Skip to main content
Erschienen in: Neural Computing and Applications 18/2021

16.03.2021 | Original Article

Minimally buffered deflection router for spiking neural network hardware implementations

verfasst von: Junxiu Liu, Dong Jiang, Yuling Luo, Senhui Qiu, Yongchuang Huang

Erschienen in: Neural Computing and Applications | Ausgabe 18/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spiking neural networks (SNNs) have the potential to closely mimic the information processing of biological brains, by using massive neurons that are interconnected in a complex network. Recent researches have considered using electronic hardware circuits to SNN implementations to meet real-time processing requirements. Network-on-Chips (NoCs) have been widely used to develop such SNN circuits as their interconnections can offer stable interconnectivity for neuron communications with high throughput and real-time execution. However, its scalability is limited due to expensive and complex NoC routers which leads to high energy consumption and large area utilization. Therefore, a minimally buffered deflection router (MBDR) is proposed in this work to address the scalability challenge of the hardware SNNs. It employs a deflection router technique to remove most of the inter-buffers and other expensive components of the conventional routers. Moreover, a novel flow controller is developed in MBDR to further reduce power consumption. Compared to existing approaches, experimental results show that based on 90-nm CMOS technology the area and power consumption of the proposed router are reduced by ~ 86% and ~ 88%, respectively. In the meantime, system throughput is maintained at a high level.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Carrillo S et al (2013) Scalable hierarchical network-on-chip architecture for spiking neural network hardware implementations. IEEE Trans Parallel Distrib Syst 24(12):2451–2461CrossRef Carrillo S et al (2013) Scalable hierarchical network-on-chip architecture for spiking neural network hardware implementations. IEEE Trans Parallel Distrib Syst 24(12):2451–2461CrossRef
2.
Zurück zum Zitat Carrillo S et al (2012) Advancing interconnect density for spiking neural network hardware implementations using traffic-aware adaptive network-on-chip routers. Neural Netw 33(2012):42–57CrossRef Carrillo S et al (2012) Advancing interconnect density for spiking neural network hardware implementations using traffic-aware adaptive network-on-chip routers. Neural Netw 33(2012):42–57CrossRef
3.
Zurück zum Zitat Luo Y et al (2018) Low cost interconnected architecture for the hardware spiking neural networks. Front Neurosci 12(1):1–14 Luo Y et al (2018) Low cost interconnected architecture for the hardware spiking neural networks. Front Neurosci 12(1):1–14
4.
Zurück zum Zitat Roche B, Ginnity TMM, Maguire L, Daid LJM (2001) Signalling techniques and their effect on neural network implementation sizes. Inf Sci (Ny) 132(1):67–82CrossRef Roche B, Ginnity TMM, Maguire L, Daid LJM (2001) Signalling techniques and their effect on neural network implementation sizes. Inf Sci (Ny) 132(1):67–82CrossRef
5.
Zurück zum Zitat Liu J, Harkin J, Li Y, Maguire L (2015) Low cost fault-tolerant routing algorithm for networks-on-chip. Microprocess Microsyst 39(6):358–372CrossRef Liu J, Harkin J, Li Y, Maguire L (2015) Low cost fault-tolerant routing algorithm for networks-on-chip. Microprocess Microsyst 39(6):358–372CrossRef
6.
Zurück zum Zitat Luo Y, Wan L, Liu J, Harkin J, Cao Y (2018) An efficient, low-cost routing architecture for spiking neural network hardware implementations. Neural Process Lett 48(3):1777–1788CrossRef Luo Y, Wan L, Liu J, Harkin J, Cao Y (2018) An efficient, low-cost routing architecture for spiking neural network hardware implementations. Neural Process Lett 48(3):1777–1788CrossRef
7.
Zurück zum Zitat Liu J, Harkin J, Maguire L, McDaid L, Wade J, Martin G (2016) Scalable networks-on-chip interconnected architecture for astrocyte-neuron networks. IEEE Trans Circuits Syst I-Regul Pap 63(12):2290–2303CrossRef Liu J, Harkin J, Maguire L, McDaid L, Wade J, Martin G (2016) Scalable networks-on-chip interconnected architecture for astrocyte-neuron networks. IEEE Trans Circuits Syst I-Regul Pap 63(12):2290–2303CrossRef
8.
Zurück zum Zitat Wan L, Luo Y, Song S, Harkin J, Liu J (2016) Efficient neuron architecture for FPGA-based spiking neural networks. In: Irish signals and systems conference, pp 1–6 Wan L, Luo Y, Song S, Harkin J, Liu J (2016) Efficient neuron architecture for FPGA-based spiking neural networks. In: Irish signals and systems conference, pp 1–6
9.
Zurück zum Zitat Liu J, Huang Y, Luo Y, Harkin J, Mcdaid L (2019) Bio-inspired fault detection circuits based on synapse and spiking neuron models. Neurocomputing 331(1):473–482CrossRef Liu J, Huang Y, Luo Y, Harkin J, Mcdaid L (2019) Bio-inspired fault detection circuits based on synapse and spiking neuron models. Neurocomputing 331(1):473–482CrossRef
10.
Zurück zum Zitat Hwang S et al (2020) Analog complementary metal-oxide-semiconductor integrate-and-fire neuron circuit for overflow retaining in hardware spiking neural networks. J Nanosci Nanotechnol 20(5):3117–3122CrossRef Hwang S et al (2020) Analog complementary metal-oxide-semiconductor integrate-and-fire neuron circuit for overflow retaining in hardware spiking neural networks. J Nanosci Nanotechnol 20(5):3117–3122CrossRef
11.
Zurück zum Zitat Benini L, De Micheli G (2002) Networks on chips: a new SoC paradigm. IEEE Comput 35(1):70–78CrossRef Benini L, De Micheli G (2002) Networks on chips: a new SoC paradigm. IEEE Comput 35(1):70–78CrossRef
12.
Zurück zum Zitat Harkin J, Morgan F, McDaid L, Hall S, McGinley B, Cawley S (2009) A reconfigurable and biologically inspired paradigm for computation using network-on-chip and spiking neural networks. Int J Reconfig Comput 2009(6):2 Harkin J, Morgan F, McDaid L, Hall S, McGinley B, Cawley S (2009) A reconfigurable and biologically inspired paradigm for computation using network-on-chip and spiking neural networks. Int J Reconfig Comput 2009(6):2
13.
Zurück zum Zitat Moscibroda T, Mutlu O (2009) A case for bufferless routing in on-chip networks. In: International symposium on computer architecture, pp 196–207 Moscibroda T, Mutlu O (2009) A case for bufferless routing in on-chip networks. In: International symposium on computer architecture, pp 196–207
14.
Zurück zum Zitat Li Y, Mei K, Liu Y, Zheng N, Xu Y (2014) LDBR: low-deflection bufferless router for cost-sensitive network-on-chip design. Microprocess Microsyst 38(7):669–680CrossRef Li Y, Mei K, Liu Y, Zheng N, Xu Y (2014) LDBR: low-deflection bufferless router for cost-sensitive network-on-chip design. Microprocess Microsyst 38(7):669–680CrossRef
15.
Zurück zum Zitat Liu J, Harkin J, Li Y, Maguire L (2016) Fault-tolerant networks-on-chip routing with coarse and fine-grained look-ahead . IEEE Trans Comput Des Integr Circuits Syst 35(2):260–273CrossRef Liu J, Harkin J, Li Y, Maguire L (2016) Fault-tolerant networks-on-chip routing with coarse and fine-grained look-ahead . IEEE Trans Comput Des Integr Circuits Syst 35(2):260–273CrossRef
16.
Zurück zum Zitat Shayani H, Bentley PJ, Tyrrell AM (2008) A cellular structure for online routing of digital spiking neuron axons and dendrites on FPGAs. In: International conference on evolvable systems, pp 273–284 Shayani H, Bentley PJ, Tyrrell AM (2008) A cellular structure for online routing of digital spiking neuron axons and dendrites on FPGAs. In: International conference on evolvable systems, pp 273–284
17.
Zurück zum Zitat Gomez C, Gomez ME, Lopez P, Duato J (2008) Reducing packet dropping in a bufferless NoC. In: European conference on parallel processing, pp 899–909 Gomez C, Gomez ME, Lopez P, Duato J (2008) Reducing packet dropping in a bufferless NoC. In: European conference on parallel processing, pp 899–909
18.
Zurück zum Zitat Fallin C, Craik C, Mutlu O (2011)CHIPPER: a low-complexity bufferless deflection router. In: International symposium on high-performance computer architecture, pp 144–155 Fallin C, Craik C, Mutlu O (2011)CHIPPER: a low-complexity bufferless deflection router. In: International symposium on high-performance computer architecture, pp 144–155
19.
Zurück zum Zitat Kim H, Kim Y, Kim J (2013) Clumsy flow control for high-throughput bufferless on-chip networks. IEEE Comput Archit Lett 12(2):47–50CrossRef Kim H, Kim Y, Kim J (2013) Clumsy flow control for high-throughput bufferless on-chip networks. IEEE Comput Archit Lett 12(2):47–50CrossRef
20.
Zurück zum Zitat Zhang N, Gu H, Yang Y, Fan D (2014) QBNoC: QoS-aware bufferless NoC architecture. Microelectronics J 45(6):751–758CrossRef Zhang N, Gu H, Yang Y, Fan D (2014) QBNoC: QoS-aware bufferless NoC architecture. Microelectronics J 45(6):751–758CrossRef
21.
Zurück zum Zitat Maguire L, Mcginnity TM, Glackin B, Ghani A, Belatreche A, Harkin J (2007) Challenges for large-scale implementations of spiking neural networks on FPGAs. Neurocomputing 71(1):13–29CrossRef Maguire L, Mcginnity TM, Glackin B, Ghani A, Belatreche A, Harkin J (2007) Challenges for large-scale implementations of spiking neural networks on FPGAs. Neurocomputing 71(1):13–29CrossRef
22.
Zurück zum Zitat Hill S, Markram H (2006) The blue brain project. Nat Rev Neurosci 7(2):153–159CrossRef Hill S, Markram H (2006) The blue brain project. Nat Rev Neurosci 7(2):153–159CrossRef
23.
Zurück zum Zitat Dang KN, Ben Abdallah A (2019) An efficient software-hardware design framework for spiking neural network systems. In: International conference on internet of things, embedded systems and communications (IINTEC), pp 155–162 Dang KN, Ben Abdallah A (2019) An efficient software-hardware design framework for spiking neural network systems. In: International conference on internet of things, embedded systems and communications (IINTEC), pp 155–162
24.
Zurück zum Zitat De Garis H, Shuo C, Goertzel B, Ruiting L (2010) A world survey of artificial brain projects, part I: large-scale brain simulations. Neurocomputing 74(1):3–29CrossRef De Garis H, Shuo C, Goertzel B, Ruiting L (2010) A world survey of artificial brain projects, part I: large-scale brain simulations. Neurocomputing 74(1):3–29CrossRef
25.
Zurück zum Zitat Khan MM, et al. (2008) SpiNNaker: mapping neural networks onto a massively-parallel chip multiprocessor. In: International joint conference on neural network, 2849–2856 Khan MM, et al. (2008) SpiNNaker: mapping neural networks onto a massively-parallel chip multiprocessor. In: International joint conference on neural network, 2849–2856
26.
Zurück zum Zitat Akopyan F et al (2015) “TrueNorth: design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE Trans Comput Des Integr Circuits Syst 34(10):1537–1557CrossRef Akopyan F et al (2015) “TrueNorth: design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE Trans Comput Des Integr Circuits Syst 34(10):1537–1557CrossRef
27.
Zurück zum Zitat Painkras E et al (2013) SpiNNaker: a 1-w 18-core system-on-chip for massively-parallel neural network simulation. IEEE J Solid-State Circuits 48(8):1943–1953CrossRef Painkras E et al (2013) SpiNNaker: a 1-w 18-core system-on-chip for massively-parallel neural network simulation. IEEE J Solid-State Circuits 48(8):1943–1953CrossRef
28.
Zurück zum Zitat Zhao Z et al (2020) “A memristor-based spiking neural network with high scalability and learning efficiency. IEEE Trans Circuits Syst II Express Briefs 99(5):1–5 Zhao Z et al (2020) “A memristor-based spiking neural network with high scalability and learning efficiency. IEEE Trans Circuits Syst II Express Briefs 99(5):1–5
29.
Zurück zum Zitat Fallin C, Nazario G, Yu X, Chang KK, Ausavarungnirun R, Mutlu O (2012) MinBD: minimally-buffered deflection routing for energy-efficient interconnect. In: International symposium on networks-on-chip, pp 1–10 Fallin C, Nazario G, Yu X, Chang KK, Ausavarungnirun R, Mutlu O (2012) MinBD: minimally-buffered deflection routing for energy-efficient interconnect. In: International symposium on networks-on-chip, pp 1–10
30.
Zurück zum Zitat Liu K et al (2019) A hardware implementation of SNN-based spatio-temporal memory model. Front Neurosci 13(8):835–845CrossRef Liu K et al (2019) A hardware implementation of SNN-based spatio-temporal memory model. Front Neurosci 13(8):835–845CrossRef
31.
Zurück zum Zitat Helal K, Attia S, Fahmy HAH, Ismail T, Ismail Y, Mostafa H (2018) Dual split-merge: a high throughput router architecture for FPGAs. Microelectronics J 81(1):51–57CrossRef Helal K, Attia S, Fahmy HAH, Ismail T, Ismail Y, Mostafa H (2018) Dual split-merge: a high throughput router architecture for FPGAs. Microelectronics J 81(1):51–57CrossRef
32.
Zurück zum Zitat Alazemi F, Azizimazreah A, Bose B, Chen L (2018) Routerless networks-on-chip. In: IEEE international symposium on high performance computer architecture, pp 492–503 Alazemi F, Azizimazreah A, Bose B, Chen L (2018) Routerless networks-on-chip. In: IEEE international symposium on high performance computer architecture, pp 492–503
33.
Zurück zum Zitat Feng C, Lu Z, Jantsch A, Zhang M, Xing Z (2013) “Addressing transient and permanent faults in NoC with efficient fault-tolerant deflection router. IEEE Trans Very Large Scale Integr Syst 21(6):1053–1066CrossRef Feng C, Lu Z, Jantsch A, Zhang M, Xing Z (2013) “Addressing transient and permanent faults in NoC with efficient fault-tolerant deflection router. IEEE Trans Very Large Scale Integr Syst 21(6):1053–1066CrossRef
34.
Zurück zum Zitat Kunthara RG, James RK, Sleeba SZ, Jose J (2018) ReDC: reduced deflection CHIPPER router for bufferless NoCs. In: International symposium on embedded computing and system design (ISED), pp 204–209 Kunthara RG, James RK, Sleeba SZ, Jose J (2018) ReDC: reduced deflection CHIPPER router for bufferless NoCs. In: International symposium on embedded computing and system design (ISED), pp 204–209
35.
Zurück zum Zitat Wang L, Wang X, Wang Y (2019) An approximate bufferless network-on-chip. IEEE Access 7(1):141516–141532CrossRef Wang L, Wang X, Wang Y (2019) An approximate bufferless network-on-chip. IEEE Access 7(1):141516–141532CrossRef
Metadaten
Titel
Minimally buffered deflection router for spiking neural network hardware implementations
verfasst von
Junxiu Liu
Dong Jiang
Yuling Luo
Senhui Qiu
Yongchuang Huang
Publikationsdatum
16.03.2021
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 18/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-021-05817-x

Weitere Artikel der Ausgabe 18/2021

Neural Computing and Applications 18/2021 Zur Ausgabe

Premium Partner