Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 10/2021

11.02.2021 | Research Article-Electrical Engineering

Modeling and Control of Robotic Manipulators: A Fractional Calculus Point of View

verfasst von: Abhaya Pal Singh, Dipankar Deb, Himanshu Agrawal, Kishore Bingi, Stepan Ozana

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper deals with the fractional-order modeling, stability analysis and control of robotic manipulators, namely a single flexible link robotic manipulator (SFLRM) and 2DOF Serial Flexible Joint Robotic Manipulator (2DSFJ). The control law is derived using Pole Placement (PP) method. This paper uses Mittag–Leffler function for the analysis of SFLRM in the time domain. The stability analysis of the fractional model is carried in a transformed \({\Omega }\)-Domain, and from the analysis, it is observed that the response of the fractional model of SFLRM robotic manipulator is stable. The main motive behind this analysis is to understand the fractional behavior of robotic manipulators, and it is well known from literature that most of the real-world systems have their own fractional behavior. Furthermore, a real-time SFLRM and 2DSFJ setups are considered to validate the results obtained and it is found that the control law suggested by PP method improves the settling time of the robotic manipulators.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sethi, J.K.; Deb, D.; Malakar, M.: Modeling of a wind turbine farm in presence of wake interactions. In: 2011 International Conference On Energy, Automation And Signal (2011) Sethi, J.K.; Deb, D.; Malakar, M.: Modeling of a wind turbine farm in presence of wake interactions. In: 2011 International Conference On Energy, Automation And Signal (2011)
2.
Zurück zum Zitat Patel, R.; Deb, D.: Parametrized control-oriented mathematical model and adaptive backstepping control of a single chamber single population microbial fuel cell. J. Power Sources 396, 599–605 (2018)CrossRef Patel, R.; Deb, D.: Parametrized control-oriented mathematical model and adaptive backstepping control of a single chamber single population microbial fuel cell. J. Power Sources 396, 599–605 (2018)CrossRef
3.
Zurück zum Zitat Nath, A.; Deb, D.; Dey, R.: An augmented subcutaneous type 1 diabetic patient modelling and design of adaptive glucose control. J. Process Control 86, 94–105 (2020)CrossRef Nath, A.; Deb, D.; Dey, R.: An augmented subcutaneous type 1 diabetic patient modelling and design of adaptive glucose control. J. Process Control 86, 94–105 (2020)CrossRef
4.
Zurück zum Zitat Nasser-Eddine, A.; Huard, B.; Gabano, J.D.; Poinot, T.: A two steps method for electrochemical impedance modeling using fractional order system in time and frequency domains. Control Eng. Pract. 86, 96–104 (2019)CrossRef Nasser-Eddine, A.; Huard, B.; Gabano, J.D.; Poinot, T.: A two steps method for electrochemical impedance modeling using fractional order system in time and frequency domains. Control Eng. Pract. 86, 96–104 (2019)CrossRef
5.
Zurück zum Zitat Qureshi, S.; Yusuf, A.; Shaikh, A.A.; Inc, M.; Baleanu, D.: Fractional modeling of blood ethanol concentration system with real data application. Chaos Interdiscip. J. Nonlinear Sci. 29(1), 013143 (2019)MathSciNetMATHCrossRef Qureshi, S.; Yusuf, A.; Shaikh, A.A.; Inc, M.; Baleanu, D.: Fractional modeling of blood ethanol concentration system with real data application. Chaos Interdiscip. J. Nonlinear Sci. 29(1), 013143 (2019)MathSciNetMATHCrossRef
6.
7.
Zurück zum Zitat Singh, A.P.; Deb, D.; Agarwal, H.: On selection of improved fractional model and control of different systems with experimental validation. Commun. Nonlinear Sci. Numer. Simul. 79, 104902 (2019)MathSciNetMATHCrossRef Singh, A.P.; Deb, D.; Agarwal, H.: On selection of improved fractional model and control of different systems with experimental validation. Commun. Nonlinear Sci. Numer. Simul. 79, 104902 (2019)MathSciNetMATHCrossRef
8.
Zurück zum Zitat Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Feliu-Batlle, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, Berlin (2010)MATHCrossRef Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Feliu-Batlle, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, Berlin (2010)MATHCrossRef
9.
Zurück zum Zitat Caponetto, R.: Fractional Order Systems: Modeling and Control Applications. World Scientific, Singapore (2010)CrossRef Caponetto, R.: Fractional Order Systems: Modeling and Control Applications. World Scientific, Singapore (2010)CrossRef
10.
Zurück zum Zitat Monje, C.A.; Vinagre, B.M.; Feliu, V.; Chen, Y.: Tuning and auto-tuning of fractional order controllers for industry applications. Control Eng. Pract. 16(7), 798–812 (2008)CrossRef Monje, C.A.; Vinagre, B.M.; Feliu, V.; Chen, Y.: Tuning and auto-tuning of fractional order controllers for industry applications. Control Eng. Pract. 16(7), 798–812 (2008)CrossRef
11.
Zurück zum Zitat Luo, Y.; Chen, Y.Q.; Wang, C.Y.; Pi, Y.G.: Tuning fractional order proportional integral controllers for fractional order systems. J. Process Control 20(7), 823–831 (2010)CrossRef Luo, Y.; Chen, Y.Q.; Wang, C.Y.; Pi, Y.G.: Tuning fractional order proportional integral controllers for fractional order systems. J. Process Control 20(7), 823–831 (2010)CrossRef
12.
Zurück zum Zitat Zhang, X.; Chen, Y.: Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order \(\alpha \): the \(0< \alpha < 1\) case. ISA Trans. 82, 42–50 (2018)CrossRef Zhang, X.; Chen, Y.: Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order \(\alpha \): the \(0< \alpha < 1\) case. ISA Trans. 82, 42–50 (2018)CrossRef
13.
Zurück zum Zitat Sakthivel, R.; Ahn, C.K.; Joby, M.: Fault-tolerant resilient control for fuzzy fractional order systems. IEEE Trans. Syst. Man Cybern. Syst. 49(9), 1797–1805 (2018)CrossRef Sakthivel, R.; Ahn, C.K.; Joby, M.: Fault-tolerant resilient control for fuzzy fractional order systems. IEEE Trans. Syst. Man Cybern. Syst. 49(9), 1797–1805 (2018)CrossRef
14.
Zurück zum Zitat Lin, C.; Chen, B.; Shi, P.; Yu, J.P.: Necessary and sufficient conditions of observer-based stabilization for a class of fractional-order descriptor systems. Syst. Control Lett. 112, 31–35 (2018)MathSciNetMATHCrossRef Lin, C.; Chen, B.; Shi, P.; Yu, J.P.: Necessary and sufficient conditions of observer-based stabilization for a class of fractional-order descriptor systems. Syst. Control Lett. 112, 31–35 (2018)MathSciNetMATHCrossRef
15.
Zurück zum Zitat Wang, J.; Shao, C.; Chen, Y.Q.: Fractional order sliding mode control via disturbance observer for a class of fractional order systems with mismatched disturbance. Mechatronics 53, 8–19 (2018)CrossRef Wang, J.; Shao, C.; Chen, Y.Q.: Fractional order sliding mode control via disturbance observer for a class of fractional order systems with mismatched disturbance. Mechatronics 53, 8–19 (2018)CrossRef
16.
Zurück zum Zitat Singh, A.P.; Agarwal, H.; Srivastava, P.: Fractional order controller design for inverted pendulum on a cart system (POAC). WSEAS Trans. Syst. Control 10, 172–178 (2015) Singh, A.P.; Agarwal, H.; Srivastava, P.: Fractional order controller design for inverted pendulum on a cart system (POAC). WSEAS Trans. Syst. Control 10, 172–178 (2015)
17.
Zurück zum Zitat Singh, A.; Agrawal, H.: A fractional model predictive control design for 2-d gantry crane system. J. Eng. Sci. Technol. 13(7), 2224–2235 (2018) Singh, A.; Agrawal, H.: A fractional model predictive control design for 2-d gantry crane system. J. Eng. Sci. Technol. 13(7), 2224–2235 (2018)
18.
Zurück zum Zitat Mujumdar, A.; Tamhane, B.; Kurode, S.: Fractional order modeling and control of a flexible manipulator using sliding modes. In: 2014 American Control Conference, pp. 2011–2016. IEEE (2014) Mujumdar, A.; Tamhane, B.; Kurode, S.: Fractional order modeling and control of a flexible manipulator using sliding modes. In: 2014 American Control Conference, pp. 2011–2016. IEEE (2014)
19.
20.
Zurück zum Zitat Lin, S.D.; Lu, C.H.: Laplace transform for solving some families of fractional differential equations and its applications. Adv. Differ. Equ. 2013(1), 137 (2013)MathSciNetMATHCrossRef Lin, S.D.; Lu, C.H.: Laplace transform for solving some families of fractional differential equations and its applications. Adv. Differ. Equ. 2013(1), 137 (2013)MathSciNetMATHCrossRef
21.
Zurück zum Zitat Sabatier, J.; Farges, C.; Trigeassou, J.C.: Fractional systems state space description: some wrong ideas and proposed solutions. J. Vib. Control 20(7), 1076–1084 (2014)MathSciNetCrossRef Sabatier, J.; Farges, C.; Trigeassou, J.C.: Fractional systems state space description: some wrong ideas and proposed solutions. J. Vib. Control 20(7), 1076–1084 (2014)MathSciNetCrossRef
22.
Zurück zum Zitat Li, C.P.; Zhang, F.R.: A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 193(1), 27–47 (2011)CrossRef Li, C.P.; Zhang, F.R.: A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 193(1), 27–47 (2011)CrossRef
23.
Zurück zum Zitat Li, Y.; Chen, Y.; Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)MathSciNetMATHCrossRef Li, Y.; Chen, Y.; Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)MathSciNetMATHCrossRef
24.
Zurück zum Zitat Tavazoei, M.S.; Haeri, M.: A note on the stability of fractional order systems. Math. Comput. Simul. 79(5), 1566–1576 (2009)MathSciNetMATHCrossRef Tavazoei, M.S.; Haeri, M.: A note on the stability of fractional order systems. Math. Comput. Simul. 79(5), 1566–1576 (2009)MathSciNetMATHCrossRef
25.
Zurück zum Zitat Bandyopadhyay, B.; Kamal, S.: Solution, stability and realization of fractional order differential equation. In: Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach, pp. 55–90. Springer, Cham (2015) Bandyopadhyay, B.; Kamal, S.: Solution, stability and realization of fractional order differential equation. In: Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach, pp. 55–90. Springer, Cham (2015)
26.
Zurück zum Zitat Singh, A.P.; Kazi, F.S.; Singh, N.M.; Srivastava, P.: PI\(^\alpha \)D\(^\beta \) controller design for underactuated mechanical systems. In: 2012 12th International Conference on Control Automation Robotics and Vision (ICARCV), pp. 1654–1658. IEEE (2012) Singh, A.P.; Kazi, F.S.; Singh, N.M.; Srivastava, P.: PI\(^\alpha \)D\(^\beta \) controller design for underactuated mechanical systems. In: 2012 12th International Conference on Control Automation Robotics and Vision (ICARCV), pp. 1654–1658. IEEE (2012)
27.
Zurück zum Zitat Dabiri, A.; Poursina, M.; Butcher, E.A.: Integration of divide-and-conquer algorithm with fractional order controllers for the efficient dynamic modeling and control of multibody systems. In: 2018 Annual American Control Conference (ACC), pp. 4201–4206. IEEE (2018) Dabiri, A.; Poursina, M.; Butcher, E.A.: Integration of divide-and-conquer algorithm with fractional order controllers for the efficient dynamic modeling and control of multibody systems. In: 2018 Annual American Control Conference (ACC), pp. 4201–4206. IEEE (2018)
28.
Zurück zum Zitat Copot, C.; Muresan, C.I.; Markowski, K.A.: Advances in fractional order controller design and applications. J. Appl. Nonlinear Dyn. 8(1), 1–3 (2019)MathSciNet Copot, C.; Muresan, C.I.; Markowski, K.A.: Advances in fractional order controller design and applications. J. Appl. Nonlinear Dyn. 8(1), 1–3 (2019)MathSciNet
29.
Zurück zum Zitat Pandey, S.; Dwivedi, P.; Junghare, A.S.: A newborn hybrid anti-windup scheme for fractional order proportional integral controller. Arab. J. Sci. Eng. 43(6), 3049–3063 (2018)CrossRef Pandey, S.; Dwivedi, P.; Junghare, A.S.: A newborn hybrid anti-windup scheme for fractional order proportional integral controller. Arab. J. Sci. Eng. 43(6), 3049–3063 (2018)CrossRef
30.
Zurück zum Zitat Dabiri, A.; Butcher, E.A.: Optimal observer-based feedback control for linear fractional-order systems with periodic coefficients. J. Vib. Control 25(7), 1379–1392 (2019)MathSciNetCrossRef Dabiri, A.; Butcher, E.A.: Optimal observer-based feedback control for linear fractional-order systems with periodic coefficients. J. Vib. Control 25(7), 1379–1392 (2019)MathSciNetCrossRef
31.
Zurück zum Zitat Dabiri, A.; Butcher, E.A.; Poursina, M.; Nazari, M.: Optimal periodic-gain fractional delayed state feedback control for linear fractional periodic time-delayed systems. IEEE Trans. Autom. Control 63(4), 989–1002 (2017)MathSciNetMATHCrossRef Dabiri, A.; Butcher, E.A.; Poursina, M.; Nazari, M.: Optimal periodic-gain fractional delayed state feedback control for linear fractional periodic time-delayed systems. IEEE Trans. Autom. Control 63(4), 989–1002 (2017)MathSciNetMATHCrossRef
32.
Zurück zum Zitat Gong, Y.; Wen, G.; Peng, Z.; Huang, T.; Chen, Y.: Observer-based time-varying formation control of fractional-order multi-agent systems with general linear dynamics. IEEE Trans. Circuits Syst. II Express Briefs 67, 82–86 (2019) Gong, Y.; Wen, G.; Peng, Z.; Huang, T.; Chen, Y.: Observer-based time-varying formation control of fractional-order multi-agent systems with general linear dynamics. IEEE Trans. Circuits Syst. II Express Briefs 67, 82–86 (2019)
33.
Zurück zum Zitat Cortez, A.J.G.; Mendez-Barrios, C.F.; González-Galván, E.J.; MejíaRodríguez, G.; Félix, L.: Geometrical design of fractional PD controllers for linear time-invariant fractional-order systems with time delay. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 233(7), 815–829 (2019) Cortez, A.J.G.; Mendez-Barrios, C.F.; González-Galván, E.J.; MejíaRodríguez, G.; Félix, L.: Geometrical design of fractional PD controllers for linear time-invariant fractional-order systems with time delay. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 233(7), 815–829 (2019)
34.
Zurück zum Zitat Boubellouta, A.; Boulkroune, A.: Intelligent fractional-order control-based projective synchronization for chaotic optical systems. Soft. Comput. 23(14), 5367–5384 (2019)MATHCrossRef Boubellouta, A.; Boulkroune, A.: Intelligent fractional-order control-based projective synchronization for chaotic optical systems. Soft. Comput. 23(14), 5367–5384 (2019)MATHCrossRef
35.
Zurück zum Zitat Munoz-Hernandez, G.A.; Mino-Aguilar, G.; Guerrero-Castellanos, J.F.; Peralta-Sanchez, E.: Fractional order PI-based control applied to the traction system of an electric vehicle (EV). Appl. Sci. 10(1), 364 (2020)CrossRef Munoz-Hernandez, G.A.; Mino-Aguilar, G.; Guerrero-Castellanos, J.F.; Peralta-Sanchez, E.: Fractional order PI-based control applied to the traction system of an electric vehicle (EV). Appl. Sci. 10(1), 364 (2020)CrossRef
36.
Zurück zum Zitat Birs, I.; Muresan, C.; Nascu, I.; Ionescu, C.: A survey of recent advances in fractional order control for time delay systems. IEEE Access 7, 30951–30965 (2019)CrossRef Birs, I.; Muresan, C.; Nascu, I.; Ionescu, C.: A survey of recent advances in fractional order control for time delay systems. IEEE Access 7, 30951–30965 (2019)CrossRef
37.
Zurück zum Zitat Guo, Y.; Ma, B.L.: Global sliding mode with fractional operators and application to control robot manipulators. Int. J. Control 92(7), 1497–1510 (2019)MathSciNetMATHCrossRef Guo, Y.; Ma, B.L.: Global sliding mode with fractional operators and application to control robot manipulators. Int. J. Control 92(7), 1497–1510 (2019)MathSciNetMATHCrossRef
38.
Zurück zum Zitat Haghighi, A.; Ziaratban, R.: A non-integer sliding mode controller to stabilize fractional-order nonlinear systems. Adv. Differ. Equ. 2020, 1–19 (2020)MathSciNetCrossRef Haghighi, A.; Ziaratban, R.: A non-integer sliding mode controller to stabilize fractional-order nonlinear systems. Adv. Differ. Equ. 2020, 1–19 (2020)MathSciNetCrossRef
39.
Zurück zum Zitat Raouf, F.; Maamar, B.; Mohammad, R.: Control of serial link manipulator using a fractional order controller. Int. Rev. Autom. Control 11(1), 1–6 (2018) Raouf, F.; Maamar, B.; Mohammad, R.: Control of serial link manipulator using a fractional order controller. Int. Rev. Autom. Control 11(1), 1–6 (2018)
40.
Zurück zum Zitat Ivanescu, M.; Popescu, N.; Popescu, D.; Channa, A.; Poboroniuc, M.: Exoskeleton hand control by fractional order models. Sensors 19(21), 4608 (2019)CrossRef Ivanescu, M.; Popescu, N.; Popescu, D.; Channa, A.; Poboroniuc, M.: Exoskeleton hand control by fractional order models. Sensors 19(21), 4608 (2019)CrossRef
41.
Zurück zum Zitat Sanz, A.; Etxebarria, V.: Composite robust control of a laboratory flexible manipulator. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 3614–3619. IEEE (2005) Sanz, A.; Etxebarria, V.: Composite robust control of a laboratory flexible manipulator. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 3614–3619. IEEE (2005)
42.
Zurück zum Zitat Etxebarria, V.; Sanz, A.; Lizarraga, I.: Control of a lightweight flexible robotic arm using sliding modes. Int. J. Adv. Rob. Syst. 2(2), 11 (2005)CrossRef Etxebarria, V.; Sanz, A.; Lizarraga, I.: Control of a lightweight flexible robotic arm using sliding modes. Int. J. Adv. Rob. Syst. 2(2), 11 (2005)CrossRef
43.
Zurück zum Zitat Mujumdar, A.A.; Kurode, S.: Second order sliding mode control for single link flexible manipulator. In: International Conference on Machines and Mechanisms (2013) Mujumdar, A.A.; Kurode, S.: Second order sliding mode control for single link flexible manipulator. In: International Conference on Machines and Mechanisms (2013)
44.
Zurück zum Zitat Shitole, C.; Sumathi, P.: Sliding DFT-based vibration mode estimator for single-link flexible manipulator. IEEE/ASME Trans. Mechatron. 20(6), 3249–3256 (2015)CrossRef Shitole, C.; Sumathi, P.: Sliding DFT-based vibration mode estimator for single-link flexible manipulator. IEEE/ASME Trans. Mechatron. 20(6), 3249–3256 (2015)CrossRef
45.
Zurück zum Zitat Mujumdar, A.; Tamhane, B.; Kurode, S.: Observer-based sliding mode control for a class of noncommensurate fractional-order systems. IEEE/ASME Trans. Mechatron. 20(5), 2504–2512 (2015)CrossRef Mujumdar, A.; Tamhane, B.; Kurode, S.: Observer-based sliding mode control for a class of noncommensurate fractional-order systems. IEEE/ASME Trans. Mechatron. 20(5), 2504–2512 (2015)CrossRef
46.
Zurück zum Zitat Ahmad, M.A.; Mohamed, Z.; Ismail, Z.H.: Hybrid input shaping and PID control of a flexible robot manipulator. J. Inst. Eng. 72(3), 56–62 (2009) Ahmad, M.A.; Mohamed, Z.; Ismail, Z.H.: Hybrid input shaping and PID control of a flexible robot manipulator. J. Inst. Eng. 72(3), 56–62 (2009)
47.
Zurück zum Zitat Pham, D.T.; Koç, E.; Kalyoncu, M.; Tınkır, M.: Hierarchical PID controller design for a flexible link robot manipulator using the bees algorithm. Methods Genet. Algorithm 25, 32 (2008) Pham, D.T.; Koç, E.; Kalyoncu, M.; Tınkır, M.: Hierarchical PID controller design for a flexible link robot manipulator using the bees algorithm. Methods Genet. Algorithm 25, 32 (2008)
48.
Zurück zum Zitat Jnifene, A.; Andrews, W.: Experimental study on active vibration control of a single-link flexible manipulator using tools of fuzzy logic and neural networks. IEEE Trans. Instrum. Meas. 54(3), 1200–1208 (2005)CrossRef Jnifene, A.; Andrews, W.: Experimental study on active vibration control of a single-link flexible manipulator using tools of fuzzy logic and neural networks. IEEE Trans. Instrum. Meas. 54(3), 1200–1208 (2005)CrossRef
49.
Zurück zum Zitat Sun, C.; He, W.; Hong, J.: Neural network control of a flexible robotic manipulator using the lumped spring-mass model. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 1863–1874 (2016)CrossRef Sun, C.; He, W.; Hong, J.: Neural network control of a flexible robotic manipulator using the lumped spring-mass model. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 1863–1874 (2016)CrossRef
50.
Zurück zum Zitat Sun, C.; Gao, H.; He, W.; Yu, Y.: Fuzzy neural network control of a flexible robotic manipulator using assumed mode method. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–14 (2018)MathSciNet Sun, C.; Gao, H.; He, W.; Yu, Y.: Fuzzy neural network control of a flexible robotic manipulator using assumed mode method. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–14 (2018)MathSciNet
51.
Zurück zum Zitat Forbes, J.R.; Damaren, C.J.: Single-link flexible manipulator control accommodating passivity violations: theory and experiments. IEEE Trans. Control Syst. Technol. 20(3), 652–662 (2011)CrossRef Forbes, J.R.; Damaren, C.J.: Single-link flexible manipulator control accommodating passivity violations: theory and experiments. IEEE Trans. Control Syst. Technol. 20(3), 652–662 (2011)CrossRef
52.
Zurück zum Zitat Talole, S.E.; Kolhe, J.P.; Phadke, S.B.: Extended-state-observer-based control of flexible-joint system with experimental validation. IEEE Trans. Industr. Electron. 57(4), 1411–1419 (2009)CrossRef Talole, S.E.; Kolhe, J.P.; Phadke, S.B.: Extended-state-observer-based control of flexible-joint system with experimental validation. IEEE Trans. Industr. Electron. 57(4), 1411–1419 (2009)CrossRef
53.
Zurück zum Zitat Quanser Inc.: SRV02 Rotary Flexible Link User Manual (2011) Quanser Inc.: SRV02 Rotary Flexible Link User Manual (2011)
Metadaten
Titel
Modeling and Control of Robotic Manipulators: A Fractional Calculus Point of View
verfasst von
Abhaya Pal Singh
Dipankar Deb
Himanshu Agrawal
Kishore Bingi
Stepan Ozana
Publikationsdatum
11.02.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 10/2021
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-05138-6

Weitere Artikel der Ausgabe 10/2021

Arabian Journal for Science and Engineering 10/2021 Zur Ausgabe

Research Article-Electrical Engineering

Personalized Advanced Time Blood Glucose Level Prediction

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.