat Takasaki A, Furuya Y, Taneda Y. Hydrogen uptake in titanium aluminides in high pressure hydrogen. Mater Sci Eng A. 1997;239–240:265.CrossRef Takasaki A, Furuya Y, Taneda Y. Hydrogen uptake in titanium aluminides in high pressure hydrogen. Mater Sci Eng A. 1997;239–240:265.CrossRef
[14]
Zurück zum Zitat Liu Y, Hu R, Kou HC, Wang J, Zhang TB, Li JS, Zhang J. Solidification characteristics of high Nb-containing γ-TiAl-based alloys with different aluminum contents. Rare Met. 2015;34(6):381.CrossRef Liu Y, Hu R, Kou HC, Wang J, Zhang TB, Li JS, Zhang J. Solidification characteristics of high Nb-containing γ-TiAl-based alloys with different aluminum contents. Rare Met. 2015;34(6):381.CrossRef
[15]
Zurück zum Zitat Erdely P, Werner R, Schwaighofer E, Clemens H, Mayer S. In-situ study of the time–temperature-transformation behaviour of a multi-phase intermetallic β-stabilised TiAl alloy. Intermetallics. 2015;57:17.CrossRef Erdely P, Werner R, Schwaighofer E, Clemens H, Mayer S. In-situ study of the time–temperature-transformation behaviour of a multi-phase intermetallic β-stabilised TiAl alloy. Intermetallics. 2015;57:17.CrossRef
[16]
Zurück zum Zitat Sun F, Cao C, Kim S, Lee Y, Yan M. Alloying mechanism of beta stabilizers in a TiAl alloy. Metall Mater Trans A. 2001;32A:1573.CrossRef Sun F, Cao C, Kim S, Lee Y, Yan M. Alloying mechanism of beta stabilizers in a TiAl alloy. Metall Mater Trans A. 2001;32A:1573.CrossRef
[17]
Zurück zum Zitat Takasaki A, Furuya Y, Ojima K, Taneda Y. Hydrogen solubility of two-phase (Ti3Al + TiAl) titanium aluminides. Scr Mater. 1995;32(11):1759.CrossRef Takasaki A, Furuya Y, Ojima K, Taneda Y. Hydrogen solubility of two-phase (Ti3Al + TiAl) titanium aluminides. Scr Mater. 1995;32(11):1759.CrossRef
[18]
Zurück zum Zitat Niinomi M, Gong B, Kobayashi T, Ohyabu Y, Toriyama O. Fracture characteristics of Ti–6Al–4V and Ti–5Al–2.5Fe with refined microstructure using hydrogen. Metall Mater Trans A. 1995;26(5):1141.CrossRef Niinomi M, Gong B, Kobayashi T, Ohyabu Y, Toriyama O. Fracture characteristics of Ti–6Al–4V and Ti–5Al–2.5Fe with refined microstructure using hydrogen. Metall Mater Trans A. 1995;26(5):1141.CrossRef
[19]
Zurück zum Zitat Chen S, Liang CP, Gong HR. Structural stability, mechanical property and elastic anisotropy of TiAl-H system. Int J Hydrogen Energy. 2012;37(3):2676.CrossRef Chen S, Liang CP, Gong HR. Structural stability, mechanical property and elastic anisotropy of TiAl-H system. Int J Hydrogen Energy. 2012;37(3):2676.CrossRef
[20]
Zurück zum Zitat Menand A, Huguet A, Nerac-Partaix A. Interstitial solubility in γ and α2 phases of TiAl-based alloys. Acta Mater. 1996;44(12):4729.CrossRef Menand A, Huguet A, Nerac-Partaix A. Interstitial solubility in γ and α2 phases of TiAl-based alloys. Acta Mater. 1996;44(12):4729.CrossRef
[21]
Zurück zum Zitat Chen RR, Ma TF, Sun ZP, Guo JJ, Ding HS, Su YQ, Fu HZ. The hydrogen absorption behavior of high Nb contained titanium aluminides under high pressure and temperature. Int J Hydrogen Energy. 2016;41(30):13254.CrossRef Chen RR, Ma TF, Sun ZP, Guo JJ, Ding HS, Su YQ, Fu HZ. The hydrogen absorption behavior of high Nb contained titanium aluminides under high pressure and temperature. Int J Hydrogen Energy. 2016;41(30):13254.CrossRef
[22]
Zurück zum Zitat Sundaram PA, Wessel E, Ennis PJ, Quadakkers WJ, Singheiser L. Diffusion coefficient of hydrogen in a cast gamma titanium aluminide. Scr Mater. 1999;41(1):75.CrossRef Sundaram PA, Wessel E, Ennis PJ, Quadakkers WJ, Singheiser L. Diffusion coefficient of hydrogen in a cast gamma titanium aluminide. Scr Mater. 1999;41(1):75.CrossRef
[23]
Zurück zum Zitat Su Y, Liu X, Luo L, Zhao L, Guo J, Fu H. Hydrogen solubility in molten TiAl alloys. Int J Hydrogen Energy. 2010;35(15):8008.CrossRef Su Y, Liu X, Luo L, Zhao L, Guo J, Fu H. Hydrogen solubility in molten TiAl alloys. Int J Hydrogen Energy. 2010;35(15):8008.CrossRef
[24]
Zurück zum Zitat Kong FT, Xiao SL, Chen YY, Li BH. Continuous cooling phase transformation of Ti–45Al–5Nb(–0.3Y) alloys. Rare Met Mat Eng. 2009;38(1):25. Kong FT, Xiao SL, Chen YY, Li BH. Continuous cooling phase transformation of Ti–45Al–5Nb(–0.3Y) alloys. Rare Met Mat Eng. 2009;38(1):25.
[25]
Zurück zum Zitat Ramanujan RV. Phase transformations in γ based titanium aluminides. Int Mater Rev. 2000;45(6):217.CrossRef Ramanujan RV. Phase transformations in γ based titanium aluminides. Int Mater Rev. 2000;45(6):217.CrossRef
[26]
Zurück zum Zitat Clemens H, Bartels A, Bystrzanowski S, Chladil H, Leitner H, Dehm G, Gerling R, Schimansky FP. Grain refinement in γ-TiAl-based alloys by solid state phase transformations. Intermetallics. 2006;14(12):1380.CrossRef Clemens H, Bartels A, Bystrzanowski S, Chladil H, Leitner H, Dehm G, Gerling R, Schimansky FP. Grain refinement in γ-TiAl-based alloys by solid state phase transformations. Intermetallics. 2006;14(12):1380.CrossRef
[27]
Zurück zum Zitat Han XL, Wang Q, Sun DL, Zhang HX. First-principles study of the effect of hydrogen on the Ti self-diffusion characteristics in the alpha Ti–H system. Scr Mater. 2007;56(1):77.CrossRef Han XL, Wang Q, Sun DL, Zhang HX. First-principles study of the effect of hydrogen on the Ti self-diffusion characteristics in the alpha Ti–H system. Scr Mater. 2007;56(1):77.CrossRef
[28]
Zurück zum Zitat Xu XJ, Song L, Jin XO, Han DD, Wang X, Lin JP. Microstructure and microsegregation of directionally solidified Ti–45Al–8Nb alloy with different solidification rates. Rare Met. 2016;35(1):70.CrossRef Xu XJ, Song L, Jin XO, Han DD, Wang X, Lin JP. Microstructure and microsegregation of directionally solidified Ti–45Al–8Nb alloy with different solidification rates. Rare Met. 2016;35(1):70.CrossRef
[29]
Zurück zum Zitat Qazi JI, Senkov ON, Rahim J, Genc A, Froes FH. Phase transformations in Ti6Al4V–xH alloys. Metall Mater Trans A. 2001;32A(9):2453.CrossRef Qazi JI, Senkov ON, Rahim J, Genc A, Froes FH. Phase transformations in Ti6Al4V–xH alloys. Metall Mater Trans A. 2001;32A(9):2453.CrossRef
[30]
Zurück zum Zitat Cao SZ, Xiao SL, Chen YY, Tian J, Xu LJ, Wang XP, Han JC, Jia Y. Microstructure evolution of Ti–46Al–6Nb–(Si, B) alloys during heat treatment with W addition. Rare Met. 2016;35(1):85.CrossRef Cao SZ, Xiao SL, Chen YY, Tian J, Xu LJ, Wang XP, Han JC, Jia Y. Microstructure evolution of Ti–46Al–6Nb–(Si, B) alloys during heat treatment with W addition. Rare Met. 2016;35(1):85.CrossRef
[31]
Zurück zum Zitat Sundaram PA, Basu D, Steinbrech RW, Ennis PJ, Quadakkers WJ, Singheiser L. Effect of hydrogen on the elastic modulus and hardness of gamma titanium aluminides. Scr Mater. 1999;41(8):839.CrossRef Sundaram PA, Basu D, Steinbrech RW, Ennis PJ, Quadakkers WJ, Singheiser L. Effect of hydrogen on the elastic modulus and hardness of gamma titanium aluminides. Scr Mater. 1999;41(8):839.CrossRef
[32]
Zurück zum Zitat Ruales M, Martell D, Vazquez F, Just FA, Sundaram PA. Effect of hydrogen on the dynamic elastic modulus of gamma titanium aluminide. J Alloy Compd. 2002;339(1–2):156.CrossRef Ruales M, Martell D, Vazquez F, Just FA, Sundaram PA. Effect of hydrogen on the dynamic elastic modulus of gamma titanium aluminide. J Alloy Compd. 2002;339(1–2):156.CrossRef
[33]
Zurück zum Zitat Abanto-Bueno JL, Sundaram PA, Clemens H. Effect of hydrogen on the tensile properties of a Ti–47Al–2Cr–0.2Si sheet under electrolytic charging conditions. Scr Mater. 1998;38(1):149.CrossRef Abanto-Bueno JL, Sundaram PA, Clemens H. Effect of hydrogen on the tensile properties of a Ti–47Al–2Cr–0.2Si sheet under electrolytic charging conditions. Scr Mater. 1998;38(1):149.CrossRef
[34]
Zurück zum Zitat Chen Y, Niu H, Kong F, Xiao S. Microstructure and fracture toughness of a β phase containing TiAl alloy. Intermetallics. 2011;19(10):1405.CrossRef Chen Y, Niu H, Kong F, Xiao S. Microstructure and fracture toughness of a β phase containing TiAl alloy. Intermetallics. 2011;19(10):1405.CrossRef
[35]
Zurück zum Zitat Voisin T, Monchoux J, Hantcherli M, Mayer S, Clemens H, Couret A. Microstructures and mechanical properties of a multi-phase β-solidifying TiAl alloy densified by spark plasma sintering. Acta Mater. 2014;73:107.CrossRef Voisin T, Monchoux J, Hantcherli M, Mayer S, Clemens H, Couret A. Microstructures and mechanical properties of a multi-phase β-solidifying TiAl alloy densified by spark plasma sintering. Acta Mater. 2014;73:107.CrossRef
Metadaten
Titel
Microstructure and mechanical properties of Ti44Al6Nb1Cr2V alloy after gaseous hydrogen charging at 1373–1693 K
verfasst von
Teng-Fei Ma
Rui-Run Chen
De-Shuang Zheng
Jing-Jie Guo
Hong-Sheng Ding
Yan-Qing Su
Heng-Zhi Fu
Publikationsdatum
17.08.2017
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 2/2023
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-017-0946-1

Weitere Artikel der Ausgabe 2/2023

Rare Metals 2/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.