Skip to main content
Erschienen in: Rare Metals 3/2020

06.12.2018

Microstructure and properties of continuous casting Ag–28Cu–8Sn alloy fabricated by dieless drawing

verfasst von: Ji-Heng Fang, Ming Xie, Ji-Ming Zhang, You-Cai Yang, Yong-Tai Chen, Song Wang, Man-Men Liu, Jie-Qiong Hu

Erschienen in: Rare Metals | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ag–28Cu–8Sn (wt%) alloy is a widely used brittle silver-based brazing filler metal. The wire of brazing filler metal was prepared by continuous casting process and dieless drawing technology. The phase structure was measured by X-ray diffraction (XRD), and the microstructure of wetting interface, cast states, processing states and fracture morphologies were characterized by the optical microscopy (OM) and scanning electron microscopy (SEM), respectively. The electrical conductivity, hardness, tensile strength and elongation rate were tested as well. Furthermore, the solid–liquid phase temperature was measured by a differential scanning calorimeter (DSC), and the wettability of brazing filler metal was tested by spreading method. The outcomes obtained show that the as-cast microstructure is a typical three-zone structure, including region of surface fine grain, zone of columnar grain and region of center equiaxed crystal. Ag–28Cu–8Sn alloy is mainly composed of Ag-rich α-phase, Cu-rich β-phase and intermediate compounds. Grain refinement appears in the cross section, as for grains of the longitudinal section, the shape is changed from ribbon to fiber to form a silk texture. The strength and hardness improve with the increase in the true strain, while the conductivity and elongation are reduced. Furthermore, the solid-phase temperature is 605.9 °C, and the liquid-phase temperature is 725.1 °C. The spreading area of Ag–28Cu–8Sn brazing filler metal is 174 mm2, and the metallurgical bonding occurs between Ag–28Cu–8Sn brazing filler metal and Cu matrix. In addition, compared with cold drawing process, there are not any microcracks at the fracture morphology for the alloy fabricated by dieless drawing. The dieless drawing process overcomes some processing defects of traditional cold drawing, and the processing performance of Ag–28Cu–8Sn alloy is improved.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Robert JS, Daniel JL. Directional solidification in a AgCuSn eutectic alloy. Metall Mater Trans A. 2005;36(10):2775. Robert JS, Daniel JL. Directional solidification in a AgCuSn eutectic alloy. Metall Mater Trans A. 2005;36(10):2775.
[2]
Zurück zum Zitat Daniel L, Sarah A, Michael N, Adam S. Determination of the eutectic structure in the Ag–Cu–Sn system. J Electron Mater. 2002;31(2):161. Daniel L, Sarah A, Michael N, Adam S. Determination of the eutectic structure in the Ag–Cu–Sn system. J Electron Mater. 2002;31(2):161.
[3]
Zurück zum Zitat Li H, Zhang HF, Wang LB, Zhai GJ, Ding BZ, Mai ZH, Hu ZQ. Interfacial morphologies between iron and Ag–Cu–Sn alloy. Chin Sci Bull. 1999;44(16):1463. Li H, Zhang HF, Wang LB, Zhai GJ, Ding BZ, Mai ZH, Hu ZQ. Interfacial morphologies between iron and Ag–Cu–Sn alloy. Chin Sci Bull. 1999;44(16):1463.
[4]
Zurück zum Zitat Yang JL, Xue SB, Liu H, Xue P, Dai W, Shi XM, Guo FF. Effects of silicon on microstructures and properties of Al–40Zn–xSi filler metal. Rare Metal Mater Eng. 2016;45(2):333. Yang JL, Xue SB, Liu H, Xue P, Dai W, Shi XM, Guo FF. Effects of silicon on microstructures and properties of Al–40Zn–xSi filler metal. Rare Metal Mater Eng. 2016;45(2):333.
[5]
Zurück zum Zitat Zhang LG, Xu K, Zhao M. Research progress on precious metals medium-low temperature brittle filler metals for electronic industry. Precious Met. 2014;35(03):71. Zhang LG, Xu K, Zhao M. Research progress on precious metals medium-low temperature brittle filler metals for electronic industry. Precious Met. 2014;35(03):71.
[6]
Zurück zum Zitat Liu ZG, Chen DQ, Xu K, Luo XM, Chen LW. Structure analysis of gold–tin alloy prepared by D-KH method. Precious Met. 2005;26(3):30. Liu ZG, Chen DQ, Xu K, Luo XM, Chen LW. Structure analysis of gold–tin alloy prepared by D-KH method. Precious Met. 2005;26(3):30.
[7]
Zurück zum Zitat Kopyto M, Onderka B, Zabdyr LA. Thermodynamic properties of the liquid Ag–Cu–Sn lead-free solder alloys. Mater Chem Phys. 2010;122(2–3):480. Kopyto M, Onderka B, Zabdyr LA. Thermodynamic properties of the liquid Ag–Cu–Sn lead-free solder alloys. Mater Chem Phys. 2010;122(2–3):480.
[8]
Zurück zum Zitat Chen DQ, Li W, Luo XM, Xu K. Research progress of Au and Ag based mid-temperature brazing filler alloys for electronic industry. Precious Met. 2009;30(3):62. Chen DQ, Li W, Luo XM, Xu K. Research progress of Au and Ag based mid-temperature brazing filler alloys for electronic industry. Precious Met. 2009;30(3):62.
[9]
Zurück zum Zitat Gierlotka W. Thermodynamic description of the quaternary Ag–Cu–In–Sn system. J Electron Mater. 2012;41(1):86. Gierlotka W. Thermodynamic description of the quaternary Ag–Cu–In–Sn system. J Electron Mater. 2012;41(1):86.
[10]
Zurück zum Zitat Twohig E, Tiernan P, Tofail SAM. Experimental study on dieless drawing of nickel–titanium alloy. J Mech Behav Biomed Mater. 2012;8(2):8. Twohig E, Tiernan P, Tofail SAM. Experimental study on dieless drawing of nickel–titanium alloy. J Mech Behav Biomed Mater. 2012;8(2):8.
[11]
Zurück zum Zitat Liu XF, Wu YH, Xie JX. Deformation behavior of Cu–12 wt%Al alloy wires with continuous columnar crystals in dieless drawing process. Sci China Ser E. 2009;52(8):2232. Liu XF, Wu YH, Xie JX. Deformation behavior of Cu–12 wt%Al alloy wires with continuous columnar crystals in dieless drawing process. Sci China Ser E. 2009;52(8):2232.
[12]
Zurück zum Zitat Hwang YM, Kuo TY. Dieless drawing of stainless-steel tubes. Int J Adv Manuf Technol. 2013;68(5–8):1311. Hwang YM, Kuo TY. Dieless drawing of stainless-steel tubes. Int J Adv Manuf Technol. 2013;68(5–8):1311.
[13]
Zurück zum Zitat Twohig E, Tiernan P, Tofail SAM. Experimental study on dieless drawing of nickel–titanium alloy. J Mech Behav Biomed Mater. 2012;8(2):2. Twohig E, Tiernan P, Tofail SAM. Experimental study on dieless drawing of nickel–titanium alloy. J Mech Behav Biomed Mater. 2012;8(2):2.
[14]
Zurück zum Zitat Furushima T, Hirose Y, Tada K. Development of superplastic dieless drawing apparatus for 3Y-TZP zirconia ceramic tube. Mater Sci Forum. 2016;838(1):597. Furushima T, Hirose Y, Tada K. Development of superplastic dieless drawing apparatus for 3Y-TZP zirconia ceramic tube. Mater Sci Forum. 2016;838(1):597.
[15]
Zurück zum Zitat Chen K, Wang Z, Zhang Y. FEM simulation to temperature field of stainless steel in dieless forming. Met Form Technol. 2002;4(3):43. Chen K, Wang Z, Zhang Y. FEM simulation to temperature field of stainless steel in dieless forming. Met Form Technol. 2002;4(3):43.
[16]
Zurück zum Zitat Liu X, He Y, Bi C. Simulation on electromagnetic and temperature fields in dieless drawing forming of NiTi shape memory alloy wires. Rare Met. 2005;29(5):763. Liu X, He Y, Bi C. Simulation on electromagnetic and temperature fields in dieless drawing forming of NiTi shape memory alloy wires. Rare Met. 2005;29(5):763.
[17]
Zurück zum Zitat Sun T, Yue F, Wu HJ, Guo C, Li Y, Ma ZC. Solidification structure of continuous casting large round billets under mold electromagnetic stirring. J Iron Steel Res Int. 2016;23(4):329. Sun T, Yue F, Wu HJ, Guo C, Li Y, Ma ZC. Solidification structure of continuous casting large round billets under mold electromagnetic stirring. J Iron Steel Res Int. 2016;23(4):329.
[18]
Zurück zum Zitat Xie SS, Xie WH, Huang SH. Numerical simulation of temperature field of copper and copper alloy in horizontal continuous casting. Rare Met. 1999;18(3):195. Xie SS, Xie WH, Huang SH. Numerical simulation of temperature field of copper and copper alloy in horizontal continuous casting. Rare Met. 1999;18(3):195.
[19]
Zurück zum Zitat Wang YC, Li DY, Peng Yh, Zhu LG. Computational modeling and control system of continuous casting process. Int J Adv Manuf Technol. 2007;33(1–2):1. Wang YC, Li DY, Peng Yh, Zhu LG. Computational modeling and control system of continuous casting process. Int J Adv Manuf Technol. 2007;33(1–2):1.
[20]
Zurück zum Zitat He Y, Liu XF, Xie JX, Zhang HG. Processing limit maps for the stable deformation of dieless drawing. Int J Miner Metall Mater. 2011;18(3):330. He Y, Liu XF, Xie JX, Zhang HG. Processing limit maps for the stable deformation of dieless drawing. Int J Miner Metall Mater. 2011;18(3):330.
[21]
Zurück zum Zitat Liu K, Jiang Z, Zhou H. Effect of heat treatment on the microstructure and properties of deformation-processed Cu–7Cr in situ composites. J Mater Eng Perform. 2015;24(11):4340. Liu K, Jiang Z, Zhou H. Effect of heat treatment on the microstructure and properties of deformation-processed Cu–7Cr in situ composites. J Mater Eng Perform. 2015;24(11):4340.
[22]
Zurück zum Zitat Wang LA, Song KA, Wang QB, Gao A, Zhang YA. Influence of drawing deformation on microstructure and properties of pure copper wires with different diameters. J Henan Univ Sci Technol. 2013;34(3):15. Wang LA, Song KA, Wang QB, Gao A, Zhang YA. Influence of drawing deformation on microstructure and properties of pure copper wires with different diameters. J Henan Univ Sci Technol. 2013;34(3):15.
[23]
Zurück zum Zitat Kang BH, Jaluria Y. Thermal modeling of the continuous casting process. J Thermophys Heat Transf. 2015;7(7):139. Kang BH, Jaluria Y. Thermal modeling of the continuous casting process. J Thermophys Heat Transf. 2015;7(7):139.
[24]
Zurück zum Zitat Ma XQ, Niu HZ, Yu ZT, Yu S, Wang C. Microstructural adjustments and mechanical properties of a cold-rolled biomedical near β-Ti alloy sheet. Rare Met. 2018;37(10):846. Ma XQ, Niu HZ, Yu ZT, Yu S, Wang C. Microstructural adjustments and mechanical properties of a cold-rolled biomedical near β-Ti alloy sheet. Rare Met. 2018;37(10):846.
[25]
Zurück zum Zitat Villar A, Parrondo J, Arribas JJ. Waste heat recovery technology in continuous casting process. Clean Technol Environ. 2014;17(2):555. Villar A, Parrondo J, Arribas JJ. Waste heat recovery technology in continuous casting process. Clean Technol Environ. 2014;17(2):555.
[26]
Zurück zum Zitat Prince A. Phase diagrams of precious metal alloys. Int Mater Rev. 1984;29(1):44. Prince A. Phase diagrams of precious metal alloys. Int Mater Rev. 1984;29(1):44.
[27]
Zurück zum Zitat He ZY, Ding LP. Investigation on Ag–Cu–Sn brazing filler metals. Mater Chem Phys. 1997;49(1):1. He ZY, Ding LP. Investigation on Ag–Cu–Sn brazing filler metals. Mater Chem Phys. 1997;49(1):1.
[28]
Zurück zum Zitat Qiao YD, Wang X, Liu ZY, Wang ED. Microstructures, textures and mechanical properties evolution during cold drawing of pure Mg. Microsc Res. 2013;1(2):8. Qiao YD, Wang X, Liu ZY, Wang ED. Microstructures, textures and mechanical properties evolution during cold drawing of pure Mg. Microsc Res. 2013;1(2):8.
[29]
Zurück zum Zitat Kharitonov VA, Stolyarov AY. Development of a competitive technology to make wire for metal cord. Metallurgist. 2013;57(3–4):320. Kharitonov VA, Stolyarov AY. Development of a competitive technology to make wire for metal cord. Metallurgist. 2013;57(3–4):320.
[30]
Zurück zum Zitat Lin ZC, Shen B, Sun FH, Zhang ZM, Guo SS. Numerical and experimental investigation of trapezoidal wire cold drawing through a series of shaped dies. Int J Adv Manuf Technol. 2015;76(5–8):1383. Lin ZC, Shen B, Sun FH, Zhang ZM, Guo SS. Numerical and experimental investigation of trapezoidal wire cold drawing through a series of shaped dies. Int J Adv Manuf Technol. 2015;76(5–8):1383.
[31]
Zurück zum Zitat Pei YZ, Zhou XY, Zhu TJ. Editorial for rare metals, special issue on advanced thermoelectric materials. Rare Met. 2018;37(4):257. Pei YZ, Zhou XY, Zhu TJ. Editorial for rare metals, special issue on advanced thermoelectric materials. Rare Met. 2018;37(4):257.
[32]
Zurück zum Zitat Heidarzadeh A, Saeid T. Correlation between process parameters, grain size and hardness of friction-stir-welded Cu–Zn alloys. Rare Met. 2018;37(5):388. Heidarzadeh A, Saeid T. Correlation between process parameters, grain size and hardness of friction-stir-welded Cu–Zn alloys. Rare Met. 2018;37(5):388.
[33]
Zurück zum Zitat Wu F, Zhou WL, Zhao B, Hou HJ. Interface microstructure and bond strength of 1420/7B04 composite sheets prepared by diffusion bonding. Rare Met. 2018;37(7):613. Wu F, Zhou WL, Zhao B, Hou HJ. Interface microstructure and bond strength of 1420/7B04 composite sheets prepared by diffusion bonding. Rare Met. 2018;37(7):613.
[34]
Zurück zum Zitat Kim SD, Kim SY, Joo JH, Woo SK. Microstructure and electrical conductivity of Mo/TiN composite powder for alkali metal thermal to electric converter electrodes. Ceram Int. 2014;40(3):3847. Kim SD, Kim SY, Joo JH, Woo SK. Microstructure and electrical conductivity of Mo/TiN composite powder for alkali metal thermal to electric converter electrodes. Ceram Int. 2014;40(3):3847.
[35]
Zurück zum Zitat Krishna C, Jha AK, Pant B, George KM. Achieving higher strength in Cu–Ag–Zr alloy by warm/hot rolling. Rare Met. 2017;36(4):263. Krishna C, Jha AK, Pant B, George KM. Achieving higher strength in Cu–Ag–Zr alloy by warm/hot rolling. Rare Met. 2017;36(4):263.
[36]
Zurück zum Zitat Qu WT, Sun SG, Hui SX, Wang ZG, Li Y. High-temperature deformation behavior of a beta Ti–3.0Al–3.5Cr–2.0Fe–0.1B alloy. Rare Met. 2018;37(3):217. Qu WT, Sun SG, Hui SX, Wang ZG, Li Y. High-temperature deformation behavior of a beta Ti–3.0Al–3.5Cr–2.0Fe–0.1B alloy. Rare Met. 2018;37(3):217.
[37]
Zurück zum Zitat Shang JL, Yan JZ, Li N. Brazing W and Fe–Ni–Co alloy using Ag–28Cu and Ag–27Cu–3.5Ti fillers. J Alloys Compd. 2014;611(28):91. Shang JL, Yan JZ, Li N. Brazing W and Fe–Ni–Co alloy using Ag–28Cu and Ag–27Cu–3.5Ti fillers. J Alloys Compd. 2014;611(28):91.
[38]
Zurück zum Zitat Shiue RK, Tsay LW, Lin CL, Ou JL. A study of Sn–Bi–Ag–(In) lead-free solders. J Mater Sci. 2003;38(6):1269. Shiue RK, Tsay LW, Lin CL, Ou JL. A study of Sn–Bi–Ag–(In) lead-free solders. J Mater Sci. 2003;38(6):1269.
[39]
Zurück zum Zitat Choi S, Bieler TR, Lucas JP, Subramanian KN. Characterization of the growth of intermetallic interfacial layers of Sn–Ag and Sn–Pb eutectic solders and their composite solders on Cu substrate during isothermal long-term aging. J Electron Mater. 1999;28(11):1209. Choi S, Bieler TR, Lucas JP, Subramanian KN. Characterization of the growth of intermetallic interfacial layers of Sn–Ag and Sn–Pb eutectic solders and their composite solders on Cu substrate during isothermal long-term aging. J Electron Mater. 1999;28(11):1209.
[40]
Zurück zum Zitat Zhong ZW. Assembly and reliability of flip chip on boards using ACAs or eutectic solder with underfill. Microelectron Int. 1999;16(3):6. Zhong ZW. Assembly and reliability of flip chip on boards using ACAs or eutectic solder with underfill. Microelectron Int. 1999;16(3):6.
[41]
Zurück zum Zitat Liu HB, Qin YQ, Sun L, Mu BB, Zhang DF, Shi JX. Research on brazing technologies of coper with Ag–Cu eutectic solder in vacuum. J Shanghai Univ Eng Sci. 2013;27(2):148. Liu HB, Qin YQ, Sun L, Mu BB, Zhang DF, Shi JX. Research on brazing technologies of coper with Ag–Cu eutectic solder in vacuum. J Shanghai Univ Eng Sci. 2013;27(2):148.
[42]
Zurück zum Zitat Eustathopoulos N, Nicholas MG, Drevet B. Wettability at high temperature. Elsevier. San Diego: Ipswich; 1999. 416. Eustathopoulos N, Nicholas MG, Drevet B. Wettability at high temperature. Elsevier. San Diego: Ipswich; 1999. 416.
[43]
Zurück zum Zitat Kong YG, Kong ZG, Shi FM. Microstructure and mechanical property of Sn–Ag–Cu solder material. Rare Met. 2017;36(3):193. Kong YG, Kong ZG, Shi FM. Microstructure and mechanical property of Sn–Ag–Cu solder material. Rare Met. 2017;36(3):193.
[44]
Zurück zum Zitat Zeng K, Tu KN. Six cases of reliability study of Pb-free solder joints in electronic packaging technology. J Mater Sci Eng. 2002;38(2):55. Zeng K, Tu KN. Six cases of reliability study of Pb-free solder joints in electronic packaging technology. J Mater Sci Eng. 2002;38(2):55.
[45]
Zurück zum Zitat Sathorn C, Palamara JE, Palamara D. Effect of root canal size and external root surface morphology on fracture susceptibility and pattern: a finite element analysis. J Endodont. 2005;31(4):288. Sathorn C, Palamara JE, Palamara D. Effect of root canal size and external root surface morphology on fracture susceptibility and pattern: a finite element analysis. J Endodont. 2005;31(4):288.
Metadaten
Titel
Microstructure and properties of continuous casting Ag–28Cu–8Sn alloy fabricated by dieless drawing
verfasst von
Ji-Heng Fang
Ming Xie
Ji-Ming Zhang
You-Cai Yang
Yong-Tai Chen
Song Wang
Man-Men Liu
Jie-Qiong Hu
Publikationsdatum
06.12.2018
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 3/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-018-1175-y

Weitere Artikel der Ausgabe 3/2020

Rare Metals 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.