Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2022

06.01.2022 | Technical Article

Microstructure Evolution and Constitutive Analysis of Al-Mg-Si-Ce-B Alloy during Hot Deformation

verfasst von: Yi Yu, Qinglin Pan, Weiyi Wang, Zhiqi Huang, Shengqian Xiang, Geng Lin, Jijun Yan, Bing Liu

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present work, hot compression tests of Al-Mg-Si-Ce-B alloy were carried out with temperature of 623-823 K and strain rates of 0.01-50 s−1, using a Gleeble 3500 thermal simulation tester. The microstructure evolution of the alloy was investigated by transmission electron microscopy and electron backscattered diffraction. From the true stress–strain curves, work hardening is evident at the beginning of hot compression. Dynamic recovery (DRV) and continuous dynamic recrystallization occurred, and DRV is confirmed to be the main softening mechanism. It is revealed that both the peak and steady values of the true stress decrease with increasing temperature and decreasing strain rate, which implies an increase in the degree of dynamic softening. Physical-based diffusion models and a bio-functional artificial neural network (ANN) model were constructed to predict the hot deformation behavior, of which the accuracy was evaluated based on the average relative error and the correlation coefficient (R). The ANN model was found to have the highest accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.K. Sunde, C.D. Marioara, S. Wenner, and R. Holmestad, On the Microstructural Origins of Improvements in Conductivity by Heavy Deformation and Ageing of Al-Mg-Si Alloy 6101, Mater. Charact., 2021, 176, p 111073. CrossRef J.K. Sunde, C.D. Marioara, S. Wenner, and R. Holmestad, On the Microstructural Origins of Improvements in Conductivity by Heavy Deformation and Ageing of Al-Mg-Si Alloy 6101, Mater. Charact., 2021, 176, p 111073. CrossRef
2.
Zurück zum Zitat K.X. Chen, L.Z. Yan, Y.A. Zhang, X.W. Li, Z.H. Li, H.W. Yan, K. Wen, H.W. Liu, Y.N. Li, and B.Q. Xiong, Effect of Solution Heat Treatment on Microstructure and Mechanical Properties of Al-Mg-Si Alloy, Mater. Sci. Forum, 2020, 1003, p 26–30. CrossRef K.X. Chen, L.Z. Yan, Y.A. Zhang, X.W. Li, Z.H. Li, H.W. Yan, K. Wen, H.W. Liu, Y.N. Li, and B.Q. Xiong, Effect of Solution Heat Treatment on Microstructure and Mechanical Properties of Al-Mg-Si Alloy, Mater. Sci. Forum, 2020, 1003, p 26–30. CrossRef
3.
Zurück zum Zitat G. Liu, Q. Wang, T. Liu, B. Ye, H. Jiang, and W. Ding, Effect of T6 Heat Treatment on Microstructure and Mechanical Property of 6101/A356 Bimetal Fabricated by Squeeze Casting, Mater. Sci. Eng. A, 2017, 696, p 208–215. CrossRef G. Liu, Q. Wang, T. Liu, B. Ye, H. Jiang, and W. Ding, Effect of T6 Heat Treatment on Microstructure and Mechanical Property of 6101/A356 Bimetal Fabricated by Squeeze Casting, Mater. Sci. Eng. A, 2017, 696, p 208–215. CrossRef
4.
Zurück zum Zitat K. Majchrowicz, Z. Pakieła, W. Chrominski, and M. Kulczyk, Enhanced Strength and Electrical Conductivity of Ultrafine-Grained Al-Mg-Si Alloy Processed by Hydrostatic Extrusion, Mater. Charact., 2018, 135, p 104–114. CrossRef K. Majchrowicz, Z. Pakieła, W. Chrominski, and M. Kulczyk, Enhanced Strength and Electrical Conductivity of Ultrafine-Grained Al-Mg-Si Alloy Processed by Hydrostatic Extrusion, Mater. Charact., 2018, 135, p 104–114. CrossRef
5.
Zurück zum Zitat Q. Li, Y. Zhu, S. Zhao, Y. Lan, D. Liu, G. Jian, Q. Zhang, and H. Zhou, Influences of Fe, Mn and Y Additions on Microstructure and Mechanical Properties of Hypoeutectic Al–7%Si Alloy, Intermetallics, 2020, 120, p 106768. CrossRef Q. Li, Y. Zhu, S. Zhao, Y. Lan, D. Liu, G. Jian, Q. Zhang, and H. Zhou, Influences of Fe, Mn and Y Additions on Microstructure and Mechanical Properties of Hypoeutectic Al–7%Si Alloy, Intermetallics, 2020, 120, p 106768. CrossRef
6.
Zurück zum Zitat W. Wang, Q. Pan, G. Lin, X. Wang, Y. Sun, X. Wang, J. Ye, Y. Sun, Y. Yu, F. Jiang, J. Li, and Y. Liu, Microstructure and Properties of Novel Al-Ce-Sc, Al-Ce-Y, Al-Ce-Zr and Al-Ce-Sc-Y Alloy Conductors Processed by Die Casting, Hot Extrusion and Cold Drawing, J. Mater. Sci. Technol., 2020, 58, p 155–170. CrossRef W. Wang, Q. Pan, G. Lin, X. Wang, Y. Sun, X. Wang, J. Ye, Y. Sun, Y. Yu, F. Jiang, J. Li, and Y. Liu, Microstructure and Properties of Novel Al-Ce-Sc, Al-Ce-Y, Al-Ce-Zr and Al-Ce-Sc-Y Alloy Conductors Processed by Die Casting, Hot Extrusion and Cold Drawing, J. Mater. Sci. Technol., 2020, 58, p 155–170. CrossRef
7.
Zurück zum Zitat A. Güzel, A. Jäger, F. Parvizian, H.G. Lambers, A.E. Tekkaya, B. Svendsen, and H.J. Maier, A New Method for Determining Dynamic Grain Structure Evolution During Hot Aluminum Extrusion, J. Mater. Process. Technol., 2012, 212, p 323–330. CrossRef A. Güzel, A. Jäger, F. Parvizian, H.G. Lambers, A.E. Tekkaya, B. Svendsen, and H.J. Maier, A New Method for Determining Dynamic Grain Structure Evolution During Hot Aluminum Extrusion, J. Mater. Process. Technol., 2012, 212, p 323–330. CrossRef
8.
Zurück zum Zitat S. Liu, Q. Pan, M. Li, X. Wang, X. He, X. Li, Z. Peng, and J. Lai, Microstructure Evolution and Physical-Based Diffusion Constitutive Analysis of Al–Mg–Si Alloy During Hot Deformation, Mater. Des., 2019, 184, p 108181. CrossRef S. Liu, Q. Pan, M. Li, X. Wang, X. He, X. Li, Z. Peng, and J. Lai, Microstructure Evolution and Physical-Based Diffusion Constitutive Analysis of Al–Mg–Si Alloy During Hot Deformation, Mater. Des., 2019, 184, p 108181. CrossRef
9.
Zurück zum Zitat S. Liu, Q. Pan, H. Li, Z. Huang, K. Li, X. He, and X. Li, Characterization of Hot Deformation Behavior and Constitutive Modeling of Al–Mg–Si–Mn–Cr Alloy, J. Mater. Sci., 2018, 54, p 4366–4383. CrossRef S. Liu, Q. Pan, H. Li, Z. Huang, K. Li, X. He, and X. Li, Characterization of Hot Deformation Behavior and Constitutive Modeling of Al–Mg–Si–Mn–Cr Alloy, J. Mater. Sci., 2018, 54, p 4366–4383. CrossRef
10.
Zurück zum Zitat X.-M. Chen, Y.C. Lin, D.-X. Wen, J.-L. Zhang, and M. He, Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy During Hot Deformation, Mater. Des., 2014, 57, p 568–577. CrossRef X.-M. Chen, Y.C. Lin, D.-X. Wen, J.-L. Zhang, and M. He, Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy During Hot Deformation, Mater. Des., 2014, 57, p 568–577. CrossRef
11.
Zurück zum Zitat Y.C. Lin, X.-Y. Wu, X.-M. Chen, J. Chen, D.-X. Wen, J.-L. Zhang, and L.-T. Li, EBSD Study of a Hot Deformed Nickel-Based Superalloy, J. Alloy. Compd., 2015, 640, p 101–113. CrossRef Y.C. Lin, X.-Y. Wu, X.-M. Chen, J. Chen, D.-X. Wen, J.-L. Zhang, and L.-T. Li, EBSD Study of a Hot Deformed Nickel-Based Superalloy, J. Alloy. Compd., 2015, 640, p 101–113. CrossRef
12.
Zurück zum Zitat Y.C. Lin, J. Huang, D.-G. He, X.-Y. Zhang, Q. Wu, L.-H. Wang, C. Chen, and K.-C. Zhou, Phase Transformation and Dynamic Recrystallization Behaviors in a Ti55511 Titanium Alloy During Hot Compression, J. Alloys Compd., 2019, 795, p 471–482. CrossRef Y.C. Lin, J. Huang, D.-G. He, X.-Y. Zhang, Q. Wu, L.-H. Wang, C. Chen, and K.-C. Zhou, Phase Transformation and Dynamic Recrystallization Behaviors in a Ti55511 Titanium Alloy During Hot Compression, J. Alloys Compd., 2019, 795, p 471–482. CrossRef
13.
Zurück zum Zitat H. Mirzadeh, Constitutive Description of 7075 Aluminum Alloy During Hot Deformation by Apparent and Physically-Based Approaches, J. Mater. Eng. Perform., 2015, 24, p 1095–1099. CrossRef H. Mirzadeh, Constitutive Description of 7075 Aluminum Alloy During Hot Deformation by Apparent and Physically-Based Approaches, J. Mater. Eng. Perform., 2015, 24, p 1095–1099. CrossRef
14.
Zurück zum Zitat H. Mirzadeh, A Simplified Approach for Developing Constitutive Equations for Modeling and Prediction of Hot Deformation Flow Stress, Metall. Mater. Trans. A, 2015, 46, p 4027–4037. CrossRef H. Mirzadeh, A Simplified Approach for Developing Constitutive Equations for Modeling and Prediction of Hot Deformation Flow Stress, Metall. Mater. Trans. A, 2015, 46, p 4027–4037. CrossRef
15.
Zurück zum Zitat A. Saboori, A. Abdi, S.A. Fatemi, G. Marchese, S. Biamino, and H. Mirzadeh, Hot Deformation Behavior and Flow Stress Modeling of Ti–6Al–4V Alloy Produced Via Electron Beam Melting Additive Manufacturing Technology in Single β-Phase Field, Mater. Sci. Eng. A, 2020, 792, p 139822. CrossRef A. Saboori, A. Abdi, S.A. Fatemi, G. Marchese, S. Biamino, and H. Mirzadeh, Hot Deformation Behavior and Flow Stress Modeling of Ti–6Al–4V Alloy Produced Via Electron Beam Melting Additive Manufacturing Technology in Single β-Phase Field, Mater. Sci. Eng. A, 2020, 792, p 139822. CrossRef
16.
Zurück zum Zitat C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32. CrossRef C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32. CrossRef
17.
Zurück zum Zitat G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21, p 31–48. CrossRef G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21, p 31–48. CrossRef
18.
Zurück zum Zitat Y. Jia, F. Cao, S. Guo, P. Ma, J. Liu, and J. Sun, Hot Deformation Behavior of Spray-Deposited Al–Zn–Mg–Cu alloy, Mater. Des., 2014, 53, p 79–85. CrossRef Y. Jia, F. Cao, S. Guo, P. Ma, J. Liu, and J. Sun, Hot Deformation Behavior of Spray-Deposited Al–Zn–Mg–Cu alloy, Mater. Des., 2014, 53, p 79–85. CrossRef
19.
Zurück zum Zitat S. Wang, J.R. Luo, L.G. Hou, J.S. Zhang, and L.Z. Zhuang, Physically Based Constitutive Analysis and Microstructural Evolution of AA7050 Aluminum Alloy During Hot Compression, Mater. Des., 2016, 107, p 277–289. CrossRef S. Wang, J.R. Luo, L.G. Hou, J.S. Zhang, and L.Z. Zhuang, Physically Based Constitutive Analysis and Microstructural Evolution of AA7050 Aluminum Alloy During Hot Compression, Mater. Des., 2016, 107, p 277–289. CrossRef
20.
Zurück zum Zitat X. Wang, Q. Pan, S. Xiong, and L. Liu, Prediction on Hot Deformation Behavior of Spray Formed Ultra-High Strength Aluminum Alloy—A Comparative Study Using Constitutive Models, J. Alloys Compd., 2018, 735, p 1931–1942. CrossRef X. Wang, Q. Pan, S. Xiong, and L. Liu, Prediction on Hot Deformation Behavior of Spray Formed Ultra-High Strength Aluminum Alloy—A Comparative Study Using Constitutive Models, J. Alloys Compd., 2018, 735, p 1931–1942. CrossRef
21.
Zurück zum Zitat J.M. Cabrera, A. Al Omar, J.M. Prado, and J.J. Jonas, Modeling the Flow Behavior of a Medium Carbon Microalloyed Steel Under Hot Working Conditions, Metall. Mater. Trans. A, 1997, 28, p 2233–2244. CrossRef J.M. Cabrera, A. Al Omar, J.M. Prado, and J.J. Jonas, Modeling the Flow Behavior of a Medium Carbon Microalloyed Steel Under Hot Working Conditions, Metall. Mater. Trans. A, 1997, 28, p 2233–2244. CrossRef
22.
Zurück zum Zitat K. Singh, S.K. Rajput, and Y. Mehta, Modeling of the Hot Deformation Behavior of a High Phosphorus Steel Using Artificial Neural Networks, Mater. Discov., 2016, 6, p 1–8. CrossRef K. Singh, S.K. Rajput, and Y. Mehta, Modeling of the Hot Deformation Behavior of a High Phosphorus Steel Using Artificial Neural Networks, Mater. Discov., 2016, 6, p 1–8. CrossRef
23.
Zurück zum Zitat Y. Sun, W.D. Zeng, Y.Q. Zhao, X.M. Zhang, Y. Shu, and Y.G. Zhou, Modeling Constitutive Relationship of Ti40 Alloy Using Artificial Neural Network, Mater. Des., 2011, 32, p 1537–1541. CrossRef Y. Sun, W.D. Zeng, Y.Q. Zhao, X.M. Zhang, Y. Shu, and Y.G. Zhou, Modeling Constitutive Relationship of Ti40 Alloy Using Artificial Neural Network, Mater. Des., 2011, 32, p 1537–1541. CrossRef
24.
Zurück zum Zitat Y. Sun, Q. Pan, W. Wang, A. Li, and W. Song, Microstructural Evolution and Constitutive Analysis Combined with Weight Optimization Method of Al–7.82Zn–1.96Mg–2.35Cu–0.11Zr Alloy During Hot Deformation, J. Alloys Compd., 2018, 732, p 902–914. CrossRef Y. Sun, Q. Pan, W. Wang, A. Li, and W. Song, Microstructural Evolution and Constitutive Analysis Combined with Weight Optimization Method of Al–7.82Zn–1.96Mg–2.35Cu–0.11Zr Alloy During Hot Deformation, J. Alloys Compd., 2018, 732, p 902–914. CrossRef
25.
Zurück zum Zitat D. Odoh, Y. Mahmoodkhani, and M. Wells, Effect of Alloy Composition on Hot Deformation Behavior of Some Al-Mg-Si Alloys, Vacuum, 2018, 149, p 248–255. CrossRef D. Odoh, Y. Mahmoodkhani, and M. Wells, Effect of Alloy Composition on Hot Deformation Behavior of Some Al-Mg-Si Alloys, Vacuum, 2018, 149, p 248–255. CrossRef
26.
Zurück zum Zitat Y. Cao, Y. Liu, B. Liu, and W. Zhang, Precipitation Behavior During Hot Deformation Of Powder Metallurgy Ti-Nb-Ta-Zr-Al High Entropy Alloys, Intermetallics, 2018, 100, p 95–103. CrossRef Y. Cao, Y. Liu, B. Liu, and W. Zhang, Precipitation Behavior During Hot Deformation Of Powder Metallurgy Ti-Nb-Ta-Zr-Al High Entropy Alloys, Intermetallics, 2018, 100, p 95–103. CrossRef
27.
Zurück zum Zitat A.G. Atkins, Deformation-Mechanism Maps (the Plasticity and Creep of Metals and Ceramics): by H.J. Frost and M.F. Ashby, Pergamon, Oxford 1982. ISBN 0-08-029338-7, ix + 166 pages, illustrated, flexicover, US $25. J. Mech. Work. Technol. (1984). A.G. Atkins, Deformation-Mechanism Maps (the Plasticity and Creep of Metals and Ceramics): by H.J. Frost and M.F. Ashby, Pergamon, Oxford 1982. ISBN 0-08-029338-7, ix + 166 pages, illustrated, flexicover, US $25. J. Mech. Work. Technol. (1984).
28.
Zurück zum Zitat H. Mirzadeh, J.M. Cabrera, and A. Najafizadeh, Constitutive Relationships for Hot Deformation of Austenite, Acta Mater., 2011, 59, p 6441–6448. CrossRef H. Mirzadeh, J.M. Cabrera, and A. Najafizadeh, Constitutive Relationships for Hot Deformation of Austenite, Acta Mater., 2011, 59, p 6441–6448. CrossRef
29.
Zurück zum Zitat A. Thomas, M. El-Wahabi, J.M. Cabrera, and J.M. Prado, High Temperature Deformation of Inconel 718, J. Mater. Process. Technol., 2006, 177, p 469–472. CrossRef A. Thomas, M. El-Wahabi, J.M. Cabrera, and J.M. Prado, High Temperature Deformation of Inconel 718, J. Mater. Process. Technol., 2006, 177, p 469–472. CrossRef
30.
Zurück zum Zitat H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–63. CrossRef H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–63. CrossRef
31.
Zurück zum Zitat F. Reyes-Calderón, I. Mejía, and J.M. Cabrera, Hot Deformation Activation Energy (QHW) of Austenitic Fe–22Mn–1.5Al–1.5Si–0.4C TWIP Steels Microalloyed with Nb, V, and Ti, Mater. Sci. Eng. A, 2013, 562, p 46–52. CrossRef F. Reyes-Calderón, I. Mejía, and J.M. Cabrera, Hot Deformation Activation Energy (QHW) of Austenitic Fe–22Mn–1.5Al–1.5Si–0.4C TWIP Steels Microalloyed with Nb, V, and Ti, Mater. Sci. Eng. A, 2013, 562, p 46–52. CrossRef
32.
Zurück zum Zitat Y.J. Qin, Q.L. Pan, Y.B. He, W.B. Li, X.Y. Liu, and X. Fan, Artificial Neural Network Modeling to Evaluate and Predict the Deformation Behavior of ZK60 Magnesium Alloy During Hot Compression, Mater. Manuf. Process., 2010, 25, p 539–545. CrossRef Y.J. Qin, Q.L. Pan, Y.B. He, W.B. Li, X.Y. Liu, and X. Fan, Artificial Neural Network Modeling to Evaluate and Predict the Deformation Behavior of ZK60 Magnesium Alloy During Hot Compression, Mater. Manuf. Process., 2010, 25, p 539–545. CrossRef
33.
Zurück zum Zitat Y. Han, G. Qiao, J. Sun, and D. Zou, A Comparative Study on Constitutive Relationship of as-cast 904L Austenitic Stainless Steel During Hot Deformation Based on Arrhenius-Type and Artificial Neural Network Models, Comput. Mater. Sci., 2013, 67, p 93–103. CrossRef Y. Han, G. Qiao, J. Sun, and D. Zou, A Comparative Study on Constitutive Relationship of as-cast 904L Austenitic Stainless Steel During Hot Deformation Based on Arrhenius-Type and Artificial Neural Network Models, Comput. Mater. Sci., 2013, 67, p 93–103. CrossRef
34.
Zurück zum Zitat K. Li, Q. Pan, R. Li, S. Liu, Z. Huang, and X. He, Constitutive Modeling of the Hot Deformation Behavior in 6082 Aluminum Alloy, J. Mater. Eng. Perform., 2019, 28, p 981–994. CrossRef K. Li, Q. Pan, R. Li, S. Liu, Z. Huang, and X. He, Constitutive Modeling of the Hot Deformation Behavior in 6082 Aluminum Alloy, J. Mater. Eng. Perform., 2019, 28, p 981–994. CrossRef
Metadaten
Titel
Microstructure Evolution and Constitutive Analysis of Al-Mg-Si-Ce-B Alloy during Hot Deformation
verfasst von
Yi Yu
Qinglin Pan
Weiyi Wang
Zhiqi Huang
Shengqian Xiang
Geng Lin
Jijun Yan
Bing Liu
Publikationsdatum
06.01.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06561-y

Weitere Artikel der Ausgabe 6/2022

Journal of Materials Engineering and Performance 6/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.