Skip to main content
Erschienen in: Wireless Personal Communications 2/2023

20.03.2023

Mobility Aware-Task Scheduling and Virtual Fog for Offloading in IoT-Fog-Cloud Environment

verfasst von: Khaled M. Matrouk, Amer D. Matrouk

Erschienen in: Wireless Personal Communications | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Internet of Things (IoT) is an emerging technology that provides services to any smart device at any place. Due to the large volume of data and dynamicity, the IoT environment faces challenges in terms of overloading and energy consumption. To resolve those issues, we proposed MISSION (MobIlity taSk Scheduling OffloadiNg) method to solve these problems, and for that, we present four phases. (1). History aware handover process, in this stage we manage the mobility of IoT devices to reduce the retransmission rate. The handover is managed by 5G gateway for that we proposed Mobility Aware Proximal Policy Optimization (MAPPO) algorithm with RSS, direction, and distance parameters. (2). Multi criteria based task classification and scheduling, in this stage first the tasks are classified into four types such as real time task, non-real time task, delay sensitive task and resource intensive task and the classified tasks are given to the input for scheduling, for scheduling we consider a priority, maximum response time, size of data, task completion time and energy. Both the classification and scheduling are done by Di-Process Modular Neural Network (Di-MNN). (3). Energy aware task allocation, in this process, first we calculate the weight value of the task using First Fitness based Animal Migration Optimization (FFAMO) which considers processing time, processing cost, throughput, and energy consumption parameters. And then the weighted task is assigned to the optimal fog by using Capacity based Hungarian Assignment algorithm (CH2A) by considering the load of task, waiting time, energy consumption, and distance which allocates the task optimally. (4). Efficient task offloading on virtual fog nodes, during scheduling or task allocation the fog node gets overloaded that time virtual fog is created by the central fog node using graph entropy. Finally, simulation is done by iFogsim which evaluates the performance in terms of completion time, energy consumption, delay, response time, number of unnecessary handovers, offloading time, bandwidth utilization, and fog load and throughput.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Swamy, S., & Kota, S. R. (2020). An empirical study on system level aspects of internet of things (IoT). IEEE Access, 8, 188082–188134.CrossRef Swamy, S., & Kota, S. R. (2020). An empirical study on system level aspects of internet of things (IoT). IEEE Access, 8, 188082–188134.CrossRef
2.
Zurück zum Zitat Paul, A., Pinjari, H., Hong, W., Seo, H., & Rho, S. (2018). fog computing-based IoT for health monitoring system. Journal of Sensors, 2018, 13864701–13864707.CrossRef Paul, A., Pinjari, H., Hong, W., Seo, H., & Rho, S. (2018). fog computing-based IoT for health monitoring system. Journal of Sensors, 2018, 13864701–13864707.CrossRef
3.
Zurück zum Zitat Bellavista, P., Berrocal, J., Corradi, A., Das, S., Foschini, L., & Zanni, A. (2019). A survey on fog computing for the Internet of Things. Pervasive and Mobile Computing, 52, 71–99.CrossRef Bellavista, P., Berrocal, J., Corradi, A., Das, S., Foschini, L., & Zanni, A. (2019). A survey on fog computing for the Internet of Things. Pervasive and Mobile Computing, 52, 71–99.CrossRef
4.
Zurück zum Zitat Thareja, C., & Singh, N. (2019). Role of fog computing in IoT-based applications. Thareja, C., & Singh, N. (2019). Role of fog computing in IoT-based applications.
5.
Zurück zum Zitat Arivazhagan, C., & Natarajan, V. (2020). A survey on fog computing paradigms, challenges and opportunities in IoT. International Conference on Communication and Signal Processing (ICCSP), 2020, 0385–0389.CrossRef Arivazhagan, C., & Natarajan, V. (2020). A survey on fog computing paradigms, challenges and opportunities in IoT. International Conference on Communication and Signal Processing (ICCSP), 2020, 0385–0389.CrossRef
6.
Zurück zum Zitat Aladwani, T. (2019). Scheduling IoT healthcare tasks in fog computing based on their importance. Procedia Computer Science, 163, 560–569.CrossRef Aladwani, T. (2019). Scheduling IoT healthcare tasks in fog computing based on their importance. Procedia Computer Science, 163, 560–569.CrossRef
7.
Zurück zum Zitat Abdel-Basset, M., Mohamed, R., Elhoseny, M., Bashir, A., Jolfaei, A., & Kumar, N. (2020). Energy-aware marine predators algorithm for task scheduling in IoT-based fog computing applications. IEEE Transactions on Industrial Informatics, 1–1. Abdel-Basset, M., Mohamed, R., Elhoseny, M., Bashir, A., Jolfaei, A., & Kumar, N. (2020). Energy-aware marine predators algorithm for task scheduling in IoT-based fog computing applications. IEEE Transactions on Industrial Informatics, 1–1.
8.
Zurück zum Zitat Arisdakessian, S., Wahab, O. A., Mourad, A., Otrok, H., & Kara, N. (2020). FoGMatch: An intelligent multi-criteria IoT-fog scheduling approach using game theory. IEEE/ACM Transactions on Networking, 28, 1779–1789.CrossRef Arisdakessian, S., Wahab, O. A., Mourad, A., Otrok, H., & Kara, N. (2020). FoGMatch: An intelligent multi-criteria IoT-fog scheduling approach using game theory. IEEE/ACM Transactions on Networking, 28, 1779–1789.CrossRef
9.
Zurück zum Zitat Ali, I.M., Sallam, K.M., Moustafa, N., Chakraborty, R., Ryan, M., & Choo, K.R. (2020). An automated task scheduling model using non-dominated sorting genetic algorithm II for fog-cloud systems. IEEE Transactions on Cloud Computing, 1–1. Ali, I.M., Sallam, K.M., Moustafa, N., Chakraborty, R., Ryan, M., & Choo, K.R. (2020). An automated task scheduling model using non-dominated sorting genetic algorithm II for fog-cloud systems. IEEE Transactions on Cloud Computing, 1–1.
10.
Zurück zum Zitat Alsaidy, S.A., Abbood, A.D., & Sahib, M.A. (2020). Heuristic initialization of PSO task scheduling algorithm in cloud computing. Journal of King Saud University - Computer and Information Sciences. Alsaidy, S.A., Abbood, A.D., & Sahib, M.A. (2020). Heuristic initialization of PSO task scheduling algorithm in cloud computing. Journal of King Saud University - Computer and Information Sciences.
11.
Zurück zum Zitat Attiya, I., Elaziz, M., & Xiong, S. (2020). Job scheduling in cloud computing using a modified harris hawks optimization and simulated annealing algorithm. Computational Intelligence and Neuroscience. Attiya, I., Elaziz, M., & Xiong, S. (2020). Job scheduling in cloud computing using a modified harris hawks optimization and simulated annealing algorithm. Computational Intelligence and Neuroscience.
12.
Zurück zum Zitat Ding, D., Fan, X., Zhao, Y., Kang, K., Yin, Q., & Zeng, J. (2020). Q-learning based dynamic task scheduling for energy-efficient cloud computing. Future Generation Computing System, 108, 361–371.CrossRef Ding, D., Fan, X., Zhao, Y., Kang, K., Yin, Q., & Zeng, J. (2020). Q-learning based dynamic task scheduling for energy-efficient cloud computing. Future Generation Computing System, 108, 361–371.CrossRef
13.
Zurück zum Zitat Nguyen, B., Binh, H. T., & Son, D. (2019). Evolutionary algorithms to optimize task scheduling problem for the IoT based bag-of-tasks application in cloud–fog computing environment. Applied Sciences, 9, 1730.CrossRef Nguyen, B., Binh, H. T., & Son, D. (2019). Evolutionary algorithms to optimize task scheduling problem for the IoT based bag-of-tasks application in cloud–fog computing environment. Applied Sciences, 9, 1730.CrossRef
14.
Zurück zum Zitat Velliangiri, S., Karthikeyan, P., Xavier, V. A., & Baswaraj, D. (2021). Hybrid electro search with genetic algorithm for task scheduling in cloud computing. Ain Shams Engineering Journal, 12(1), 631–639.CrossRef Velliangiri, S., Karthikeyan, P., Xavier, V. A., & Baswaraj, D. (2021). Hybrid electro search with genetic algorithm for task scheduling in cloud computing. Ain Shams Engineering Journal, 12(1), 631–639.CrossRef
15.
Zurück zum Zitat Kim, S. (2020). New application task offloading algorithms for edge, fog, and cloud computing paradigms. Wireless Communications and Mobile Computing, 8888074:1–8888074:14. Kim, S. (2020). New application task offloading algorithms for edge, fog, and cloud computing paradigms. Wireless Communications and Mobile Computing, 8888074:1–8888074:14.
16.
Zurück zum Zitat Aazam, M., Islam, S., Lone, S. T., & Abbas, A. (2020). Cloud of things (CoT): Cloud-fog-IoT task offloading for sustainable internet of things. IEEE Transactions on Sustainable Computing, 7(1), 87–98.CrossRef Aazam, M., Islam, S., Lone, S. T., & Abbas, A. (2020). Cloud of things (CoT): Cloud-fog-IoT task offloading for sustainable internet of things. IEEE Transactions on Sustainable Computing, 7(1), 87–98.CrossRef
17.
Zurück zum Zitat Al-khafajiy, M., Baker, T., Waraich, A., Al-Jumeily, D., & Hussain, A. (2018). IoT-fog optimal workload via fog offloading. IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion), 2018, 359–364.CrossRef Al-khafajiy, M., Baker, T., Waraich, A., Al-Jumeily, D., & Hussain, A. (2018). IoT-fog optimal workload via fog offloading. IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion), 2018, 359–364.CrossRef
18.
Zurück zum Zitat Mukherjee, M., Guo, M., Lloret, J., Iqbal, R., & Zhang, Q. (2020). Deadline-aware fair scheduling for offloaded tasks in fog computing with inter-fog dependency. IEEE Communications Letters, 24, 307–311.CrossRef Mukherjee, M., Guo, M., Lloret, J., Iqbal, R., & Zhang, Q. (2020). Deadline-aware fair scheduling for offloaded tasks in fog computing with inter-fog dependency. IEEE Communications Letters, 24, 307–311.CrossRef
19.
Zurück zum Zitat Wu, Q., Ge, H., Liu, H., Fan, Q., Li, Z., & Wang, Z. (2020). A task offloading scheme in vehicular fog and cloud computing system. IEEE Access, 8, 1173–1184.CrossRef Wu, Q., Ge, H., Liu, H., Fan, Q., Li, Z., & Wang, Z. (2020). A task offloading scheme in vehicular fog and cloud computing system. IEEE Access, 8, 1173–1184.CrossRef
20.
Zurück zum Zitat Zhang, G., Shen, F., Liu, Z., Yang, Y., Wang, K., & Zhou, M. (2019). FEMTO: Fair and energy-minimized task offloading for fog-enabled IoT networks. IEEE Internet of Things Journal, 6, 4388–4400.CrossRef Zhang, G., Shen, F., Liu, Z., Yang, Y., Wang, K., & Zhou, M. (2019). FEMTO: Fair and energy-minimized task offloading for fog-enabled IoT networks. IEEE Internet of Things Journal, 6, 4388–4400.CrossRef
21.
Zurück zum Zitat Chen, Z., Hu, J., Chen, X., Hu, J., Zheng, X., & Min, G. (2020). Computation offloading and task scheduling for DNN-based applications in cloud-edge computing. IEEE Access, 8, 115537–115547.CrossRef Chen, Z., Hu, J., Chen, X., Hu, J., Zheng, X., & Min, G. (2020). Computation offloading and task scheduling for DNN-based applications in cloud-edge computing. IEEE Access, 8, 115537–115547.CrossRef
22.
Zurück zum Zitat Hussein, M. K., & Mousa, M. H. (2020). Efficient task offloading for IoT-based applications in fog computing using ant colony optimization. IEEE Access, 8, 37191–37201.CrossRef Hussein, M. K., & Mousa, M. H. (2020). Efficient task offloading for IoT-based applications in fog computing using ant colony optimization. IEEE Access, 8, 37191–37201.CrossRef
23.
Zurück zum Zitat Rahbari, D., & Nickray, M. (2020). Task offloading in mobile fog computing by classification and regression tree. Peer-to-Peer Networking and Applications, 13, 104–122.CrossRef Rahbari, D., & Nickray, M. (2020). Task offloading in mobile fog computing by classification and regression tree. Peer-to-Peer Networking and Applications, 13, 104–122.CrossRef
24.
Zurück zum Zitat Zhao, X., & Huang, C. (2020). Microservice based computational offloading framework and cost efficient task scheduling algorithm in heterogeneous fog cloud network. IEEE Access, 8, 56680–56694.CrossRef Zhao, X., & Huang, C. (2020). Microservice based computational offloading framework and cost efficient task scheduling algorithm in heterogeneous fog cloud network. IEEE Access, 8, 56680–56694.CrossRef
25.
Zurück zum Zitat Hazra, A., Adhikari, M., Amgoth, T., & Srirama, S. (2020). Joint computation offloading and scheduling optimization of IoT applications in fog networks. IEEE Transactions on Network Science and Engineering, 1–1. Hazra, A., Adhikari, M., Amgoth, T., & Srirama, S. (2020). Joint computation offloading and scheduling optimization of IoT applications in fog networks. IEEE Transactions on Network Science and Engineering, 1–1.
26.
Zurück zum Zitat Sun, H., Yu, H., & Fan, G. (2020). Contract-based resource sharing for time effective task scheduling in fog-cloud environment. IEEE Transactions on Network and Service Management, 17, 1040–1053.CrossRef Sun, H., Yu, H., & Fan, G. (2020). Contract-based resource sharing for time effective task scheduling in fog-cloud environment. IEEE Transactions on Network and Service Management, 17, 1040–1053.CrossRef
27.
Zurück zum Zitat Khaki, M., & Ghasemi, A. (2020). The impact of mobility model on handover rate in heterogeneous multi-tier wireless networks. Computer Networks, 182, 107454.CrossRef Khaki, M., & Ghasemi, A. (2020). The impact of mobility model on handover rate in heterogeneous multi-tier wireless networks. Computer Networks, 182, 107454.CrossRef
28.
Zurück zum Zitat Swain, C., Sahoo, M. N., Satpathy, A., Muhammad, K., Bakshi, S., Rodrigues, J. J. P. C., & de Albuquerque, V. H. C. (2020). METO: Matching theory based efficient task offloading in IoT-fog interconnection networks. IEEE Internet of Things Journal, 1–1. Swain, C., Sahoo, M. N., Satpathy, A., Muhammad, K., Bakshi, S., Rodrigues, J. J. P. C., & de Albuquerque, V. H. C. (2020). METO: Matching theory based efficient task offloading in IoT-fog interconnection networks. IEEE Internet of Things Journal, 1–1.
29.
Zurück zum Zitat Chen, S., Zheng, Y., Lu, W., Varadarajan, V., & Wang, K. (2020). Energy-optimal dynamic computation offloading for industrial IoT in fog computing. IEEE Transactions on Green Communications and Networking, 4, 566–576.CrossRef Chen, S., Zheng, Y., Lu, W., Varadarajan, V., & Wang, K. (2020). Energy-optimal dynamic computation offloading for industrial IoT in fog computing. IEEE Transactions on Green Communications and Networking, 4, 566–576.CrossRef
30.
Zurück zum Zitat Tuli, S., Ilager, S., Ramamohanarao, K., & Buyya, R. (2020). Dynamic scheduling for stochastic edge-cloud computing environments using A3C learning and residual recurrent neural networks. arXiv: abs/2009.02186. Tuli, S., Ilager, S., Ramamohanarao, K., & Buyya, R. (2020). Dynamic scheduling for stochastic edge-cloud computing environments using A3C learning and residual recurrent neural networks. arXiv: abs/2009.02186.
31.
Zurück zum Zitat Bozorgchenani, A., Disabato, S., Tarchi, D., & Roveri, M. (2020). An energy harvesting solution for computation offloading in fog computing networks. Computer Communications, 160, 577–587.CrossRef Bozorgchenani, A., Disabato, S., Tarchi, D., & Roveri, M. (2020). An energy harvesting solution for computation offloading in fog computing networks. Computer Communications, 160, 577–587.CrossRef
32.
Zurück zum Zitat Li, X., Zang, Z., Shen, F., & Sun, Y. (2020). Task offloading scheme based on improved contract net protocol and beetle antennae search algorithm in fog computing networks. Mobile Networks and Applications. Li, X., Zang, Z., Shen, F., & Sun, Y. (2020). Task offloading scheme based on improved contract net protocol and beetle antennae search algorithm in fog computing networks. Mobile Networks and Applications.
33.
Zurück zum Zitat Hussain, A., Manikanthan, S. V., Padmapriya, T., & Nagalingam, M. (2020). Genetic algorithm based adaptive offloading for improving IoT device communication efficiency. Wireless Networks, 26, 2329–2338.CrossRef Hussain, A., Manikanthan, S. V., Padmapriya, T., & Nagalingam, M. (2020). Genetic algorithm based adaptive offloading for improving IoT device communication efficiency. Wireless Networks, 26, 2329–2338.CrossRef
34.
Zurück zum Zitat Zhou, Z., Liao, H., Gu, B., Mumtaz, S., & Rodriguez, J. (2020). Resource sharing and task offloading in IoT fog computing: A contract-learning approach. IEEE Transactions on Emerging Topics in Computational Intelligence, 4, 227–240.CrossRef Zhou, Z., Liao, H., Gu, B., Mumtaz, S., & Rodriguez, J. (2020). Resource sharing and task offloading in IoT fog computing: A contract-learning approach. IEEE Transactions on Emerging Topics in Computational Intelligence, 4, 227–240.CrossRef
35.
Zurück zum Zitat Adhikari, M., Mukherjee, M., & Srirama, S. (2020). DPTO: A deadline and priority-aware task offloading in fog computing framework leveraging multilevel feedback queueing. IEEE Internet of Things Journal, 7, 5773–5782.CrossRef Adhikari, M., Mukherjee, M., & Srirama, S. (2020). DPTO: A deadline and priority-aware task offloading in fog computing framework leveraging multilevel feedback queueing. IEEE Internet of Things Journal, 7, 5773–5782.CrossRef
36.
Zurück zum Zitat Shahryari, O.-K., Pedram, H., Khajehvand, V., & TakhtFooladi, M. D. (2020). Energy-efficient and delay-guaranteed computation offloading for fog-based IoT networks. Computer Networks, 107511. Shahryari, O.-K., Pedram, H., Khajehvand, V., & TakhtFooladi, M. D. (2020). Energy-efficient and delay-guaranteed computation offloading for fog-based IoT networks. Computer Networks, 107511.
37.
Zurück zum Zitat Abdelmoneem, R. M., Benslimane, A., & Shaaban, E. (2020). Mobility-aware task scheduling in cloud-Fog IoT-based healthcare architectures. Comput. Networks, 179, 107348.CrossRef Abdelmoneem, R. M., Benslimane, A., & Shaaban, E. (2020). Mobility-aware task scheduling in cloud-Fog IoT-based healthcare architectures. Comput. Networks, 179, 107348.CrossRef
38.
Zurück zum Zitat Hosseinioun, P., Kheirabadi, M., Tabbakh, S. R., & Ghaemi, R. (2020). A new energy-aware tasks scheduling approach in fog computing using hybrid meta-heuristic algorithm. Journal of Parallel Distributed Comput., 143, 88–96.CrossRef Hosseinioun, P., Kheirabadi, M., Tabbakh, S. R., & Ghaemi, R. (2020). A new energy-aware tasks scheduling approach in fog computing using hybrid meta-heuristic algorithm. Journal of Parallel Distributed Comput., 143, 88–96.CrossRef
39.
Zurück zum Zitat Wang, S., Zhao, T., & Pang, S. (2020). Task scheduling algorithm based on improved firework algorithm in fog computing. IEEE Access, 8, 32385–32394.CrossRef Wang, S., Zhao, T., & Pang, S. (2020). Task scheduling algorithm based on improved firework algorithm in fog computing. IEEE Access, 8, 32385–32394.CrossRef
Metadaten
Titel
Mobility Aware-Task Scheduling and Virtual Fog for Offloading in IoT-Fog-Cloud Environment
verfasst von
Khaled M. Matrouk
Amer D. Matrouk
Publikationsdatum
20.03.2023
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2023
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-023-10310-w

Weitere Artikel der Ausgabe 2/2023

Wireless Personal Communications 2/2023 Zur Ausgabe

Neuer Inhalt