Skip to main content

2018 | OriginalPaper | Buchkapitel

4. mm-Wave LC VCOs

verfasst von : Marco Vigilante, Patrick Reynaert

Erschienen in: 5G and E-Band Communication Circuits in Deep-Scaled CMOS

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The phase noise (PN) at the output of the phase locked loop (PLL) sets a fundamental limit to the maximum spectral efficiency that the whole system can achieve. As discussed in Chap. 1, the bit error rate against SNR requirements in an AWGN environment shown in Fig. 1.​7 changes drastically when a practical PN profile is considered, see Fig. 1.​16. Moreover, together with the tough PN requirements, a PLL should be able to synthesize the necessary LO signal over the whole band of operation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
It is worth noting that the Colpitts oscillator can be designed to achieve lower phase noise for a given tank Q and supply voltage when compared to a class-C differential LC oscillators (up to \(\approx \)2 dB better). However, this comes at the expenses of a much higher current consumption and lower efficiency [9].
 
Literatur
1.
Zurück zum Zitat T.H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits (Cambridge university press, Cambridge, 2003)CrossRef T.H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits (Cambridge university press, Cambridge, 2003)CrossRef
2.
Zurück zum Zitat A. Hajimiri, T.H. Lee, A general theory of phase noise in electrical oscillators. IEEE J. Solid-State Circuits 33(2), 179–194 (1998)CrossRef A. Hajimiri, T.H. Lee, A general theory of phase noise in electrical oscillators. IEEE J. Solid-State Circuits 33(2), 179–194 (1998)CrossRef
3.
Zurück zum Zitat A. Mazzanti, P. Andreani, Class-C harmonic CMOS VCOs, with a general result on phase noise. IEEE J. Solid-State Circuits 43(12), 2716–2729 (2008)CrossRef A. Mazzanti, P. Andreani, Class-C harmonic CMOS VCOs, with a general result on phase noise. IEEE J. Solid-State Circuits 43(12), 2716–2729 (2008)CrossRef
4.
Zurück zum Zitat D. Murphy, J.J. Rael, A.A. Abidi, Phase noise in LC oscillators: a phasor-based analysis of a general result and of loaded Q. IEEE Trans. Circuits Syst. I Regul. Pap. 57(6), 1187–1203 (2010)MathSciNetCrossRef D. Murphy, J.J. Rael, A.A. Abidi, Phase noise in LC oscillators: a phasor-based analysis of a general result and of loaded Q. IEEE Trans. Circuits Syst. I Regul. Pap. 57(6), 1187–1203 (2010)MathSciNetCrossRef
5.
Zurück zum Zitat Behzad Razavi, RF Microelectronics, 2nd edn. (Prentice Hall, New Jersey, 2011) Behzad Razavi, RF Microelectronics, 2nd edn. (Prentice Hall, New Jersey, 2011)
6.
Zurück zum Zitat M. Garampazzi et al., An intuitive analysis of phase noise fundamental limits suitable for benchmarking LC oscillators. IEEE J. Solid-State Circuits 49(3), 635–645 (2014)CrossRef M. Garampazzi et al., An intuitive analysis of phase noise fundamental limits suitable for benchmarking LC oscillators. IEEE J. Solid-State Circuits 49(3), 635–645 (2014)CrossRef
7.
Zurück zum Zitat L. Fanori, P. Andreani, Highly efficient class-C CMOS VCOs, including a comparison with class-B VCOs. IEEE J. Solid-State Circuits 48(7), 1730–1740 (2013)CrossRef L. Fanori, P. Andreani, Highly efficient class-C CMOS VCOs, including a comparison with class-B VCOs. IEEE J. Solid-State Circuits 48(7), 1730–1740 (2013)CrossRef
8.
Zurück zum Zitat D.B. Leeson, A simple model of feedback oscillator noise spectrum. Proc. IEEE 54(2), 329–330 (1966)CrossRef D.B. Leeson, A simple model of feedback oscillator noise spectrum. Proc. IEEE 54(2), 329–330 (1966)CrossRef
9.
Zurück zum Zitat F. Padovan, M. Tiebout, K.L.R. Mertens, A. Bevilacqua, A. Neviani, Design of low-noise \(K\)-band SiGe bipolar VCOs: theory and implementation. IEEE Trans. Circuits Syst. I Regul. Pap. 62(2), 607–615 (2015)CrossRef F. Padovan, M. Tiebout, K.L.R. Mertens, A. Bevilacqua, A. Neviani, Design of low-noise \(K\)-band SiGe bipolar VCOs: theory and implementation. IEEE Trans. Circuits Syst. I Regul. Pap. 62(2), 607–615 (2015)CrossRef
10.
Zurück zum Zitat L. Romano, A. Bonfanti, S. Levantino, C. Samori, A.L. Lacaita, 5-GHz oscillator array with reduced flicker up-conversion in 0.13-\(\mu \)m CMOS. IEEE J. Solid-State Circuits 41(11), 2457–2467 (2006)CrossRef L. Romano, A. Bonfanti, S. Levantino, C. Samori, A.L. Lacaita, 5-GHz oscillator array with reduced flicker up-conversion in 0.13-\(\mu \)m CMOS. IEEE J. Solid-State Circuits 41(11), 2457–2467 (2006)CrossRef
11.
Zurück zum Zitat S.A.R. Ahmadi-Mehr, M. Tohidian, R.B. Staszewski, Analysis and design of a multi-core oscillator for ultra-low phase noise. IEEE Trans. Circuits Syst. I Regul. Pap. 63(4), 529–539 (2016)CrossRef S.A.R. Ahmadi-Mehr, M. Tohidian, R.B. Staszewski, Analysis and design of a multi-core oscillator for ultra-low phase noise. IEEE Trans. Circuits Syst. I Regul. Pap. 63(4), 529–539 (2016)CrossRef
12.
Zurück zum Zitat W. Wu, R.B. Staszewski, J.R. Long, A 56.4-to-63.4 GHz multi-rate all-digital fractional-N PLL for FMCW radar applications in 65 nm CMOS. IEEE J. Solid-State Circuits 49(5), 1081–1096 (2014)CrossRef W. Wu, R.B. Staszewski, J.R. Long, A 56.4-to-63.4 GHz multi-rate all-digital fractional-N PLL for FMCW radar applications in 65 nm CMOS. IEEE J. Solid-State Circuits 49(5), 1081–1096 (2014)CrossRef
13.
Zurück zum Zitat S. Levantino, C. Samori, A. Zanchi, A.L. Lacaita, AM-to-PM conversion in varactor-tuned oscillators. IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. 49(7), 509–513 (2002)CrossRef S. Levantino, C. Samori, A. Zanchi, A.L. Lacaita, AM-to-PM conversion in varactor-tuned oscillators. IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. 49(7), 509–513 (2002)CrossRef
14.
Zurück zum Zitat E. Hegazi, A.A. Abidi, Varactor characteristics, oscillator tuning curves, and AM-FM conversion. IEEE J. Solid-State Circuits 38(6), 1033–1039 (2003)CrossRef E. Hegazi, A.A. Abidi, Varactor characteristics, oscillator tuning curves, and AM-FM conversion. IEEE J. Solid-State Circuits 38(6), 1033–1039 (2003)CrossRef
15.
Zurück zum Zitat A. Bevilacqua, P. Andreani, An analysis of 1/f noise to phase noise conversion in CMOS harmonic oscillators. IEEE Trans. Circuits Syst. I Regul. Pap. 59(5), 938–945 (2012)MathSciNetCrossRef A. Bevilacqua, P. Andreani, An analysis of 1/f noise to phase noise conversion in CMOS harmonic oscillators. IEEE Trans. Circuits Syst. I Regul. Pap. 59(5), 938–945 (2012)MathSciNetCrossRef
16.
Zurück zum Zitat M. Shahmohammadi, M. Babaie, R.B. Staszewski, A 1/f noise upconversion reduction technique for voltage-biased RF CMOS oscillators. IEEE J. Solid-State Circuits 51(11), 2610–2624 (2016)CrossRef M. Shahmohammadi, M. Babaie, R.B. Staszewski, A 1/f noise upconversion reduction technique for voltage-biased RF CMOS oscillators. IEEE J. Solid-State Circuits 51(11), 2610–2624 (2016)CrossRef
17.
Zurück zum Zitat F. Pepe, P. Andreani, A general theory of phase noise in transconductor-based harmonic oscillators. IEEE Trans. Circuits Syst. I Regul. Pap. 64(2), 432–445 (2017)CrossRef F. Pepe, P. Andreani, A general theory of phase noise in transconductor-based harmonic oscillators. IEEE Trans. Circuits Syst. I Regul. Pap. 64(2), 432–445 (2017)CrossRef
18.
Zurück zum Zitat E. Hegazi, H. Sjoland, A.A. Abidi, A filtering technique to lower LC oscillator phase noise. IEEE J. Solid-State Circuits 36(12), 1921–1930 (2001)CrossRef E. Hegazi, H. Sjoland, A.A. Abidi, A filtering technique to lower LC oscillator phase noise. IEEE J. Solid-State Circuits 36(12), 1921–1930 (2001)CrossRef
19.
Zurück zum Zitat D. Murphy, H. Darabi, H. Wu, 25.3 A VCO with implicit common-mode resonance, in 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA (2015), pp. 1–3 D. Murphy, H. Darabi, H. Wu, 25.3 A VCO with implicit common-mode resonance, in 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA (2015), pp. 1–3
20.
Zurück zum Zitat D. Murphy, H. Darabi, 2.5 A complementary VCO for IoE that achieves a 195dBc, Hz FOM and flicker noise corner of 200kHz, in 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA (2016), pp. 44–45 D. Murphy, H. Darabi, 2.5 A complementary VCO for IoE that achieves a 195dBc, Hz FOM and flicker noise corner of 200kHz, in 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA (2016), pp. 44–45
21.
Zurück zum Zitat M. Babaie, R.B. Staszewski, A class-F CMOS oscillator. IEEE J. Solid-State Circuits 48(12), 3120–3133 (2013)CrossRef M. Babaie, R.B. Staszewski, A class-F CMOS oscillator. IEEE J. Solid-State Circuits 48(12), 3120–3133 (2013)CrossRef
22.
Zurück zum Zitat Huijung Kim, Seonghan Ryu, Yujin Chung, Jinsung Choi, Bumman Kim, A low phase-noise CMOS VCO with harmonic tuned LC tank. IEEE Trans. Microw. Theory Tech. 54(7), 2917–2924 (2006)CrossRef Huijung Kim, Seonghan Ryu, Yujin Chung, Jinsung Choi, Bumman Kim, A low phase-noise CMOS VCO with harmonic tuned LC tank. IEEE Trans. Microw. Theory Tech. 54(7), 2917–2924 (2006)CrossRef
23.
Zurück zum Zitat C. Samori, Understanding phase noise in LC VCOs: a key problem in RF integrated circuits. IEEE Solid-State Circuits Mag. 8(4), 81–91 (2016)CrossRef C. Samori, Understanding phase noise in LC VCOs: a key problem in RF integrated circuits. IEEE Solid-State Circuits Mag. 8(4), 81–91 (2016)CrossRef
24.
Zurück zum Zitat F. Pepe, P. Andreani, Still more on the 1/f\(^{2}\) phase noise performance of harmonic oscillators. IEEE Trans. Circuits Syst. II Express Briefs 63(6), 538–542 (2016)CrossRef F. Pepe, P. Andreani, Still more on the 1/f\(^{2}\) phase noise performance of harmonic oscillators. IEEE Trans. Circuits Syst. II Express Briefs 63(6), 538–542 (2016)CrossRef
25.
Zurück zum Zitat A. Moroni, R. Genesi, D. Manstretta, Analysis and design of a 54 GHz distributed hybrid wave oscillator array with quadrature outputs. IEEE J. Solid-State Circuits 49(5), 1158–1172 (2014)CrossRef A. Moroni, R. Genesi, D. Manstretta, Analysis and design of a 54 GHz distributed hybrid wave oscillator array with quadrature outputs. IEEE J. Solid-State Circuits 49(5), 1158–1172 (2014)CrossRef
26.
Zurück zum Zitat J. Wood, T.C. Edwards, S. Lipa, Rotary traveling-wave oscillator arrays: a new clock technology. IEEE J. Solid-State Circuits 36(11), 1654–1665 (2001)CrossRef J. Wood, T.C. Edwards, S. Lipa, Rotary traveling-wave oscillator arrays: a new clock technology. IEEE J. Solid-State Circuits 36(11), 1654–1665 (2001)CrossRef
27.
Zurück zum Zitat K. Takinami, R. Strandberg, P.C.P. Liang, G. Le Grand de Mercey, T. Wong, M. Hassibi, A distributed oscillator based all-digital PLL with a 32-phase embedded phase-to-digital converter. IEEE J. Solid-State Circuits 46(11), 2650–2660 (2011)CrossRef K. Takinami, R. Strandberg, P.C.P. Liang, G. Le Grand de Mercey, T. Wong, M. Hassibi, A distributed oscillator based all-digital PLL with a 32-phase embedded phase-to-digital converter. IEEE J. Solid-State Circuits 46(11), 2650–2660 (2011)CrossRef
28.
Zurück zum Zitat A. Devos, M. Vigilante, P. Reynaert, Multiphase digitally controlled oscillator for future 5G phased arrays in 90 nm CMOS, in 2016 IEEE Nordic Circuits and Systems Conference (NORCAS), Copenhagen (2016), pp. 1–4 A. Devos, M. Vigilante, P. Reynaert, Multiphase digitally controlled oscillator for future 5G phased arrays in 90 nm CMOS, in 2016 IEEE Nordic Circuits and Systems Conference (NORCAS), Copenhagen (2016), pp. 1–4
29.
Zurück zum Zitat N. Nouri, J.F. Buckwalter, A 45-GHz rotary-wave voltage-controlled oscillator. IEEE Trans. Microw. Theory Tech. 59(2), 383–392 (2011)CrossRef N. Nouri, J.F. Buckwalter, A 45-GHz rotary-wave voltage-controlled oscillator. IEEE Trans. Microw. Theory Tech. 59(2), 383–392 (2011)CrossRef
30.
Zurück zum Zitat P. Kinget, Integrated GHz voltage controlled oscillators, Analog Circuit Design (Springer, US, 1999), pp. 353–381CrossRef P. Kinget, Integrated GHz voltage controlled oscillators, Analog Circuit Design (Springer, US, 1999), pp. 353–381CrossRef
31.
Zurück zum Zitat B. Soltanian, H. Ainspan, W. Rhee, D. Friedman, P.R. Kinget, An ultra-compact differentially tuned 6-GHz CMOS LC-VCO with dynamic common-mode feedback. IEEE J. Solid-State Circuits 42(8), 1635–1641 (2007)CrossRef B. Soltanian, H. Ainspan, W. Rhee, D. Friedman, P.R. Kinget, An ultra-compact differentially tuned 6-GHz CMOS LC-VCO with dynamic common-mode feedback. IEEE J. Solid-State Circuits 42(8), 1635–1641 (2007)CrossRef
32.
Zurück zum Zitat L. Iotti, A. Mazzanti, F. Svelto, Insights into phase-noise scaling in switch-coupled multi-core LC VCOs for E-band adaptive modulation links. IEEE J. Solid-State Circuits 52(7), 1703–1718 (2017)CrossRef L. Iotti, A. Mazzanti, F. Svelto, Insights into phase-noise scaling in switch-coupled multi-core LC VCOs for E-band adaptive modulation links. IEEE J. Solid-State Circuits 52(7), 1703–1718 (2017)CrossRef
33.
Zurück zum Zitat B. Razavi, A 300-GHz fundamental oscillator in 65-nm CMOS technology. IEEE J. Solid-State Circuits 46(4), 894–903 (2011)MathSciNetCrossRef B. Razavi, A 300-GHz fundamental oscillator in 65-nm CMOS technology. IEEE J. Solid-State Circuits 46(4), 894–903 (2011)MathSciNetCrossRef
34.
Zurück zum Zitat C. Jany, A. Siligaris, J.L. Gonzalez-Jimenez, P. Vincent, P. Ferrari, A programmable frequency multiplier-by-29 architecture for millimeter wave applications. IEEE J. Solid-State Circuits 50(7), 1669–1679 (2015)CrossRef C. Jany, A. Siligaris, J.L. Gonzalez-Jimenez, P. Vincent, P. Ferrari, A programmable frequency multiplier-by-29 architecture for millimeter wave applications. IEEE J. Solid-State Circuits 50(7), 1669–1679 (2015)CrossRef
35.
Zurück zum Zitat P. Reynaert, W. Steyaert, M. Vigilante, “RF CMOS”. Nanoelectronics: Materials, Devices, Applications, 2 Volumes (2017) P. Reynaert, W. Steyaert, M. Vigilante, “RF CMOS”. Nanoelectronics: Materials, Devices, Applications, 2 Volumes (2017)
36.
Zurück zum Zitat E. Mammei, E. Monaco, A. Mazzanti, F. Svelto, A 33.6-to-46.2GHz 32nm CMOS VCO with 177.5dBc, Hz minimum noise FOM using inductor splitting for tuning extension, in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA (2013), pp. 350–351 E. Mammei, E. Monaco, A. Mazzanti, F. Svelto, A 33.6-to-46.2GHz 32nm CMOS VCO with 177.5dBc, Hz minimum noise FOM using inductor splitting for tuning extension, in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA (2013), pp. 350–351
37.
Zurück zum Zitat Z. Huang, H.C. Luong, B. Chi, Z. Wang, H. Jia, 25.6 A 70.5-to-85.5GHz 65nm phase-locked loop with passive scaling of loop filter, in 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA (2015), pp. 1–3 Z. Huang, H.C. Luong, B. Chi, Z. Wang, H. Jia, 25.6 A 70.5-to-85.5GHz 65nm phase-locked loop with passive scaling of loop filter, in 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA (2015), pp. 1–3
38.
Zurück zum Zitat H. Jia, L. Kuang, Z. Wang, B. Chi, A W-band injection-locked frequency doubler based on top-injected coupled resonator. IEEE Trans. Microw. Theory Tech. 64(1), 210–218 (2016)CrossRef H. Jia, L. Kuang, Z. Wang, B. Chi, A W-band injection-locked frequency doubler based on top-injected coupled resonator. IEEE Trans. Microw. Theory Tech. 64(1), 210–218 (2016)CrossRef
39.
Zurück zum Zitat A.H. Masnadi Shirazi et al., On the design of mm-wave self-mixing-VCO architecture for high tuning-range and low phase noise. IEEE J. Solid-State Circuits 51(5), 1210–1222 (2016)CrossRef A.H. Masnadi Shirazi et al., On the design of mm-wave self-mixing-VCO architecture for high tuning-range and low phase noise. IEEE J. Solid-State Circuits 51(5), 1210–1222 (2016)CrossRef
40.
Zurück zum Zitat Z. Zong, M. Babaie, R.B. Staszewski, A 60 GHz frequency generator based on a 20 GHz oscillator and an implicit multiplier. IEEE J. Solid-State Circuits 51(5), 1261–1273 (2016)CrossRef Z. Zong, M. Babaie, R.B. Staszewski, A 60 GHz frequency generator based on a 20 GHz oscillator and an implicit multiplier. IEEE J. Solid-State Circuits 51(5), 1261–1273 (2016)CrossRef
41.
Zurück zum Zitat M. Demirkan, S.P. Bruss, R.R. Spencer, Design of wide tuning-range CMOS VCOs using switched coupled-inductors. IEEE J. Solid-State Circuits 43(5), 1156–1163 (2008)CrossRef M. Demirkan, S.P. Bruss, R.R. Spencer, Design of wide tuning-range CMOS VCOs using switched coupled-inductors. IEEE J. Solid-State Circuits 43(5), 1156–1163 (2008)CrossRef
42.
Zurück zum Zitat T. LaRocca, J.Y.C. Liu, M.C.F. Chang, 60 GHz CMOS amplifiers using transformer-coupling and artificial dielectric differential transmission lines for compact design. IEEE J. Solid-State Circuits 44(5), 1425–1435 (2009)CrossRef T. LaRocca, J.Y.C. Liu, M.C.F. Chang, 60 GHz CMOS amplifiers using transformer-coupling and artificial dielectric differential transmission lines for compact design. IEEE J. Solid-State Circuits 44(5), 1425–1435 (2009)CrossRef
43.
Zurück zum Zitat T. LaRocca, J. Liu, F. Wang, F. Chang, Embedded DiCAD linear phase shifter for 5765GHz reconfigurable direct frequency modulation in 90nm CMOS, in 2009 IEEE Radio Frequency Integrated Circuits Symposium, Boston, MA (2009), pp. 219–222 T. LaRocca, J. Liu, F. Wang, F. Chang, Embedded DiCAD linear phase shifter for 5765GHz reconfigurable direct frequency modulation in 90nm CMOS, in 2009 IEEE Radio Frequency Integrated Circuits Symposium, Boston, MA (2009), pp. 219–222
44.
Zurück zum Zitat T. LaRocca, J. Liu, F. Wang, D. Murphy, F. Chang, CMOS digital controlled oscillator with embedded DiCAD resonator for 5864GHz linear frequency tuning and low phase noise, in 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA (2009), pp. 685–688 T. LaRocca, J. Liu, F. Wang, D. Murphy, F. Chang, CMOS digital controlled oscillator with embedded DiCAD resonator for 5864GHz linear frequency tuning and low phase noise, in 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA (2009), pp. 685–688
45.
Zurück zum Zitat W. Wu, J.R. Long, R.B. Staszewski, High-resolution millimeter-wave digitally controlled oscillators with reconfigurable passive resonators. IEEE J. Solid-State Circuits 48(11), 2785–2794 (2013)CrossRef W. Wu, J.R. Long, R.B. Staszewski, High-resolution millimeter-wave digitally controlled oscillators with reconfigurable passive resonators. IEEE J. Solid-State Circuits 48(11), 2785–2794 (2013)CrossRef
46.
Zurück zum Zitat A. Bevilacqua, F.P. Pavan, C. Sandner, A. Gerosa, A. Neviani, Transformer-based dual-mode voltage-controlled oscillators. IEEE Trans. Circuits Syst. II Express Briefs 54(4), 293–297 (2007)CrossRef A. Bevilacqua, F.P. Pavan, C. Sandner, A. Gerosa, A. Neviani, Transformer-based dual-mode voltage-controlled oscillators. IEEE Trans. Circuits Syst. II Express Briefs 54(4), 293–297 (2007)CrossRef
47.
Zurück zum Zitat J. Yin, H.C. Luong, A 57.590.1-GHz magnetically tuned multimode CMOS VCO. IEEE J. Solid-State Circuits 48(8), 1851–1861 (2013)CrossRef J. Yin, H.C. Luong, A 57.590.1-GHz magnetically tuned multimode CMOS VCO. IEEE J. Solid-State Circuits 48(8), 1851–1861 (2013)CrossRef
48.
Zurück zum Zitat A. Mazzanti, A. Bevilacqua, On the phase noise performance of transformer-based CMOS differential-pair harmonic oscillators. IEEE Trans. Circuits Syst. I Regul. Pap. 62(9), 2334–2341 (2015)MathSciNetCrossRef A. Mazzanti, A. Bevilacqua, On the phase noise performance of transformer-based CMOS differential-pair harmonic oscillators. IEEE Trans. Circuits Syst. I Regul. Pap. 62(9), 2334–2341 (2015)MathSciNetCrossRef
49.
Zurück zum Zitat M. Vigilante, P. Reynaert, Analysis and design of an E-band transformer-coupled low-noise quadrature VCO in 28-nm CMOS. IEEE Trans. Microw. Theory Tech. 64(4), 1122–1132 (2016)CrossRef M. Vigilante, P. Reynaert, Analysis and design of an E-band transformer-coupled low-noise quadrature VCO in 28-nm CMOS. IEEE Trans. Microw. Theory Tech. 64(4), 1122–1132 (2016)CrossRef
50.
Zurück zum Zitat L. Li, P. Reynaert, M. Steyaert, A colpitts LC VCO with Miller-capacitance gm enhancing and phase noise reduction techniques, in 2011 Proceedings of the ESSCIRC (ESSCIRC), Helsinki (2011), pp. 491–494 L. Li, P. Reynaert, M. Steyaert, A colpitts LC VCO with Miller-capacitance gm enhancing and phase noise reduction techniques, in 2011 Proceedings of the ESSCIRC (ESSCIRC), Helsinki (2011), pp. 491–494
51.
Zurück zum Zitat M.M. Bajestan, V.D. Rezaei, K. Entesari, A low phase-noise wide tuning-range quadrature oscillator using a transformer-based dual-resonance LC ring. IEEE Trans. Microw. Theory Tech. 63(4), 1142–1153 (2015)CrossRef M.M. Bajestan, V.D. Rezaei, K. Entesari, A low phase-noise wide tuning-range quadrature oscillator using a transformer-based dual-resonance LC ring. IEEE Trans. Microw. Theory Tech. 63(4), 1142–1153 (2015)CrossRef
52.
Zurück zum Zitat A. Bevilacqua, F.P. Pavan, C. Sandner, A. Gerosa, A. Neviani, A 3.4-7 GHz transformer-based dual-mode wideband VCO, in 2006 Proceedings of the 32nd European Solid-State Circuits Conference, Montreux (2006), pp. 440–443 A. Bevilacqua, F.P. Pavan, C. Sandner, A. Gerosa, A. Neviani, A 3.4-7 GHz transformer-based dual-mode wideband VCO, in 2006 Proceedings of the 32nd European Solid-State Circuits Conference, Montreux (2006), pp. 440–443
53.
Zurück zum Zitat G. Li, L. Liu, Y. Tang, E. Afshari, A low-phase-noise wide-tuning-range oscillator based on resonant mode switching. IEEE J. Solid-State Circuits 47(6), 1295–1308 (2012)CrossRef G. Li, L. Liu, Y. Tang, E. Afshari, A low-phase-noise wide-tuning-range oscillator based on resonant mode switching. IEEE J. Solid-State Circuits 47(6), 1295–1308 (2012)CrossRef
54.
Zurück zum Zitat S. Levantino, P. Maffezzoni, F. Pepe, A. Bonfanti, C. Samori, A.L. Lacaita, Efficient calculation of the impulse sensitivity function in oscillators. IEEE Trans. Circuits Syst. II Express Briefs 59(10), 628–632 (2012)CrossRef S. Levantino, P. Maffezzoni, F. Pepe, A. Bonfanti, C. Samori, A.L. Lacaita, Efficient calculation of the impulse sensitivity function in oscillators. IEEE Trans. Circuits Syst. II Express Briefs 59(10), 628–632 (2012)CrossRef
55.
Zurück zum Zitat M. Babaie, R.B. Staszewski, An ultra-low phase noise class-F 2 CMOS oscillator with 191 dBc/Hz FoM and long-term reliability. IEEE J. Solid-State Circuits 50(3), 679–692 (2015)CrossRef M. Babaie, R.B. Staszewski, An ultra-low phase noise class-F 2 CMOS oscillator with 191 dBc/Hz FoM and long-term reliability. IEEE J. Solid-State Circuits 50(3), 679–692 (2015)CrossRef
56.
Zurück zum Zitat D. Murphy et al., A low phase noise, wideband and compact CMOS PLL for use in a heterodyne 802.15.3c transceiver. IEEE J. Solid-State Circuits 46(7), 1606–1617 (2011)MathSciNetCrossRef D. Murphy et al., A low phase noise, wideband and compact CMOS PLL for use in a heterodyne 802.15.3c transceiver. IEEE J. Solid-State Circuits 46(7), 1606–1617 (2011)MathSciNetCrossRef
57.
Zurück zum Zitat A. Mazzanti, F. Svelto, P. Andreani, On the amplitude and phase errors of quadrature LC-tank CMOS oscillators. IEEE J. Solid-State Circuits 41(6), 1305–1313 (2006)CrossRef A. Mazzanti, F. Svelto, P. Andreani, On the amplitude and phase errors of quadrature LC-tank CMOS oscillators. IEEE J. Solid-State Circuits 41(6), 1305–1313 (2006)CrossRef
58.
Zurück zum Zitat N.C. Kuo, J.C. Chien, A.M. Niknejad, Design and analysis on bidirectionally and passively coupled QVCO with nonlinear coupler. IEEE Trans. Microw. Theory Tech. 63(4), 1130–1141 (2015)CrossRef N.C. Kuo, J.C. Chien, A.M. Niknejad, Design and analysis on bidirectionally and passively coupled QVCO with nonlinear coupler. IEEE Trans. Microw. Theory Tech. 63(4), 1130–1141 (2015)CrossRef
59.
Zurück zum Zitat W. Sansen, 1.3 Analog CMOS from 5 micrometer to 5 nanometer, in 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA (2015), pp. 1–6 W. Sansen, 1.3 Analog CMOS from 5 micrometer to 5 nanometer, in 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA (2015), pp. 1–6
60.
Zurück zum Zitat D. Zhao, P. Reynaert, A 60-GHz dual-mode class AB power amplifier in 40-nm CMOS. IEEE J. Solid-State Circuits 48(10), 2323–2337 (2013)CrossRef D. Zhao, P. Reynaert, A 60-GHz dual-mode class AB power amplifier in 40-nm CMOS. IEEE J. Solid-State Circuits 48(10), 2323–2337 (2013)CrossRef
61.
Zurück zum Zitat J. Shi, K. Kang, Y.Z. Xiong, J. Brinkhoff, F. Lin, X.J. Yuan, Millimeter-wave passives in 45-nm digital CMOS. IEEE Electron Device Lett. 31(10), 1080–1082 (2010)CrossRef J. Shi, K. Kang, Y.Z. Xiong, J. Brinkhoff, F. Lin, X.J. Yuan, Millimeter-wave passives in 45-nm digital CMOS. IEEE Electron Device Lett. 31(10), 1080–1082 (2010)CrossRef
62.
Zurück zum Zitat U. Decanis, A. Ghilioni, E. Monaco, A. Mazzanti, F. Svelto, A low-noise quadrature VCO based on magnetically coupled resonators and a wideband frequency divider at millimeter waves. IEEE J. Solid-State Circuits 46(12), 2943–2955 (2011)CrossRef U. Decanis, A. Ghilioni, E. Monaco, A. Mazzanti, F. Svelto, A low-noise quadrature VCO based on magnetically coupled resonators and a wideband frequency divider at millimeter waves. IEEE J. Solid-State Circuits 46(12), 2943–2955 (2011)CrossRef
63.
Zurück zum Zitat D. Zhao, P. Reynaert, A 40 nm CMOS E-band transmitter with compact and symmetrical layout floor-plans. IEEE J. Solid-State Circuits 50(11), 2560–2571 (2015)CrossRef D. Zhao, P. Reynaert, A 40 nm CMOS E-band transmitter with compact and symmetrical layout floor-plans. IEEE J. Solid-State Circuits 50(11), 2560–2571 (2015)CrossRef
64.
Zurück zum Zitat A. Mirzaei, M. Mikhemar, H. Darabi, 21.8 A pulling mitigation technique for direct-conversion transmitters, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA (2014), pp. 374–375 A. Mirzaei, M. Mikhemar, H. Darabi, 21.8 A pulling mitigation technique for direct-conversion transmitters, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA (2014), pp. 374–375
65.
Zurück zum Zitat B. Razavi, A study of injection locking and pulling in oscillators. IEEE J. Solid-State Circuits 39(9), 1415–1424 (2004)CrossRef B. Razavi, A study of injection locking and pulling in oscillators. IEEE J. Solid-State Circuits 39(9), 1415–1424 (2004)CrossRef
66.
Zurück zum Zitat B. Razavi, Design considerations for direct-conversion receivers. IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. 44(6), 428–435 (1997)CrossRef B. Razavi, Design considerations for direct-conversion receivers. IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. 44(6), 428–435 (1997)CrossRef
67.
Zurück zum Zitat I. Nasr, B. Laemmle, K. Aufinger, G. Fischer, R. Weigel, D. Kissinger, A 70–90-GHz high-linearity multi-band quadrature receiver in 0.35\(\mu \) m SiGe technology. IEEE Trans. Microw. Theory Tech. 61(12), 4600–4612 (2013)CrossRef I. Nasr, B. Laemmle, K. Aufinger, G. Fischer, R. Weigel, D. Kissinger, A 70–90-GHz high-linearity multi-band quadrature receiver in 0.35\(\mu \) m SiGe technology. IEEE Trans. Microw. Theory Tech. 61(12), 4600–4612 (2013)CrossRef
68.
Zurück zum Zitat E. Laskin et al., Nanoscale CMOS transceiver design in the 90170-GHz range. IEEE Trans. Microw. Theory Tech. 57(12), 3477–3490 (2009)CrossRef E. Laskin et al., Nanoscale CMOS transceiver design in the 90170-GHz range. IEEE Trans. Microw. Theory Tech. 57(12), 3477–3490 (2009)CrossRef
Metadaten
Titel
mm-Wave LC VCOs
verfasst von
Marco Vigilante
Patrick Reynaert
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-72646-5_4

Neuer Inhalt